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Abstract: The self-consistent problem of gravitational collapse is solved using 2D gas dynamics with
taking into account the neutrino transfer in the flux-limited diffusion approximation. Neutrino are
described by spectral energy density, and weak interaction includes a simplified physical model
of neutrino interactions with nucleons. I investigate convection on the stage of the collapse and
then in the center of the core, where the unstable entropy profile was probably formed. It is shown
that convection has large scale. Convection appears only in the semitransparent region near the
neutrinosphere due to non-equilibrium nonreversible neutronization. Convection increases the
energy of emitted neutrino up to 15÷ 18 MeV. The obtained neutrino spectrum is important for the
registration of low-energy neutrinos from a supernova.
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1. Introduction

Supernovae are produced by stars that end their late evolution in a catastrophic
explosive process. The work [1] introduces the name supernova (SN) and defines the
difference between SNe and novae in terms of their estimated explosive powers. The
luminosity of a SN at its maximum, which lasts for several days, is comparable to the total
luminosity of its host galaxy. There are two general types of a SN, classified according
to the presence of hydrogen absorption lines in the observed spectrum. Absorption lines
are present in the spectra of Type II SNe and absent in the spectra of Type I SNe. In
addition, Type II SNe normally contain compact remnants. Type I SN is associated with
thermonuclear explosions in a binary system, while Type II is the result of the core collapse
of massive stars with mass &10M�.

In this article, I discuss Type II SNe. The thermonuclear burning in the center of
massive stars gives us an iron core with a mass 1.2–1.6M� and with a radius∼108 cm [2]. At
such densities, mainly degenerate relativistic electron gas provides pressure, preventing the
gravitational collapse of the iron core. The relativistic adiabatic index 4/3 is the boundary of
stability region against the collapse. The iron core collapses due to the neutrinos loosening.
The energy is carried away by neutrinos. The total energy carried by neutrinos can be
estimated as a gravitational energy of the forming neutron star with a mass M� and a
radius rNS∼10 km, i.e., neutrinos carry out |Egr| = GM/rNS∼1054 erg over a few seconds.
The neutrino energy is ∼100 MeV per nucleon, while thermonuclear energy can provide at
least one order less (8 MeV per nucleon). Due to the different timescales of core collapse and
light curves from SNe, it is possible divide the problem of the collapse from the simulation
of light curves. The simulation of light curves proves a small part of energy of neutrinos
absorbed by the matter of the collapsing core envelope ∼1051 erg, less than 1% of full
energy [3].

The work [4] was the first to investigate the spherically symmetric problem of the core
collapse calculations. Authors overestimated the transparency of matter for the neutrino
and obtained the necessary energy deposition for SNe explosion due to a large average
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energy of the emitted neutrino. The mathematical model of neutrino heat conductivity
suitable for calculations with available computing power was formulated in [5,6]. The
model introduces a neutrinosphere, opaque and transparent regions for neutrinos. The
model demonstrates the disadvantage of the spherically symmetric problem for explanation
of SNe explosion. Moreover, the 1D model gives low average energies of emitted neutrinos
∼5 MeV in comparison with more complicated spherically symmetric models taking into
account kinetic Bolzmann equations for neutrino transport [7–11].

The reason for the uncertainty in the construction of a model for the explosion of
SNe [3,12,13] is the difficulties of a mathematical problem. One needs to take into account
hydrodynamics for the matter and kinetic Boltzmann neutrino transport with different
time scales and different space scales. Matter density changes from the densities of white
drafts with degenerate relativistic electrons to the degenerate nuclear densities of forming
neutron stars that are nontransparent for neutrinos. In addition, multidimensionality and
instabilities during collapse play an important role. Regions of convective instabilities
with the entropy gradient collinear with gravitational acceleration are forming during the
collapse, grads · g > 0. Because the center contains high-energy neutrinos, convection in
multidimensional simulations gives us a higher neutrino energy flux in comparison with
1D [14,15]. As a results, some 2D [16,17] and 3D [18,19] models provide the SN explosion,
while other models [20–22] cannot demonstrate the necessary energy deposition ∼1051 erg.
Because the cited works do not include the neutrino spectrum, it would be useful to indicate
only the correlation between large scale convection and obtained explosion.

