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Abstract: In the model of topological particles we have four types of topologically stable dual Dirac
monopoles with soft cores and finite mass. We discuss the steps for getting a Dirac equation for these
particles. We show for the free and the interacting case that we arrive at the Dirac equation in the
limit, where the soft solitons approach singular dual Dirac monopoles.
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1. Introduction

According to Maxwell’s electrodynamics, the electric self-energy of point-like electrons
is infinite. Schrödinger was originally [1] inclined to a standing wave interpretation of
electrons in their equation, whereas Bohr, Heisenberg, Pauli and Born [2] insisted on the
corpuscular nature of electrons, where electrons have to be seen as point-like objects and
the square of the wave function describes the probability of its position only.

Schrödinger and Dirac equations describe very successfully the electromagnetic interac-
tion between electron and proton without taking explicitly into account the electromagnetic
self-energy of point-like or extended electrons. This self-energy should exist according to
Maxwell. It is absorbed in the observable mass me of electrons at rest. Although Schrödinger
and Dirac equations do not treat the electromagnetic field self-consistently, neglecting the
FµνFµν contribution, they predict the properties of the hydrogen atom very well and even
shaped our understanding of atomic and condensed matter physics. Only the tiny Lamb
shift is not described in the Dirac equation.

The Lagrangian of quantum electrodynamics (QED) takes the energy density of the
electromagnetic field into account. The divergences of point-like charges are cured, as
Kramers suggested 1947 at the Shelter Island Conference, by subtracting compensating
infinities from the naive QED Lagrangian. Finally, the theory gets consistent only by
respecting the running of the couplings, a feature which is in excellent agreement with high
energy scattering experiments.

On the other hand, for a classical relativistic model with stable extended solitons of
finite mass and quantised charges, as discussed in [3,4], there is no need to absorb the
self-energy of elementary charges in a mass term adjusted to the experimental electron mass.
Charges and their fields are described by the same degrees of freedom and distinguished
by topological quantum numbers only. Therefore, the Hamiltonian contains the self-energy
of charges, the energy of the electromagnetic field and the interaction energy of charges
and electromagnetic fields.

Until now, MTP was only formulated as a classical model. Thus, there is an urgent need
to harmonise it with quantum physics. A classical model misses the quantum properties,
well described by the Schrödinger and the Dirac equation. Quantum effects for extended
solitons can also be formulated by a path integral. All these descriptions require the electric
interaction energy. This can be directly determined within the soliton model. Due to
the finite size of solitons, we expect at distances of several femtometers deviations from
the potential between point-like charges. Inserting these potential modifications into the
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Schrödinger or Dirac equation should lead to a shift in energy levels, especially for s-states.
It will be very interesting to compare these shifts with the experimental spectra, especially
the Lamb shift.

There are essential differences from the soliton formulations of hydrogen and positro-
nium to the conventional Schrödinger equation. Here we have to especially point out the
differences in the field degrees of freedom (dofs). The soliton model describes charges
and electromagnetic fields by the same dofs, by an SO(3)-valued scalar field, in strong
distinction from the conventional description with Grassmann-valued ψ-fields and gauge
fields Aµ. Moreover, the vector fields of the soliton model describe dual photons. The
attempt to describe essential properties of nature by our soliton model implies immediately
the question: how one can understand within this picture the impressive success of the
conventional determination of the properties of atomic systems with the Schrödinger and
Dirac equation? Therefore, we try to analyse in this article by which steps we can arrive at
the conventional Dirac equation when starting from our soliton model. Moreover, this in-
vestigation sheds light on the above-suggested insertion of the soliton–antisoliton potential
energy into the Schrödinger and Dirac equation.

