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Abstract: The spontaneous scalarization of Schwarzscild-AdS is investigated in the Einstein-scalar-
Gauss–Bonnet (ESGB) theory. Firstly, we construct scalarized AdS black holes numerically. Secondly,
making use of the homotopy analysis method (HAM), we obtain analytical approximate solutions for
scalarized AdS black holes in the ESGB theory. It is found that scalarized AdS black holes constructed
numerically are consistent with analytical approximate solutions in the whole space.
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1. Introduction

In general relativity (GR), the “no-hair theorem” has always been a hot topic. It allows
that a GR black hole can be described by three observables of mass M, electric charge
Q, and rotation parameter a = J/M [1,2], and rules out a black hole coupled to a scalar
field in asymptotically flat spacetimes, on account of the divergence of scalar field on
the horizon [3–5]. In the 1990s, Damour and Esposito-Farese [6,7] have first found a new
mechanism of spontaneous scalarization in scalar-tensor theory in neutron stars. This
phenomenon has received a lot of attention lately. Considering a scalar field function
f (φ) coupling to the Gauss–Bonnet curvature term R2

GB such as f (φ)R2
GB [8–11], scalarized

black hole solutions were found in ESGB theory, where the coupling term causes instability
near the event horizon of a Schwarzschild black hole and induces scalarized black holes.
Then, the so-called “no-hair theorem” of GR [12] can be avoided in ESGB theory. It is
worth pointing out that, in ESGB theory, there is no a priori guidance for determining
the coupling function f (φ). The coupling function f (φ) has a decisive influence on the
properties of the scalarized black holes. For instance, Ref. [8] adopted the exponential
coupling f (φ) ∼ exp(βφ2), while Ref. [9] focused on the quadratic coupling f (φ) ∼ βφ2

instead. These theories possess black holes with scalar hair, whose properties have been
investigated in great detail [13–17]. In addition, Ref. [18] has noticed that, under radial
perturbations, the scalarized black holes are unstable for a quadratic coupling, whereas
it is stable for an exponential form in the ESGB theory. Motivated by current and future
gravitational wave observations from black hole mergers, the axial [19] and polar [20]
perturbations of scalarized black holes have been investigated to obtain the quasinormal
modes (QNMs) in the ESGB theory since QNMs could describe the ringdown after merging.

It is well-known that the anti-de Sitter/conformal field theory (AdS/CFT) correspon-
dence provides a powerful framework for studying quantum mechanical aspects of black
hoes [21,22]. In some scenarios, holographic duality has allowed us to bring CFT knowl-
edge to bear on black hole physics in asymptotically AdS space-time. Moreover, a scalar
field in an asymptotically AdS space-time can cause an asymptotic instability only if its
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mass-squared µ2
eff is less than the BF bound µ2

BF [23]. Then, the SAdS black hole may evolve
to a scalarized AdS black hole through tachyonic instability, and the “no-hair theorem” can
usually be circumvented. Bakopoulos et al. [24] have firstly discussed the emergence of
novel, regular black hole solutions in ESGB theory. Recently, the scalarization of AdS black
holes with applications to holographic phase transitions was studied in Einstein-scalar-
Ricci-Gauss–Bonnet gravity [25]. In addition, Guo et al. have discussed the holographic
realization of scalarization in the ESGB gravity with a negative cosmological constant [26],
and a horizon curvature has an effect on the scalarization [27].

Nevertheless, the numerical black hole solutions were obtained at fixed values of
parameters. From these numerical solutions, it is usually hard to give a clear picture
for dependence of the metric on physical parameters of the system. Moreover, these
numerical solutions are displayed by some curves in figures, instead of expressions in
explicit form. It causes these solutions of scalarized black hole to usually need to be re-
calculated by colleagues in some relevant research work. Fortunately, the general methods
for parametrization of the black hole space-times (continued fractions method (CFM) [28]
and homotopy analysis method (HAM) [29,30]) were developed. The CFM has recently
been applied with success in a variety of contexts [31–35]. We stress here that the HAM
is also a very powerful method for obtaining analytical approximate solutions to various
nonlinear differential equations (including systems of nonlinear equations and arising
in many different areas of science and engineering [36–42]). Despite its popularity in
many areas of science and engineering over the years, the application of the HAM has
been very limited in the fields of general relativity and gravitation. Recently, this HAM
has been adopted to derive analytic approximate solutions of field equations in Einstein–
Weyl gravity [43,44] as well as analytic expression of Regge–Wheeler equations under the
metric perturbations on Schwarzschild space-time [45]. In this work, firstly, we construct
scalarized AdS black holes numerically. Secondly, making use of the HAM, we wish to
obtain analytical approximate solutions for scalarized AdS black holes in the ESGB theory.