Large scale convection at the center of a star was first investigated in 3D hydrodynamic
calculations in [23] for a stationary initial state with an arbitrary uniform entropy in
the center and an ideal gas low equation of state. In 3D hydrodynamic calculations
without neutrino transport [24,25] we considered the convection for a more realistic entropy
distribution in the initial state corresponding to 1D calculations for a full input physics.
Used ideal gas equation of state is appropriate for Fermi–Dirac statistic of relativistic
electrons for any degree of degeneracy, in case we are using only the relation between
pressure and internal specific energy without temperature. We also included neutrino
transport, simplified reactions of weak interactions, and realistic equation of state for the
matter at high energy density in [26]. We proved the assumption about the applicability
of Schwarzschild’s convective instability criterion for gas dynamics, ∇s · g > 0, near the
neutrinosphere of the forming proto-neutron star due to nonequilibrium nonreversible
neutronization, i.e., the loss of neutrinos.

The main expected effects from large-scale convection are not only the increasing of the
neutrino energy flux, but also the increasing of the average energy for outgoing neutrinos,
because large-scale convection facilitates the neutrino transport from a “hot” central region.
The average neutrino energy 30 MeV, even with the same neutrino luminosity such as a 1D
model of collapse, provides the kinetic energy of the envelope ∼1051 erg [24], because the
cross section of neutrino scattering on electron with the small Fermi energy is proportional
to the average neutrino energy [27–29]. To understand the possibility of such important
effect due to convection, we calculated 2D collapse with neutrino spectrum [30,31]. We
obtained the energy of outgoing neutrinos ∼15 MeV due to convection in compare with
∼10 MeV in 1D calculations without convection [27]. Moreover, we proved by means of
3D calculations with neutrino energy transport and without neutrino spectrum [32] that
slow differential rotation make 3D calculations close to 2D as predicted author [33].

In this work I discuss the original mathematical model of the multidimensional multi-
temperature gas dynamic with neutrino transfer. I analyze nonequlibrium neutranization
in gravitational collapse in the more accurate computational grid in comparison with [31].
I focus on the neutrino spectrum only, excluding the interaction of the outgoing neutri-
nos with the shell. This limitation considerably simplifies the model of the interaction of
neutrinos with matter and the grid size of the computational region.

The emitted neutrinos spectrum prediction is the most important theoretical result for
the future registration of neutrinos. In my opinion, the registration of SN neutrino spectrum
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is very important for confirmation of the model of collapse and SN. Unfortunately, only few
neutrino events were detected from a close SN, 1987A, in a neighboring galaxy. Another
feature of SN1987A is the orientation toward the southern hemisphere of the Earth, because
the registered outgoing particles of weak interaction matter with the SN neutrino can be
observed by the neutrino observatories located the in the northern hemisphere of the Earth.
The first publications indicate high neutrino energies: 20–40 MeV IMB [34], 9–35 MeV
Kamiokande-II [35], and 20 MeV Baksan-LSD [36,37], which is closer to the large scale
convection model than to the spherically symmetric collapse. Admittedly, the registered
neutrino events from SN1987A led to a significant increasing of the observed background
level correlated with the SN light observed from the southern hemisphere of the Earth.
The registration of neutrino events also utilized mathematical models of core collapse [38],
sometimes 1D core collapse with average neutrino energy 5 MeV from the neutrinosphere.
The interpretation of registered events is sensitive for the neutrino spectrum.

Modern neutrino observatories promise thousands of times more neutrino events
from a close SN [39]. New observatories operate with a large amount of working substance,
but the number of events is very sensitive for the expected energy of incoming low-energy
neutrinos for core collapse in comparison with high-energy neutrinos. For this reason,
the simulations of core collapse are focused on prediction of the neutrino spectrum. In
addition to that, the neutrino spectrum is important from the perspective of the large-scale
convection and the mechanism of SNe explosion. Most modern core collapse simulations
are focusing on multidimensional models with instabilities in 2D [40] and 3D [41] simula-
tions. Such models give us average neutrino energy 15–20 MeV closer to our results with
large-scale convection [31]. Some of the modern simulations examine the impact of the
nuclear equation of state on core collapse and the neutrino spectrum [42].