In Section 2, we present a very short formulation of the soliton model and some of its
properties. Extended versions of this model were published in references [3,4]. The attempt
to get the conventional Dirac equation, we realise in two steps. First, we concentrate
on the free Dirac equation in Section 3 using the relativistic properties of solitons. Then
we introduce the interaction with an external field by artificially separating the dofs of
charged solitons and their fields in Section 4. Since the conventional Dirac equation uses
a pure 1/r-potential, it is sufficient to formulate this separation in the limit of point-like
charges, where this separation can be formulated more easily. Due to charge quantisation,
the generalisation to extended charges is obvious if the distance between solitons is large
compared to their size. Finally, we discuss the question of why the conventional Dirac
equation can be formulated with gauge fields Aµ, despite the fact that the soliton model is
formulated with dual vector fields.

2. Model of Topological Particles

The Model of Topological Particles (MTP) [3,4] formulates electric monopoles and their
fields as topologically stable solitons of finite mass and is characterised by two topological
quantum numbers which can be related to spin and charge. There exist four classes of
such solitons without any singularities with the quantum numbers of the components of
Dirac fermions.

For the description of electromagnetic phenomena and especially of solitons in 3 + 1D
with long-range coulombic interaction the MTP uses the three degrees of freedom of an
SO(3)-field only. However, the calculations are simpler using the 2× 2-matrices

Q(x) = q0(x)− i~σ~q(x) ∈ SU(2), q2
0 +~q2 = 1, (1)

matrices in the double covering group of SO(3). In the model of topological particles (MTP),
see reference [4], the Lagrangian reads

LMTP := −
α f h̄c0

4π

(
1
4
~Rµν~Rµν + Λ(q0)

)
, Λ(q0) :=

q6
0

r4
0

, α f :=
e2

0
4πε0h̄c0

(2)

where the curvature field ~Rµν,
~Rµν := ~Γµ ×~Γν (3)

is the area density on SU(2), the Jacobian for the map of areas on M4 to areas on S3. It is
algebra valued as indicated by the vector symbol. The vector field1

∂µQ(x) =: −i~Γµ(x)~σQ(x) (4)
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is the affine connection in the tangential space of SU(2).
With the generalised velocity~Γµ we get the energy momentum tensor

Θµ
ν(x) :=

∂L(x)
∂~Γµ

~Γν −L(x) δ
µ
ν =

(2)
=
(3)
−

α f h̄c0

4π

{(
~Γν ×~Γσ

)(
~Γµ ×~Γσ

)}
−L(x) δ

µ
ν ,

(5)

which is automatically symmetric.
This model is a generalisation of the Sine–Gordon model [5] from 1 + 1D and 1 dof to

3 + 1D and 3 dofs. It can be considered as a modification of the Skyrme model [6–8]
describing solitons with long-range forces in 3 + 1D space-time with Minkowski met-
ric. Further, it can be seen as a model for soft dual Dirac monopoles [9,10]; this means
Dirac monopoles without any singularities, without a Dirac string [10,11] and without
a singularity in the centre. Another model with monopoles without singularities is the
Georgi–Glashow model [12–14]. There the forces between monopoles are influenced not
only by their structure, but also by the strength of the Higgs field.

The minimum of the potential energy in Equation (2) is at the equatorial S2 of
S3 ∼= SU(2). Solitonic solutions are therefore characterised by two topological quantum
numbers counting the number of coverings, S2 and S3. They allow us to classify stable and
static solitons.

With the hedgehog ansatz

~n(x) :=
~x
r

, ~q(x) := ~n(x) sin α(x), q0 := cos α(x) (6)

we can solve the minimisation procedure for a static soliton, which leads to the non-linear
differential equation

(1− cos2 α) cos α

ρ2 + ∂2
ρ cos α− 3ρ2 cos5 α = 0. (7)

There are four homotopy classes of configurations. In every class there is one solution,
with respect to the hedgehog ansatz

q0 = ± r0√
r2 + r2

0

, qi = ±
xi√

r2 + r2
0

with r2 := ~x 2. (8)

The vectors ~q of these configurations in a plane through the origin are depicted in
four diagrams in Table 1. There,~q-vectors are drawn in full-red for q0 > 0, dashed-green
for q0 < 0 and nearly black for q0 ≈ 0. The four classes can be transformed to each other

by centre transformations Q(~r) z→ −Q(~r) and parity transformations Q(~r) Π→ Q(−~r). The
configurations within every class differ by global rotations and/or translations.