The plan of our work is as follows. In Section 2, we investigate the tachyonic instability
of Schwarzschild AdS (SAdS) black holes under the linearized scalar perturbation in the
ESGB theory. Then, we construct numerical solutions of scalarized AdS black holes in
Section 3. Section 4 is devoted to deriving analytical approximation solutions by introducing
the HAM, where two solutions are accurate in the whole space outside the event horizon.
Finally, we end the paper with a discussion and conclusions in Section 5.

2. Instability of a SAdS Black Hole

The action for ESGB theory with a negative cosmological constant Λ is given by

SESGBC =
1

16π

∫
d4x
√
−g
(

R− 2Λ− 2∂µφ∂µφ +
λ2φ2

2
R2

GB

)
, (1)

where λ is the scalar coupling constant, R the Ricci scalar, φ a scalar field, and R2
GB the

Gauss–Bonnet term
R2

GB = R2 − 4RµνRµν + RµνρσRµνρσ (2)

with Ricci tensor Rµν and Riemann tensor Rµνρσ.
Varying the action (1) with scalar φ and metric gµν, one obtains the scalar field equation

�φ +
λ2

4
R2

GBφ = 0 (3)

and Einstein equation

Gµν = Λgµν + 2∂µφ∂νφ− (∂φ)2gµν − 2λ2∇ρ∇σ(φ2)Pµρνσ, (4)



Universe 2023, 9, 26 3 of 13

where Gµν = Rµν − (R/2)gµν is the Einstein tensor, and Pµρνσ is given by

Pµρνσ = Rµρνσ + gµσRνρ − gµνRρσ + gνρRµσ − gρσRµν +
R
2
(gµνgρσ − gµσgνρ). (5)

Topological black holes are found without scalar hair as

ds2
SAdS = − fk(r)dt2 +

1
fk(r)

dr2 + r2
(

dθ2 + sin2 θdϕ2
)

(6)

with

fk(r) = k− 2M
r
− Λr2

3
, (7)

where Λ = −3/L2 with L the curvature radius of AdS space-time. The cases of k = 0,−1
were discussed in [27]. Here, afterwards, we choose the k = 1 case of

f (r) = 1− 2M
r
− Λr2

3
(8)

which corresponds to the SAdS black hole. From f (rh) = 0, the outer horizon radius rh of
SAdS black hole is obtained as

rh = − 1(
3MΛ2 +

√
9M2Λ4 −Λ3

)1/3 −

(
3MΛ2 +

√
9M2Λ4 −Λ3

)1/3

Λ
, (9)

where the horizon radius rh > 0 is always satisfied on account of a positive mass M > 0
of a black hole and a negative cosmological constant Λ < 0. Moreover, the mass of SAdS
black hole is determined as

M =
1
6

rh

(
3−Λr2

h

)
. (10)

Now, we discuss the dynamical stability, Breitenlohner–Freedman (BF) bound, and
tachyonic instability of SAdS black hole in the ESGB theory. For this purpose, we need to
consider two linearized equations which describe the propagation of metric perturbation
hµν and scalar perturbation δφ

δRµν(h) =
ḡµν

2
δR + Λhµν, (11)

�̄δφ− µ2
effδφ = 0, (12)

which are obtained by linearizing Equations (3) and (4). As was pointed out in Refs. [46–48],
it is clear that the SAdS black hole is dynamically stable when making use of the Regge–
Wheeler prescription under metric perturbation. In an asymptotically AdS space-time, a
scalar field can cause an asymptotic instability only if its mass-squared µ2

eff is less than
the BF bound µ2

BF = − 9
4L2 ≡ 3Λ

4 [23]. One always finds µ2
eff > µ2

BF for large enough r and
thus the SAdS black hole is stable asymptotically against the formation of the scalar field.
However, if µ2

eff < µ2
BF in the intermediate region, the SAdS black hole may evolve to a

scalarized AdS black hole through tachyonic instability. In our case, the effective mass µ2
eff

is fixed as

µ2
eff = −

λ2

4
R̄2

GB = −2λ2Λ2

3
− 12λ2M2

r6 (13)
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and the condition for asymptotic instability is obtained as