2. Mathematical Model of Core Collapse with the Neutrino Transport

The physical problem of gravitational collapse includes the hydrodynamic equations
for the matter with a self gravity and kinetic Boltzmann equations for distribution functions
of different kinds of neutrinos. Matter includes electrons, positrons, free nucleons, nuclei,
and photons. Matter can be described by hydrodynamics due to its small thermalization
time. Neutrinos take part in weak interactions with matter, and may not be in thermal
equilibrium; only at the forming of a proto-neutron star in the part of the computational
region may a neutrino achieve equilibrium with matter.Weak interactions have interesting
features of conservation of lepton number (difference between the number of leptons
and the number of antileptons). For this reason, in hydrodynamic equations one has the
additional value difference between an electron and a positron per nucleon, Ye, below the
named number of electrons. Weak interactions and neutrino transport changes the number
of electrons in a moving fluid of matter.

For the multidimensional case, there is useful a model of flux-limited diffusion pro-
posed for a spherically symmetric collapse in [43]. The model does not include the depen-
dence of distribution functions of the neutrino from various angles. In the opaque case, the
neutrino spectral fluxes are defined by the gradients of the spectral energy densities. In the
transparent region, the neutrino flux is proportional to the energy density. In a flux-limited
diffusion model the fluxes are proportional to the gradients of the energy density, while
the semi-transparent region contains an arbitrary interpolation of fluxes in transparent and
opaque areas. The flux-limited diffusion is easily generalized for the multidimensional
case. It also solves the problem of small timescales for reaction rates in opaque regions.

Multicomponent hydrodynamic code [44–46] operates with independent variables:
concentration densities ni = ρ/mp, internal energies εi of components i, momentum density
ρv (the velocities of all components of matter are assumed to be the same). One has a
system of Euler equations on a fixed coordinate system. Taking into account discontinuities,
one should use conservative differential equations. The low conservation of the number of
baryons is

∂ρ/mp

∂t
+ div(ρ/mpv) = 0, (1)
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the equation for the difference between the electrons and positron concentrations while
taking into account reactions is

∂∆ne

∂t
+ div(∆nev) = Ẏeρ/mp, (2)

the equation for momentum of matter

∂ρv
∂t

+ DivΠ = ρg, (3)

with momentum flux density tensor in orthogonal coordinates Πij = ρvivj + (Pm + Pν)δij,
the equation for the energy density of matter is

∂ρEm

∂t
+ div(Emρ + Pm)v + vgradPν = ρvg + ρqm, (4)

Em = εm + v2/2 is the sum of specific internal and kinetic energies, and ρqm is the heating
of matter by neutrino. The acceleration of gravity is the potential gradient g = −gradΦ,
obtained from the numerical solution of the Poisson equation [47]

∆Φ = 4πGρ. (5)

The transport of neutrinos of type ν is described by the kinetic Boltzmann equation

1
c

∂ fν(r, p, t)
∂t

+
p
p
∇ fν = ∑

q

(
η

q
ν − χ

q
ν fν

)
(6)

with emission and absorption coefficients η
q
ν, χ

q
ν, in reaction q.

It is necessary to introduce a grid for neutrino energies and use the spectral energy
densities of neutrinos and antineutrinos disregarding the angular dependence of the distri-
bution function,

∆ρεν,ω =
∫ εω+1/2

εω−1/2

dεUν(ε), where Uν(ε) ≡
∫

do
ε3

c3 fν, (7)

in each interval of the grid for neutrino energy (εω−1/2, εω+1/2). I do not consider an-
tineutrinos separately from neutrinos. I will adopt the same distribution functions in the
laboratory and matter-accompanying reference frames (for nonrelativistic velocities v� c).
The equilibrium neutrino spectrum is

f eq
ν =

2

(2πh̄c)3
1

1 + exp
(

ε−µν

kTν

) , µν ≈ µe. (8)

The transport equation for the spectral energy density is

∂ρ∆εν,ω

∂t
+ div((ρ∆εν,ω + ∆Pν,ω)v)− vgrad∆Pν,ω = div∆Fν,ω − ρ∆qm,ω, (9)

where ∆Pν,ω = (4/3− 1)ρ∆εν,ω, the spectral flux is determined by the gradient of spec-
tral energy density. In the opaque case, one has the diffusion approximation ∆Fthick

ν,ω =

− 1
3χ grad∆Uν,ω ; in the transparent case, the flux is limited only the speed of light for neutri-

nos ∆Fmax
ν,ω = cρ∆εν,ω. In an arbitrary case, some arbitrary interpolations of fluxes is used

(so-called flux-limiting)

∆Fν,ω =
∆Fthick

ν,ω∣∣∣∆Fthick
ν,ω

∣∣∣/∆Fmax
ν,ω + 1

. (10)
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A nonlinear diffusion coefficient transforms the diffusion (parabolic) equation in the
opaque region to the transport (hyperbolic) in the transparent region.