The four classes of solutions are distinguished in the second row of Table 1 by the
number Z of electron charges −e0 and in the third row by the chirality χ, the sign of the
topological charge Q. These four soliton types have an identical mass [3]:

m0 =
α f h̄c0

r0

π

4
. (9)

It can be adjusted to the mass me of electrons and positrons by choosing

r0 = α f
h̄

mec0

π

4
= 2.21 fm. (10)
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Table 1. The diagrams show the imaginary components ~q of the field of single solitons, in full red
for the hemisphere with q0 > 0, in dashed green for q0 < 0 and in nearly black for q0 → 0. The
transformations T of the hedgehog configuration in the first column modify the fields~q and q0 and
the topological quantum numbers Z and Q.

T = 1 T = zΠ T = z T = Π

Z = 1 Z = 1 Z = −1 Z = −1
Q = 1

2 Q = − 1
2 Q = 1

2 Q = − 1
2

Thus, we can describe the four components of Dirac spinors, electrons e− and positrons
e+, spinup ↑ and down ↓. According to the SO(3) description, single isolated soliton
configurations differing by a non-trivial centre transformation z are identical. In multiple
soliton configurations, the SU(2)-configuration depends on the other solitons.

It is nice to see that the four classes of solutions agree with the well-known components
of Dirac spinors in the standard representation: e↑−, e↓−, e↑+, e↓+. The four configurations differ

in centre transformations Q z→ −Q and in parity transformations~n Π→ −~n. In Table 1, we
observe that a parity transformation corresponds to the product of charge transformation
and spin reversal.

Now we would like to clarify which assumptions are necessary to get the Dirac
equation for solitons.

3. Free Dirac Equation

Within relativistic quantum theory, the Dirac equation is the basic equation for the
understanding of the properties of spin-1/2 fermions. It is also the basis for their under-
standing within quantum field theory. The solutions ψ of the Dirac equations have the
form of spinors consisting of four complex functions for spin-up and spin-down compo-
nents of fermions and anti-fermions. The outstanding result of the Dirac equation was the
explanation of the fine-structure of the hydrogen spectrum and its degeneracy [15], a result
later improved only by QED [16].

In relativistic quantum mechanics we can attribute to particles an intrinsic parity and
use γ0 = diag(1, 1,−1,−1) as the parity operator. The Dirac equation has two pairs of
solutions of opposite parity. This abstract parity property has a figurative realisation in the
diagrams of Table 1 with two pairs of configurations which differ by an application of the
parity operator Π.

According to quantum mechanics, we assign to the four configurations in Table 1 unit
vectors in a four component Hilbert space, and arrange them in four-component spinors ψ0
which fulfil the equation

H0ψ0 := m0c2
0 γ0ψ0, (11)

for the Hamiltonian H0, if we attribute to positrons a negative mass.
Starting from the properties of solitons, we will now proceed in detail to a derivation

of the Dirac equation for moving solitons. From our knowledge about gamma matrices,
the Lorentz transformation of momentum four-vectors and of Dirac spinors, we know
the result which we expect. However, it may be interesting to see in detail how we can
derive the Dirac equation for free particles from the relativistic properties of the soliton
four momentum only. In the next section we will then proceed to the interacting case.
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As discussed in reference [3], the mass of solitons moving with classical momentum ~p
increases with the well-known factor γ(~p) := 1/

√
1− ~p2/(m0c0)2, as one can understand

from the invariance of the MTP–Lagrangian under Lorentz transformations. Thus, we
generalise the Hamiltonian in Equation (11) to

H := γ(~p)m0c2
0 γ0. (12)

The relativistic four-momentum for a soliton of mass m0 and velocity ~v reads

pµ = γm0(c0,~v)µ, γ =
1√

1− ~v2

c2
0

. (13)

These relations can be represented graphically by the right-angled triangles in Figure 1,
resembling the decomposition of a vector into orthogonal components.