µ2
eff < µ2

BF : −2λ2Λ2

3
<

3Λ
4
→ Λ > −9

8
λ2. (14)

Now, we are in a position to perform the numerical analysis for the tachyonic instability
of SAdS black hole in the ESGB theory. Taking into account the separation of variables,

δφ(t, r, θ, ϕ) =
ψ(r)

r
Ylm(θ, ϕ)e−iωt, (15)

and introducing a tortoise coordinate dr∗ = dr/(1− 2M/r − Λr2/3), the radial part of
Equation (12) is given by

d2ψ

dr2∗
+
[
ω2 −Veff(r)

]
ψ(r) = 0, (16)

where the effective potential Veff(r) takes the form

Veff(r) =
(

1− 2M
r
− Λr2

3

)[2M
r3 +

l(l + 1)
r2 − 2Λ

3

(
1 + λ2Λ

)
− 12λ2M2

r6

]
. (17)

In the next sections, we only consider the case of l = 0.
To determine the threshold of tachyonic instability, one has to solve the second-order

differential equation numerically

d2ψ

dr2∗
−
[
Ω2 + Veff(r)

]
ψ(r) = 0, (18)

which allows an exponentially growing mode of eΩt (ω = iΩ, Ω > 0) as an unstable mode.
Considering Ω = 0, we may solve the static linearized equation

d2ψ

dr2∗
−Veff(r)ψ(r) = 0, (19)

to find out the threshold unstable mode propagating around the fixed SAdS black hole
background. To impose the boundary conditions, we first consider the near-horizon
expansion, which is used to set data outside the horizon for a numerical integration to
near infinity

ψ(r) = ∑
i≥0

ψi(r− rh)
i. (20)

In the asymptotic far region, Equation (19) becomes approximately

ψ′′(r) +
2
r

ψ′(r)− 2 + 2λ2Λ
r2 ψ(r) ≈ 0. (21)

Then, we can obtain the boundary condition of ψ(r) ∼ r−
1
2±

1
2

√
9+8λ2Λ at large r.

Therefore, the numerical solution to Equation (19) can be performed by using the shooting
method in the region between the black hole horizon and infinity, seeking for a value of the
eigenvalue λ. These solutions are labelled by an integer n ∈ N0: n = 0 is the fundamental
mode, whereas n > 1 are excited states (overtones). We focus on the fundamental mode
since the fundamental solutions is usually stable. Varying −Λ/3, a set of bifurcation
points constitutes the existence curve (threshold curve for tachyonic instability). Figure 1a
includes three threshold curves of rh = 1, 2, 4. If one chooses rh = 1, the unstable region is
the upper of threshold curve while the stable region is the lower of threshold curve; see
Figure 1b. In case of −Λ/3→ 0, the value of coupling parameter λ matches the threshold
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value (λS
th = 0.852, 1.704, 3.408) for the fundamental mode of the Schwarzschild black hole

in [9,11]. This result naturally leads to the fact that the SAdS black hole is unstable in the
upper region and thus there exist scalarized AdS black holes in the ESGB theory.

rh=1

rh=2

rh=4

0.1 0.2 0.3 0.4 0.5 0.6
-

L

3

1

2

3

4

Λ

(a)

Λ
th

SAdSH-L�3L

0.0 0.1 0.2 0.3 0.4 0.5
-

L

3

0.8

0.9

1.0

1.1

1.2

Λ

(b)

Figure 1. (a) The existence curve for scalarized AdS black holes (threshold curve λSAdS
th (−Λ/3) of

tachyonic instability) in the (−Λ/3, λ) plane for three different horizon radii rh = 1, 2, 4; (b) the
unstable region is plotted for the horizon radius rh = 1 of SAdS black holes.