The energy exchange between neutrinos and matter provide relaxation to equilibrium

ρ∆qm = cχ
(

∆Uν,ω − ∆Ueq
ν,ω

)
, (11)

where the equilibrium neutrino energy is defined by the energy conservation

∑
ω

∆Ueq
ν,ω(Teq) + ρεm(ρ, Teq, Ye) = ∑

ω

∆Uν,ω + ρεeq. (12)

The relaxation rate was chosen proportional to the concentration of free nucleons
(cχ ≈ cσ0(nn + np)) with constant cross section σ0 = 1.7× 10−40 cm2. This model gives us
the spectrum of outgoing neutrinos, but a constant cross section is not sufficient to describe
their absorption in the envelope. The cross section for scattering with electrons of the
envelope for energies of outgoing neutrinos of 10 MeV (much higher than the Fermi energy
electrons) is proportional to the neutrino energy [27].

3. The Equation of State and an Initial Model

The equation of state (EOS) of matter represents coupled equations for pressure (Pm)
and internal energy (εm) as functions of density, temperature and in our case of a week
interaction also number of electrons (Ye)

Pm = Pm(ρ, εm, Ye),

εm = εm(ρ, T, Ye). (13)

Matter includes nuclei with free nucleons in statistical equilibrium, pairs and equi-
librium radiation. The statistical equilibrium nuclei (mass numbers Ai, charges Zi) with
free nucleons:

(Ai, Zi)� (Ai − Zi)n + Zi p, (14)

gives the relation of chemical potentials

µi = (Ai − Zi)µn + Ziµp, (15)

where the chemical potential i-nuclei can be defined in non-relativistic case (with taking
into account degeneracy of Fermi particles) from relation

Xiρ

Aimp
= 4πωi

( mic
2πh̄

)3 1
2

(
2kBT
mic2

)3/2
F1/3

(
µi −mic2

kBT

)
(16)

with number densities of nuclei Xi, Fermi-Dirac function

Fα(x) ≡
∫ ∞

0

ξαdξ

1 + exp(ξ − x)
(17)

of order α = 1/3 and statical weight ωi. The sum of number densities equals to one

∑
i

Xi = 1, (18)

while the electroneutrality gives the relation

∑
i

XiZi
Ai

= Ye. (19)



Universe 2022, 8, 372 6 of 15

Pressure and specific internal energy of nucleons are described by equations

Pi =
4πωimic3

3

(
2kBT
mic2

)3 1
2

F3/2

(
µi −mic2

kBT

)
, (20)

εi =
mic2Xi
Aimp

+
4πωimic3

ρ

1
4

(
2kBT
mic2

)3
F3/2

(
µi −mic2

kBT

)
. (21)

For nuclei, it is not necessary to take into account degeneracy, as it can be described by
ideal gas low EOS. Radiation is the black body.

For electrons, one can use EOS of ultra-relativistic pairs (µe � mec2):

Yeρ

mp
=

1
2π2

(
kT
h̄c

)3
(µ3

e + π2µe),

Pe =

(
4
3
− 1
)

ρεe =
1

12π2(h̄c)3

(
µ4

e + 2π2µ2
e (kBT)2 +

7
15

π4(kBT)4
)

. (22)

In is interesting to note that an ideal gas relation between pressure and internal energy
for ultra-relativistic Fermi particles is true for any degree of degeneracy

Pe = (Γ− 1)ρεe (23)

with adiabatic index Γ = 4/3. In the case of non relativistic case at any degree of degeneracy
adiabatic index is 5/3. Without reactions and neutrino transport the ideal conservative
hydrodynamic is a suitable approach [25].

In the conservative scheme, the independent variables are (ρ, εm, Ye), so one needs
to resolve matter temperature, T, from a nonlinear EOS (13) by a Newton iterations with
taking into account electro neutrality condition (19).