γm0|~v| ≡

m0c0

√
pipi

√ m
2
0
c
2
0
+ pi p

i

m0c0

γm
0c0

ω ω

Figure 1. Graphical representation of the relations in Equation (13) between the four-momentum
components and the invariant mass.

Since MTP uses the degrees of freedom of an SO(3)-field and simplifies the calculations
by formulations in the defining (two dimensional) representation of SU(2), the MTP–
Lagrangian Equation (2) for free particles cannot distinguish between solitons with the
same Q and different Z which differ by a centre transformation only; see Table 1. Due to
this indistinguishability, we can apply a unitary transformation between the first and the
second pair of solitons, between the upper and the lower component of the Dirac spinor.
Since the matrix

i :=
(

0 −12
12 0

)
, (14)

also used for the definition of the symplectic group, acts like an imaginary unit, i2 = −14,
we can formulate such a “rotation” with the rotational vector ~ω := ω~eω as

Uω := exp{i ~ω ~σ

2
} = cos

ω

2
+

(
0 −12
12 0

)
~σ

︸ ︷︷ ︸
−~γ

~eω sin
ω

2
, (15)

where the well-known ~γ-matrices in the Dirac (or standard) representation appear. It turns
out that Uω is the expected Lorentz transformation of Dirac spinors, a reversed version of
the Foldy–Wouthuysen transformation [17].

Due to the anticommutation relations between γ0 and γi which appeared in the
underbrace of Equation (15)

γ0γi + γiγ0 = 0 with γ0 :=
(
12 0
0 −12

)
, ~γ =

(
0 ~σ
−~σ 0

)
(16)

we get

Uωγ0 (15)
=
(16)

γ0U†
ω. (17)
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The transformation of the Hamiltonian Equation (12) reads therefore

H
(12)
= γ(~p)m0c2

0 γ0
Uω→ Hω := Uω HU†

ω
(17)
= H(U†

ω)
2. (18)

with
Hω

(18)
=
(15)

γ(~p)m0c2
0 γ0 exp{−i ~ω~σ}

(15)
=
(16)

γ(~p)m0c2
0 γ0(cos ω + ~γ~eω sin ω). (19)

Since the prefactor of the last bracket is proportional to the hypotenuse p0 of the
triangle in Figure 1, there is a natural choice of ω and~eω given by that triangle. We read
from Figure 1 cos ω = 1/γ(~p) and sin ω = |~v|/c0, leading to

p0 := Hω/c0
(19)
= m0c0 γ0 + γ0γi pi. (20)

We multiply with γ0 from the left, reorder the terms and get

γµ pµ
(20)
= m0c0. (21)

From Equation (12), we conclude that the rotated spinor

ψ := Uωψ0 (22)

obeys the Dirac equation

γµ pµ ψ
(21)
=
(22)

m0c0 ψ. (23)

With the usual quantum mechanical laws which solitons also have to obey, coordinates
and momenta as canonical conjugate variables, pµ = ih̄∂µ and Borns rule, we get the action
of free Dirac particles

S f :=
∫

d4x ψ̄(γµ pµ −m0c0)ψ (24)

with the free monopole currents
jµ := c0ψ̄γµψ. (25)

We observe that we get the correct Dirac equation only by choosing ω as given by the
triangle in Figure 1, as was emphasised in reference [18]. The correct non-relativistic limit is
only retained if the scalar product~σ~p is not destroyed by the transformation Equation (15).

Further, we would like to mention that the solutions of the Dirac equations are the
columns of the matrix

γµ pµ + m0c0. (26)

After getting the Dirac equation for free solitons, we will now concentrate on their
interaction with electromagnetic fields. This will be done mainly in two steps. First, we
have to separate the dofs of particles and fields, and then we have to make a transition to
dual variables.