3. Numerical Solutions for Scalarized AdS Black Holes

We consider static and spherically symmetric space-times as well as static and spher-
ically symmetric scalar field configuration. The space-time metric and scalar are chosen
to be

ds2 = −A(r)dt2 +
1

B(r)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
, φ = φ(r). (22)

Now we try to find the numerical solutions for scalarized AdS black hole in the ESGB
theory. For this purpose, we first introduce a coordinate transformation of z = rh

r so that
the metric functions can be derived in the compact region of 0 ≤ z ≤ 1, and A(r) and B(r)
become A = A(z) and B = B(z). Therefore, z = 0 always corresponds to infinity (r → ∞),
and z = 1 naturally corresponds to the event horizon r = rh of the black hole. To utilize the
threshold values for an unstable region in Figure 1b, we will choose rh = 1 for the horizon
radius of the black hole in the following numerical calculation.

On the other hand, the metric functions A(r) and B(r) in Equation (22) approach r2 as
r → ∞. In other words, the new metric functions A(z) and B(z) with 1/z2 are divergent at
z = 0. Then, we can further define new metric functions

Az(z)→ z2 A(z), Bz(z)→ z2B(z) (23)

so that the new functions Az(z) and Bz(z) are always regular in the whole region of
0 ≤ z ≤ 1. Fortunately, the scalar field φ(z) is always regular in the whole region under the
coordinate transformation z = rh

r . Then, we set

φz(z)→ φ(z). (24)

Substituting the new metric functions Equation (23) and scalar field Equation (24) into
Equations (4) and (5), we have

eq1 = zBz A′z
[
−r2

h + 2z(z2 − r2
hΛ− 3Bz)φzφ′z

]
+ Az

[
r2

h(−z2 + r2
hΛ− 2z2ΛφzB′zφ′z)

−Bz

(
r2

h(−3 + z2(1 + 4Λ)φ′2z ) + 4zφz((z2 − 2r2
hΛ)φ′z + r2

hzΛφ′′z )
)

+12zB2
z φzφ′z

]
= 0, (25)
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eq2 = 2r2
hz2ΛBzφz A′zφ′z − Az

{
− r2

hz2 + r4
hΛ− r2

hzB′z + 2z4φzB′zφ′z − 2r2
hz2ΛφzB′zφ′z

−4zB2
z

[
zφ′2z + φz(−φ′z + zφ′′z )

]
+ Bz

[
3r2

h + z2(r2
h + 4z2 − 4r2

hΛ)φ′2z

+2zφz((2z2 + 4r2
hΛ− 3zB′zφz + 2z(z2 − r2

hΛ)φ′′z )
]}

= 0, (26)

eq3 = z2λ2(z2 − Bz)Bzφz A′2z + zAz

[
− z3λ2φz A′zB′z + 2λ2B2

z φz(−3A′z + zA′′z ) + zBzr2
h A′zφ′z

+λ2zBzφz

(
A′z(2z + 3B′z)− 2z2 A′′z

)]
+ A2

z

[
12λ2B2

z φz + z2B′z(2zλ2φz + r2
hφ′z)

−2zBz

(
λ2φz(2z + 3B′z) + r2

h(2φ′z − zφ′′z )
)]

= 0, (27)

where primes denote derivatives with respect to z.
In order to obtain the asymptotic form of scalarized AdS black holes, we solve three

Equations (25)–(27) numerically via a shooting method. Spherically symmetric black holes
have an event horizon (z = 1), where the metric functions Az and Bz vanish, and the scalar
field φz tends to a constant:

Az(z ≈ 1) = A1(1− z) + A2(1− z)2 + · · · , (28)

Bz(z ≈ 1) = B1(1− z) + B2(1− z)2 + · · · , (29)

φz(z ≈ 1) = φ0 + φ1(1− z) + · · · , (30)

where φ0 denotes the scalar field at the horizon. It is worth pointing out that the regularity of
a scalar field, and its first and second derivatives on the horizon give an additional condition

r6
h − 8r4

hλ4
[
3 + 2r2

hΛ
(

r2
hΛ− 2

)]
φ2

0 − 48r2
hλ8Λ

(
r2

hΛ− 2
)