The number of electrons Ye is determined from the kinetics of neutronization

∂Ye

∂t
+ v∇Ye = Ẏe(ρ, Tm, εν). (24)

Strictly speaking, in EOS only pair plasma is ultra relativistic. Nucleons are not
relativistic, but become degenerate at high densities. Nuclei are not relativistic and they are
not degenerate.

In a simplified description of kinetics I take into account the relaxation of number of
electrons, Ye, to β-equilibrium Yeq

e (ρ, T) from [48]

Ẏe = −(cσ0(nn + np))(Ye −Yeq
e (ρ, T(ρ, ε))), (25)

with two reactions being considered,

e− + p→ n + ν,

e+ + n→ p + ν̃ (26)

in the assumption of a free escape of neutrinos. Such a model is quantitatively exact only in
the transparent region near the neutrinosphere. In an opaque region, a simple model of
equilibrium is only qualitatively true, but the neutrino energy fluxes in the opaque region
are also negligibly small. Quantitatively, such a simplified model of neutronization in an
opaque region has no effect on outgoing neutrino spectrum [31]. It is possible to make the
simple neutronization model true by means of correction the lower boundary limit for an
equilibrium electron number Yeq

e,min = 0.05. This correction provides a realistic electron
chemical potential at the collapse at high density in Figure 1 as in the spherically symmetric
calculation of the collapse with full input physics [27].
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Figure 1. Profile of chemical potential of electrons at the beginning of calculations (t ≈ 0) and in the
end of 2D calculations (t f = 12 ms) as a function of cylindrical radius in the equatorial plane.

Because degenerate relativistic electrons a play main role in EOS in the initial state
of collapse, the relationship between pressure and density as in the polytrope P ∝ ρ1+1/n

with index n = 3 may be taken as the initial data. Moreover, including slow initial rotation
provides us 2D axial symmetry even in 3D consideration [32]. I consider it in initial model
already on the stage of collapse, and rotation is differential. The low rotation is a constant
ratio of centrifugal force to gravity (called α-constant rotation low in [49]). In the selected
differential rotation, rotation effects affect the central region where convection is of interest,
but the measure of rotation, the rotation energy, is small, Erot/Egr = 0.013 (the ratio of the
polar radius to the equatorial radius is 0.9). The angular velocity in the forming neutron
star reaches 0.4 rad ms−1 at the end of calculations 12 ms, the center part makes less than
one revolution during this time.

The polytropic initial model contains three independent physical parameters, for exam-
ple, the gravitational constant G, central density ρ0, and equatorial radius req. I chose center
density ρc = 2× 1012 g cm−3 in the initial model, large enough for neutronization. For fixed
mass 1.4M�, the polytrope initial model gives the equatorial radius req = 2.68× 107 cm,
gravitational energy Egr = −2.93× 1052 erg, rotational energy Ek/(−Egr) = 0.013. The
chosen central density in the initial equilibrium corresponds to the ongoing collapse of
the real core of a star. The small initial radius of already ongoing collapse of the real core
makes it possible to use a smaller fixed Euler computational grid. It is possible to resolve
a neutron star formation on a fixed computational grid. In reality, the collapse begins at
the radius of the star ∼108 cm; and the initial stage of neutrino energy losses over a long
period of a few seconds significantly exceeds the gas dynamic time (Gρ)−1/2 for real low
initial central density ∼109g cm−3 [27].

For the dimensional values of density and pressure in the initial model, it is necessary
to recalculate Ye = Yeq

e (ρ, T) and temperature T = T(ρ, ε = 3P/ρ). Such an initial model
provides the exact mathematical equilibrium without the neutrino transfer. In the initial state,
I obtain the same entropy profile decreasing at the center ds/dr < 0 (see Figure 2), as in the
spherically symmetric collapse calculation with a full input physics during ∼10 ms [27].

The decreasing entropy profile is a result of neutronization. Weak interactions reduce
the number of electrons Ye, and the specific energy is transferred from the electronic
component to the nucleons. This probably convective instability region (ds/dr < 0) is
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interesting to study in a scale of convection. Large-scale convection can produce outgoing
neutrinos with high energies.