4. Interaction with Electromagnetic Fields

The MTP–Lagrangian (2) describes multiparticle systems and their fields fµν on the
same footing. To get the Dirac equation considering single point-like charges moving in
electromagnetic fields, we have to separate artificially the dofs of charges and fields. This is
possible only in the limit of point-like solitons (dual Dirac-monopoles), see references [3,19],
where the soliton field Q(x) is purely imaginary. In this limit we arrive at the formulation
of dual Dirac monopoles in the Wu–Yang representation [11]

Q(x) → Q(x)
(1)
= −i~σ~n(x), ~n2 := 1, ~q

(1)
= ~n (27)
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where the~n-field takes values on S2. Thus, the Jacobian of the map from M4 → S2 is given
by the curvature field

~Rµν(x) → ~Rµν(x)
(3)
=
(27)

∂µ~n(x)× ∂ν~n(x). (28)

which we relate by [4]

?fµν =: − e0

4πε0c0
~Rµν~n

(28)
= − e0

4πε0c0
~n(∂µ~n× ∂ν~n). (29)

to the dual2 Abelian electromagnetic field strength in SI units. The Lagrange density LMTP
reduces to

LMTP → LED
(2)
=
(27)
−

α f h̄c0

4π

1
4
(~n~Rµν)(~n~Rµν)

(29)
= − 1

4µ0

?fµν(x) ?f µν(x). (30)

Ldual differs in the sign only from the Lagrangian of Maxwell’s electrodynamics.
We use the singularities of the~n-field at given time t to identify the soliton currents.

These singularities are located in infinitesimal space-like three dimensional volumes, the
centres of hedgehog configurations of the~n-field. We describe them by N time-like world-
lines of singularities

Xµ
i (τ) i = 1, · · · , N, (31)

evolving in time with velocities smaller than c0 from t = −∞ to t = +∞, or meeting with
lines of opposite charge, where particle pairs are created or annihilated. This makes it
possible to define for each~n-field configuration a singular vector current along the above
world-lines

N

∑
i=1

Zi

∫
dτ

dXκ
i (τ)

dτ
δ4(x− Xi(τ)) :=

1
8π

εκλµν ∂λ{~n(∂µ~n× ∂ν~n)}. (32)

Integrals over arbitrary spatial volumes V over the left and the right side of this equation
equate the number of world lines crossing the volume with the number of coverings of
S2 by the ~n-field at the volume surface ∂V. For a single soliton resting at the origin with
Z = 1, τ = t, Xκ(τ) = c0t δκ

0 , both sides reduce to a three-dimensional delta-function at
the origin δ3(~x)δκ

0 for the time-component of the singular vector current. Multiplying the
world lines of delta-functions with −e0c0, we define the electric current density

q jκ := −e0c0

N

∑
i=1

Zi

∫
dτ

dXκ
i (τ)

dτ
δ4(x− Xi(τ)) (33)

of point-like charges qi = −e0Zi. A further multiplication by µ0 leads to

µ0 q jκ
(32)
= −∂λ

e0c0µ0

4π

1
2

εκλµν~n[∂µ~n× ∂ν~n]
︸ ︷︷ ︸

f κλ

(29)
= ∂λ f λκ . (34)

The contributions of these inhomogeneous Maxwell equations are non-zero along the
world lines Equation (31) only and absorb all currents in the divergencies of f µν. After the
transition of Equation (27) from extended monopoles to point-like particles, the Hodge
transformation of Equation (27) with respect to ??f µν = − f µν has simplified Equations (34).
To keep the structure L = T −V of Lagrangians, we flip the sign of the Lagrangian LED,
which after the Hodge transformation reads

L := −LED
(30)
= − 1

4µ0
fµν f µν. (35)
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For the next step, the introduction of the electro-magnetic four-potential Aµ, we need
the homogeneous Maxwell equations. This deserves a further argument. The idea behind
MTP is that particles are topological solitons and characterised by topological quantum
numbers. Topologically stable objects can not be removed from the configurations by
the minimisation of the energy. They can be removed by the fusion with appropriate
antiparticles only. In MTP, the electric charge is such a topological property related to the
map Π2(S2); see Equation (32). In the limit Equation (27), MTP has two degrees of freedom
only, compared to four degrees of freedom of Aµ. This reduces the flexibility to fulfil the
Abelian–Bianchi identity and may lead to non-vanishing conserved magnetic currents

gµ := c ∂ν
∗ f νµ with ∂µgµ = 0. (36)