φ4
0 > 0, (31)

which reduces to that for the Schwarzschild black hole in the limit of Λ→ 0 [8].
On the other hand, the metric functions and scalar field at the infinity (z→ 0) should

satisfy the following boundary conditions:

Az = Bz = −
Λr2

h
3

, φz = 0, when z→ 0 (r → ∞). (32)

We fix rh = 1 for the horizon radius of the black hole during the numerical calculation.
By tunneling the coupling parameter λ and choosing different values of cosmological
constant Λ, we can obtain a nontrivial solution of scalarized AdS black holes in the ESGB
gravity. The numerical solution for fundamental branch is obtained by taking λ = 0.892
and−Λ/3 = 0.457 (greater than 0.886 of bifurcation point) (see Figure 2). We plot all figures
in terms of ln r and thus the horizon is always located at ln rh = 0. Here, f (r) represents the
metric function for the SAdS black hole with φSAdS(r) = 0. Notice that the metric functions
A(r) and B(r) display different behaviors in comparison to those for the SAdS black hole
and these approach the SAdS metric function f (r) as ln r increases. Moreover, a scalar field
φ(r) is a decreasing function with starting with 0.107, and its asymptotic value is zero.

0.0 0.5 1.0 1.5 2.0

ln r0

10

20

30

40

AHrL

AHrL�BHrL

AHrL�f HrL

0.5 1.0 1.5

ln r
0.9

1.0

1.1

1.2

0 1 2 3 4

ln r0.00

0.05

0.10

ΦHrL

Figure 2. The scalarized AdS black hole with λ = 0.892 and−Λ/3 = 0.457 belonging to the fundamental
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branch of λ > λb = 0.886 (bifurcation point). Here, f (r) represents the metric function (8) for the
SAdS black hole.

4. Analytical Approximate Solutions

In general, it is a difficult task to find exact solutions of nonlinear differential equa-
tions. In Refs. [30,49], the HAM was developed to obtain analytical approximate solutions
to nonlinear differential equations. Here, we wish to derive analytical approximate so-
lutions for metric functions Az(z), Bz(z) and a scalar field φz(z) by solving nonlinear
Equations (25)–(27) by using the HAM. If we succeed to find them, it will confirm the
numerical solutions in the previous section.

We assume the nonlinear operators Ni, which are suitable for a system of n-nonlinear
differential equations

Ni[yi(t)] = 0, i = 1, 2, ..., n, (33)

with unknown function yi(t) and a variable t. Then, the zero-order deformation equation
can be written as [30,49]

(1− q)L[φi(t; q)− yi0(t)] = qhi Hi(t)Ni[φi(t; q)] (34)

where L is an auxiliary linear operator with the property L[0] = 0, q ∈ [0, 1] is an embed-
ding parameter in topology (called the homotopy parameter), φi(t; q) are the solutions
of Equation (34) for q ∈ [0, 1], yi0(t) is the initial guesses, and hi 6= 0 is the so-called
“convergence-control parameters”. Considering the property L[0] = 0, the solutions φi(t; q)
of Equation (34) vary continuously from the initial guess yi0(t) to the actual solution yi(t)
of Equation (33) when the parameter q increases from 0 to 1. Here, we set the auxiliary
functions Hi(t) = 1 without any restrictions.

On the other hand, we can also expand φi(t; q) as the Maclaurin series with respect to q

φi(t; q) = yi0(t) +
∞

∑
m=1

yim(t)qm, yim(t) =
1

m!
∂mφi(t; q)

∂qm . (35)

The proper choice of the initial approximation yi0(t), linear operator L, and conver-
gence control parameter hi will make the series expansion (35) convergency at q = 1.
Therefore, we obtain

yi(t) = φi(t; 1) = yi0(t) +
∞

∑
m=1

yim(t). (36)

Here the function yim(t) could be obtained by solving the mth order deformation
equation. Differentiating Equation (34) m times with respect to the parameter q, setting
q = 0, and dividing by m!, we find the mth order deformation equation

L[yim(t)− χmyim−1(t)] = hiRim(yim−1), (37)

where

Rim(yim−1) =
1

(m− 1)!
∂m−1Ni[φi(t; q)]

∂qm−1 |q=0, (38)

and

χm =

{
0 : m ≤ 1

1 : m > 1.
(39)
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We define the partial sum yM
i (t) by

yM
i (t) = yi0(t) +

M

∑
m=1

yim(t), (40)

where yM
i (t) are the Mth order approximate solutions of the original Equation (33).