0.0 5.0x106 1.0x107 1.5x107
108

109

1010

1011

1012

1013

1014

109

1010

1011

f

0

T,
 K

 

, g
/c

m
3

r, cm

 

0.0 5.0x106 1.0x107 1.5x107

1

10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f

f

0

0

Y e
 

 

s/
k B

r, cm

Figure 2. Initial model (t ≈ 0) and the end of calculations (t f = 12 ms) in the equatorial plane.
(Top): profiles of density ρ (solid lines) and temperature T (dashed lines) as functions of cylindrical
radius. (Bottom): profiles of entropy per nucleon s/kB (solid lines), the number of electrons Ye

(dashed lines) as functions of cylindrical radius.

For calculating the 2D problem in spherical coordinates (r, 0 < θ < π/2), a 60× 40 grid
was used for a part of the polytrope (the computational domain is limited to r ≤ 0.6req)
under the assumption of axial symmetry ∂/∂φ = 0 and the plane of symmetry θ = π/2.
The angular variable contains more intervals in compare with our recent calculations [31]
to resolve possible low-scale instabilities. The grid of 15 intervals from 0 up to 40 MeV
is used to carry spectral neutrino energy density. At the outer boundary, there is a non-
flow smooth wall for matter. Neutrinos freely leave the computational region. Numerical
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nonconservation of the component of the angular momentum Jz of matter is associated
with approximation errors of the scheme, nonconservation is small enouugh [25].

To prevent small time steps of an explicit hydrodynamic scheme due to Courant con-
dition of the stability ∆t . ∆r∆θ/(cs + |v|) I split the time steps for numerical integrations
along the angular for a small radius.

The computational method uses splitting with respect to the physical processes. The
hydrodynamic transport is based on an explicit conservative scheme and an original
Riemann problem solver for a multicomponent gas mixture with a tabular EOS [44,45] (see
also Appendix A). The processes of energy exchange between the components (matter and
neutrinos) are considered at a separate time step using the implicit Gear’s method [50].
Moreover, the neutrino diffusion term is considered by lines method [45] and in implicit
Gear’s method. Key point of the method is joint consideration of matter and neutrinos in
conservative hydrodynamic equations. In the opaque region hydrodynamics weakly affect
the equilibrium, and the reactions of weak interaction, calculated by an implicit method
at a separate step. Small timescales of reactions do not affect the number of time steps of
gas-dynamic transport. In the case of opaque neutrino hydrodynamic time steps, they are
determined by hydrodynamic Courant conditions of numerical stability, ∆t . ∆r/(cs + |v|),
with the speed of sound and velocity of matter. The only significant limitation on the time
step, ∆t . ∆r/c, in comparison with gas dynamics arises in the transparent region, where
the neutrino transport speed (speed of light c) is at least an order of magnitude greater than
the speed of sound and the gas dynamic speed of matter because of accuracy requirements,
not numerical stability.

There is only one alternative in the literature: the Castro code [17], which differs by an
approximate Riemann problem solver. Other gas dynamic models for calculating collapse
use a separate description of gas dynamics for matter and neutrino transport, for example,
the Fornax code [51]. From the point of view of mathematics, the difference from the joint
description of neutrinos and matter in gas dynamics is not fundamental. However, in
calculations of a real problem in the optically dense region, the number of time steps for
calculating the energy exchange between neutrinos of different energies will depend on the
timescale of the fastest reaction.

I would like to make remark about the controversial properties of the calculations
for degenerate matter. A conservative scheme solves the problem of time steps for the
opaque region, in which the time steps are determined only by the gas dynamic transport
and the speed of sound. For a small numerical errors of determining the specific energy
of matter, the resulting temperature errors are large because of degeneracy pairs. For the
used computational grid, it is possible to calculate the development of instability for strong
degeneracy µe∼60 MeV at temperature kT . 10 MeV. Figure 1 demonstrates some artifact
numerical oscillations of the chemical potential of electrons µe ≈ 60 MeV in the center at
final time because of the loss of the accuracy of temperature. Strictly speaking, the forming
at the collapse the proto-neutron core always is degenerate (due to degenerate both pairs
and neutrons), but the proto-neutron star is not hot.

4. Results of Calculations

Due to neutrino losses, the pressure gradient can not keep a balance with gravity force,
and matter collapses to the center. At collapse density increases, and neutrinos become
trapped in the central region under the neutrinosphere. Contours of constant density in
the equatorial plane in Figure 3 at time t = 12 ms show the development of large scale
convection in accordance with the gas dynamic time is (Gρ̄)−1/2 = 4 ms for average density
ρ̄ ≈ 1011 g cm−3 near the neutrinosphere.
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Figure 3. Contours of constant density in the equatorial plane y = 0 (φ = 0). in the problem of
collapse for parameters lg ρmin = 7, lg ρmax = 13, ∆ lg ρ = 0.1 (unit of density g cm−3) demonstrates
the development of large-scale convection).