Since they are not stabilised by topological quantum numbers, their contributions are
minimised by the least action principle and the equations of motion; see references [3,19]:

∂µ~n gµ = 0 ⇒ ∗fµνgν = 0. (37)

The second set of equations proves that the dual Coulomb and Lorentz forces on
magnetic currents are vanishing. We show now that the magnetic currents do not contribute
to Coulomb and Lorentz forces on electric currents and thus can be neglected in the
formulation of their dynamics.

We start from the observation that the divergence of the total energy momentum
tensor Equation (5) is vanishing. After the separation of dofs of charges and their fields, the
divergence of the energy momentum tensor of the fields

Θµ
ν(x)→ Tµ

ν(x) := − 1
µ0

?fνσ(x) ?f µσ(x)−LED(x) δ
µ
ν , (38)

leading to a reaction to the force density on charges

f µ
e := −∂νTµ

ν
(38)
=

1
µ0

∂ν
(
?fνρ

?f µρ
)
− 1

4µ0
∂µ( ?fρν

?f ρν)

=
1

µ0
[∂ν ?fνρ︸ ︷︷ ︸

1
c0

gρ

?f µρ + ?fνρ ∂ν ?f µρ

︸ ︷︷ ︸
− ?fνρ∂ρ ?f µν

+
1
2
?fνρ ∂µ ?f ρν]

(36)
=

1
µ0c0

?f µρgρ︸ ︷︷ ︸
0

+
1

2µ0

?fνρ[∂
ν ?f µρ + ∂ρ ?f νµ + ∂µ ?f ρν

︸ ︷︷ ︸
−µ0 q εµνρσ jσ

]

(37)
=
(34)
− q

2
εµνρσ ?fνρ jσ = f µσ jσq.

(39)

Electric and magnetic fields cause, therefore, the only forces on electric currents.
According to these arguments, we can neglect magnetic currents in the description of
the dynamics of electric currents and assume the validity of the homogeneous Maxwell
equations by formulating

fµν := ∂µaν − ∂νaµ. (40)

To complete the separation of dofs of charges and fields, we have to divide fµν in
internal contributions Fµν related to the soliton currents jµ and external fields Fµν

fµν := Fµν + Fµν, aµ := Aµ + Aµ (41)

For the Lagrangian, this separation leads to three contributions: the action density
of external electromagnetic fields (F2), the interaction term between charges and fields
(F F) and the Lagrange density Equation (24) of free particles (F 2). Since the internal
contribution Fµν exhausts the field of all point-like sources, the corresponding infinite
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self-energies have to be absorbed in the Lagrangian of the free particles and substituted by
the finite experimental mass m0. This results in the equivalence, derived in Equation (24):

− 1
4µ0

∫
d4xFµνFµν ≡

∫
d4x ψ̄(γµ pµ −m0c0)ψ

(24)
= S f . (42)

The interaction term of the action therefore becomes

Sint :=− 1
2µ0

∫
d4x FµνFµν (40)

=
1

µ0

∫
d4x Aν∂µFµν

(34)
=
∫

d4x q Aν jν
(25)
=
∫

d4x q Aνψ̄γνψ.
(43)

Collecting the three action contributions, we get from the Lagrangian Equation (35)
the total action for a Dirac particle in an external vector field Aµ:

S
(42)
=
(43)

∫
d4x

{
ψ̄
[
γµ(pµ − qAµ)−m0c0

]
ψ− 1

4µ0
FµνFµν

}
. (44)

5. Conclusions

The presently accepted theory, the standard model of particle physics, one can see
from two vantage points:

• It provides excellent fits to scattering data;
• Embarrassingly, its prediction of the vacuum energy density of the cosmos is off by a

factor of 1050–10120 [20] and has nothing to say about the classical self-energy of its
fundamental massive fermions.