In order to solve Equations (25)–(27) by means of the HAM, we choose the initial
approximations

Az0(z) = Bz0(z) =

(
z2 −

r2
hΛ
3

+
z3

3
(−3 + r2

hΛ)

)
(1− αz), (41)

φz0(z) =
107
1000

(
72

100
z3 +

28
100

z
)

(42)

with an undetermined constant α and corresponding auxiliary linear operators [50]

L[φz] =
d2φz

dz2 , L[Bz] =
dBz

dz
, L[Az] =

d2 Az

dz2 . (43)

One can find that the chosen approximations satisfy the initial and boundary condi-

tions, since Az0 and Bz0 vanish at the event horizon (z = 1), and they reduce to − r2
hΛ
3 as

z → 0. Moreover, the scalar field φz0(z) disappears at infinity and equals 0.107 near the
horizon (z = 1) .

Then, we use the HAM to secure analytical approximations for Equations (25)–(27) by
using the boundary conditions

Az(0) = −
r2

hΛ
3

, Az(1) = Bz(1) = 0, φz(0) = 0.107, φz(1) = 0, (44)

where we reserve one boundary condition Bz(0) = −
r2

hΛ
3 for later computations. The Mth

order approximations of Az, Bz, φz are written as

Az(α, hi, z) ≈ Az0(α, z) +
M

∑
k=1

Azk(α, hi, z), (45)

Bz(α, hi, z) ≈ Bz0(α, z) +
M

∑
k=1

Bzk(α, hi, z), (46)

φz(α, hi, z) ≈ φz0(z) +
M

∑
k=1

φzk(α, hi, z), (47)

which include the unknown parameter α and the convergence-control parameter hi.

Considering the boundary condition Bz(0) = − r2
hΛ
3 with Mth order approximate

expression (45), one obtains

ΓM(α, hi) ≡ Bz0(α, 0) +
M

∑
k=1

Bzk(α, hi, 0) +
r2

hΛ
3

= 0, (48)

where ΓM represents an expanded form of the constrained boundary condition. As long as
hi is given, a solution to Equation (48) is easily obtained. We use the technique developed
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by Xu et al. [36] to find out the optimal values of hi. In principle, the technique seeks for
minimizing averaged square residual error of Equations (25)–(27) at the mth order

Em(α, hi) = EN1
m + EN2

m + EN3
m

=
1

S + 1

S

∑
k=0

[(
N1[

m

∑
n=0

Azn(zk),
m

∑
n=0

Bzn(zk),
m

∑
n=0

φzn(zk)]

)2

+

(
N2[

m

∑
n=0

Azn(zk),
m

∑
n=0

Bzn(zk),
m

∑
n=0

φzn(zk)]

)2

+

(
N3[

m

∑
n=0

Azn(zk),
m

∑
n=0

Bzn(zk),
m

∑
n=0

φzn(zk)]

)2]
(49)

with

zk = k∆z =
k
S

, k = 0, 1, 2, · · · , S. (50)

We choose S = 40 used with the purpose of optimization for each function. For our
problem, the residual error depends on both α and hi. In fact, both Em(α, hi) and ΓM(α, hi)
contain undetermined parameters: α and hi. Therefore, the optimal convergence-control
parameters hi can be determined from the minimum of Em(α, hi), and it is subjected addi-
tionally to the algebraic Equation (48) which needs to secure the constant α. Mathematically,
this doubly coupled optimization problem implies

(α∗, h∗i ) = min{Em(α, hi), ΓM(α, hi) = 0}. (51)

Considering the 2nd order (M = 2) approximation, we obtain h1 = 1, h2 = −0.00044,
h3 = −22.08711 and α = −0.00402. Importantly, the corresponding 2nd order of analytical
approximate solutions are determined as