The initial state contains unstable entropy profile ds/dr > 0 (Figure 2). A rearrange-
ment of decreasing entropy profile near the photosphere indicates the convection in this
region in accordance with the Schwarzschild instability condition [52]. The semitransparent
region of nonequilibrium irreversible neutronization near the neutrinosphere specifies the
scale of the convection without the dependence of grid size. Different computational grids
60× 40 (present calculations) and 60× 30 in [31,32]) provide approximately the same four
“hot” bubbles above neutrinosphere in the angle interval 0 < θ < π/2 in Figure 3. Thick-
ness of the semitransparent region and slow differential rotation (see also 3D calculations
in [25,32]) form long-wavelength perturbations.

In the central part under the neutrinosphere, neutrinos are captured by matter, neutron-
ization is in equilibrium and reversible, and convection develops worse as in the Ledoux
stability criterion [53]. The Ledoux stability criterion takes into account the chemistry of
the matter. With trapped neutrinos, the problem about stability becomes a strict stability
problem. The artificial shutdown of the neutrino transport demonstrates a long time for
development of the convection (∼100 ms). If one recalculates specific entropy removing
the number of electrons Ye from the problem in the assumption of fast relaxation of Ye to
the equilibrium value Yeq

e , the unstable entropy profile will disappear.
Figure 4 shows the spectral neutrino flux dL/dε near the neutrinosphere r = 5.5× 106 cm

above the neutrinosphere at time 12 ms. The maximum spectral luminosity is reached at
18 MeV, while an average neutrino energy (the ratio of the energy flux to the particle flux)
is 15 MeV. The spectrum of outgoing neutrinos becomes harder in comparison with the
spherically symmetric calculation due to convection in the central region with high-energy
neutrinos trapped in optically dense matter in 1D [27] by a factor of 1.5. The energy 18 MeV
of outgoing neutrinos corresponds to the chemical potential of electrons at time 12 ms in
Figure 1 in the convective region near the neutrinosphere. The convection does not affect
the center with a high chemical potential.

The axially symmetric calculations of the authors in [17,54] gives a similar result
in terms of the average neutrino energies as the result presented here 12–20. Moreover,
calculations by [17,54] give a higher neutrino luminosity in comparison with the spherically
symmetric model.

Recent investigations are focusing on the possibility of detecting neutrinos from
collapsing supernovae from a new neutrino observatory [39] . The calculation of the
neutrino spectrum becomes no less important than the SN mechanism. The average
neutrino energies at the level of 5–10 MeV give a significantly lower rate of detected
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events and will to be distinguishable from 15 MeV neutrinos. However, the energies of
30 MeV neutrinos (interesting from a viewpoint of the large-scale convection mechanism
of the SN) may be indistinguishable from 15 MeV neutrinos at a registration [39] because
of possible neutrino oscillations. Then, if neutrino oscillations are allowable, the time-
integrated neutrino spectrum can be reproduced by detecting neutrinos with several types
of detectors [54].
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Figure 4. Spectral luminosity dL/dε for outgoing neutrino above the neutrinosphere r = 5.5× 106 cm
at the time t = 12 ms.

5. Conclusions

In the frame of the 2D multicomponent gas dynamic with neutrino transfer and sim-
plified neutronization, I demonstrated large scale convection in the center of a collapsing
core. Convection arises due to neutrino losses near a neutrinosphere and nonequilibrium
neutronization during the gas-dynamic time ∼10 ms. The long-wavelength scale of con-
vection does not depend on the parameters of a multidimensional mathematical model
(dimensionality or a grid size). Moreover, slow differential rotation makes the 3D model
similar to a 2D one. In the central part of the forming proto-neutron star with a huge
chemical potential of particles, neutrinos are trapped, neuronization becomes reversible,
and convection is suppressed. As a result, the obtained value of the average neutrino
energy of 15 MeV is 1.5 times higher than the value of spherically symmetric calculations.
To explain an SN explosion with energy deposition in the shell 1051 erg an increase in
luminosity of the neutrino flux due to convection is also important.