The idea of MTP is to arrive at a geometric formulation of particle physics. If successful,
this would

• Provide a geometrical basis for the standard model.
• Move particle physics closer to gravity and facilitate unification.
• Show in detail that particles and their fields are describable by the same degrees of

freedom.
• Explain why algebras are so important in particle physics. They allow one to work

in the tangential spaces of the corresponding group manifolds, supplying the deeper
degrees of freedom for the common descriptions of particles and their fields.

• Explain gauge symmetries as basis changes in the manifolds of the corresponding
groups.

• Allow one to understand the origin of cosmological phenomena like inflation, see
Section 6.4 of reference [4],

• Suggest a solution for the cosmological constant problem: substituting the constant by
a function, the potential energy density of solitons; see Section 6.5 of reference [4].

• Allow one to understand that dark matter does not consist of particles but of non-
quantised lumps of matter, e.g., alpha waves in MTP, as suggested in Section 6.3 of
reference [4].

I have presented the interesting consequences of MTP in Section 7.2 of reference [4].
To summarise, with MTP we can describe electric charges, quantised already at the

classical level in units of the elementary charge, by topological solitons of finite size and
self-energy, without any divergencies. In this model we get four classes of stable solitons
which nicely correspond to the four components of Dirac electrons. This begs for an answer
as to which conditions and approximations the Dirac equation can be formulated for these
solitons. Since the Dirac equation is the basic equation of relativistic quantum mechanics,
it is obvious that the basic concepts of quantum mechanics have to be respected. Hilbert
space vectors have to be attributed to the soliton states, Born’s rule has to be applied to
quantum mechanical probabilities and the canonical commutation relations to coordinates
and momenta. To get the Dirac equation for moving non-interacting particles, it turns out
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to be essential that the MTP Lagrangian can not distinguish between solitons differing by a
centre transformation only.

In the Dirac equation for interacting particles, charges and electromagnetic fields are
formulated by different degrees of freedom. This requests a corresponding separation of
degrees of freedom in the MTP. This is achieved in the limit when solitons are approximated
by dual-point-like Dirac monopoles. The problematic consequences of the singularity of
these point-like charges are avoided by attributing to the free fermions the measured masses
of electrons. In this limit the difference between electrons and positrons is lost, and unitary
transformations between them are possible. Electrons and positrons can be distinguished
by the sign of the mass term. The interaction between charges and fields is implemented
in Schrödinger and Dirac equations by the covariant derivative. It is impossible to obtain
this type of interaction from the MTP just by using its dual formulation in the presence of
non-vanishing magnetic currents. We show that the dynamics of charges in the MTP is
determined by Coulomb and the Lorentz forces only. Since it is not influenced by magnetic
currents, they can be neglected. The duality transformation allows us then to formulate
electromagnetic fields in terms of the usual Abelian vector potentials.

We conclude that in the limit of point-like charges, after absorbing the infinite self-
energy into the experimental masses, the interaction between charges is described by a 1/r
potential. On the other hand, the finite size of solitons of the MTP leads to a running of the
charge and to a modification in the 1/r2 force. This supports the idea of implementing the
soliton–antisoliton potential energy of the MTP in Schrödinger and Dirac equations and
determining in this singularity free description the modifications of the eigenvalues of the
stationary equations and to compare them to the experimental spectra, especially to the
size of the Lamb shift.

A completely different construction of electrons was suggested in reference [21], and a
different attempt to derive the Dirac equation was undertaken in reference [22].
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Notes
1 For simplicity, we omit the dot for scalar products in three dimensions, if it does not lead to ambiguities. The × symbol acts

always in three dimensional algebra and not in coordinate space.
2 The ∗-operator in Equation (29) performs a Hodge duality transformation, transforming E/c0 → B and B→ −E/c0, and can be

formulated with the four-dimensional ε-tensor; compare the underbrace in Equation (34).
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