To carry out the interaction of neutrinos with the shell one should significantly com-
plicate calculations by the presented implicit scheme. Moreover, the replacement of nuclear
statistical equilibrium by more accurate EOS at high density is important for the accurate
calculation of the forming of a neutron star and for the test of the neutrino-driven mech-
anism of SN. The selected nuclear statistical equilibrium model of EOS is appropriate in
the initial state of collapse, then degenerate relativistic electrons play a main role in EOS.
Moreover, such EOS is suitable to study of conditions of large-scale convection due to
neutronization in the center.
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Appendix A. Riemann Problem Solver for a Multicomponent Gas with a Tabulated
Equation of State

I consider a multicomponent gas of different substances α described by a set of den-
sities ρα(r, t) ≡ cα(r, t)ρ(r, t), where cα are concentrations, and a set of internal specific
energies εα. All non-zero mass particles have identical velocities v(r, t), but every compo-
nent has own temperature. The components can exchange energy, can transfer energy by
diffusion, can participate in reactions. This is an intermediate case between the description
based on the Boltzmann equations (6) for the distribution functions fα(r, p, t) and classical
single component gas dynamics. The system in the fixed Euler coordinates is as follows:
the mass transfer equations for the components

∂ρα

∂t
+ divραv = ρċα, (A1)

the momentum conservation law (3), and the energy density equations

∂ρEα

∂t
+ div(ρEα + Pα)v + v(cαgradP− gradPα) = div(κgradTα) + ρqα, (A2)

where Eα = εα + cαv2/2, and the equation of state is

P = ∑
α

P(cρ, εα), εα = εα(cρ, Tα). (A3)

The kinetic coefficients are ċα, κα, and qα. The basic mathematical problem is the
gas dynamic part because of the discontinuities in the solution. The hydrodynamic part
of the code is based on a high-order explicit PPM scheme for single-temperature single-
component gas dynamics [44,55]. Below, an original approximate Riemann problem solver
for the multi-temperature non-equilibrium gas is described [44–46].

The energy Equation (A2) contains the term v(cαgradP− gradPα), which is different
from the divergence of a flux. The pressure gradient of partial pressure gradPα is not
defined at a discontinuity. A local model for the EOS simplifies the solution of the Riemann
problem and also specifies the term gradPα at any case. Following [56], one can neglect the
entropy increment behind the shock wave, because the increment of the specific entropy
s across the shock wave is the third order of smallness with respect to the pressure jump:
O([P]3). The local model for the EOS is used to solve the Riemann problem with constant
values specified initially to the left and to the right of a similarity variable x/t = 0. On the
left and right of the contact discontinuity, the concentrations remain constant, the EOS is
independent of cα. Using the thermodynamic relation dεα(sα, τ) = Tαdsα − Pαdτ and the
assumption dsα = 0, one can write

dγα

dPα
=

τ

εα
+

Pα

εα

dτ

dPα
− Pατ

ε2
α

dεα

dτ

dτ

dPα
=

τ

εα

(
1− γα

Γα

)
= (γα − 1)

(
1− γα

Γα

)
1
Pα

, (A4)

i.e., one can derive an explicit dependence of the increment of γα on the increment of the
pressure of a component. The partial pressure increment depends explicitly on the total
pressure increment:

dPα =
C2

α

C2 dP, (A5)
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where the squared Lagrangian speed of sound of a component is C2
α ≡ −dPα/dτ =

(∂Pα/∂εα)Pα − ∂Pα/∂τ, and total pressure is P(ε, τ) = ∑α Pα(εα, τ). In the computations it
is convenient to use the fraction of the specific energy of a component γε

α ≡ εα/ε:

dγε
α =

εdεα − εαdε

ε2 =
(εPα − εαP)dP

ε2C2 =
(εPα − εαP)τdP

ΓPε2 = γε
α

γα − γ

Γ
dP
P

. (A6)

Prior-known dimensionless coefficients (A4), (A4) as the functions of the full pressure
simplify the Riemann problem solver just as for the case of ideal gas low equation of
state [44,46,56]. Moreover, formulas (A4), (A4) for EOS resolve the uncertainty occurring
when the specific internal energy and the pressure of a mixture component in the case of the
discontinuities in the solution. The finite difference numerical scheme will be conservative
if the normalization of partial pressures on the contact discontinuity ∑α Pα∗ = P∗ is used.
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