Az(z) = 0.4572667 + 0.01498763z + z2 − 1.451489z3 − 0.005843966z4 − 0.06132506z5

+0.02351596z6 − 0.3336103z7 + 0.5323985z8 − 0.6967972z9 + 1.750668z10

−1.817722z11 + 1.820144z12 − 2.660147z13 + 1.822905z14 − 197263z15

+1.916911z16 − 2.772337z17 + 4.148017z18 − 5.315132z19 + 6.836533z20

−8.412892z21 + 8.246583z22 − 8.138851z23 + 7.799650z24 − 5.610461z25

+4.227755z26 − 3.541047z27 + 1.900061z28 − 0.9300943z29 + 0.6721495z30

−0.2165210z31 − 0.007895318z32, (52)

Bz(z) = 0.4572613 + 0.001838552z + 1.000001z2 − 1.453246z3 − 0.005859518z4

−2.118835× 10−5z8 + 4.558038× 10−5z9 − 7.453177× 10−5z10

+1.929635× 10−4z11 − 2.202587× 10−4z12 + 3.020311× 10−4z13

−3.686329× 10−4z14 + 2.159995× 10−4z15 − 3.031449× 10−5z16

−2.347457× 10−4z17 + 4.985287× 10−4z18 − 7.088783× 10−4z19

+6.819188× 10−4z20 − 2.785920× 10−4z21 + 5.640031× 10−5z22

−9.993102× 10−5z23 + 7.812429× 10−5z24 − 7.631288× 10−5z25

+1.244101× 10−4z26 − 1.403398× 10−4z27 + 1.307204× 10−4z28

−9.834623× 10−5z29 + 4.387319× 10−5z30 − 1.459050× 10−5z31

+1.058479× 10−5z32, (53)
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φz(z) = 0.03217793z + 0.07647953z3 + 0.0001430922z4 − 0.0003676241z5

−0.0002630361z6 − 0.00002948385z7 − 0.004393940z8 + 0.002189734z9

−0.008413222z10 + 0.007363797z11 − 0.003525100z12 + 0.002154606z13

+0.01131688z14 − 0.01319623z15 + 0.01786729z16 − 0.009802537z17

−0.005691524z18 + 0.004912230z19 − 0.004087058z20 + 0.0006557677z21

+0.004245723z22 − 0.008432530z23 + 0.01134451z24 − 0.008496555z25

+0.003261786z26 + 0.004689052z27 − 0.01143095z28 + 0.01200959z29

−0.008546128z30 + 0.002794749z31 + 6.702130× 10−5z32. (54)

Now, we can compare the analytic approximate solutions with the numerical solutions
appeared in the previous section. We plot the analytic approximate solutions (Aana

z , Bana
z

and φana
z ) and numerical solutions (Anum

z , Bnum
z and φnum

z ) in Figure 3 for rh = 1, λ = 0.892,
and −Λ/3 = 0.457. They are apparently consistent with each other.

Bz
num

Bz
ana

0.0 0.2 0.4 0.6 0.8

z

0.2

0.4

0.6

Bz
num

Bz
ana

0.0 0.2 0.4 0.6 0.8

z

0.2

0.4

0.6 Φz
num

Φz
ana

0.0 0.2 0.4 0.6 0.8 1.0

z

0.1

0.2

0.3

Figure 3. Comparison figures of metric functions Az, Bz and scalar field φz in the numerical (solid
curve) and analytical approximate (dashed curve) solutions. Here, we choose horizon radius parame-
ter rh = 1, λ = 0.892 and −Λ/3 = 0.457.

It is interesting to check the accuracies of these analytic approximate solutions and
numerical solutions based on the field Equations (25)–(27). Substituting these solutions
into Equations (25)–(27), the total absolute errors from three field equations are obtained as

∆Err ≡ |∆eq1|+ |∆eq2|+ |∆eq3|. (55)

Total absolute errors of these analytic approximate and numerical solutions are dis-
played in Figure 4. One can find that the total absolute error for analytic approximate
solutions is smaller than that for the numerical solutions. In other words, the analytic ap-
proximate solutions are more accurate than the numerical solutions when solving nonlinear
Equations (25)–(27).

DErrana

DErrnum

0.2 0.4 0.6 0.8 1.0
z0.00

0.02

0.04

0.06

0.08

0.10

Figure 4. Total absolute errors for analytic approximate solutions (∆Errana) and numerical solutions
(∆Errnum) from three field equations.

To comparing these solutions, we further calculate the absolute differences between
numerical and analytical approximate solutions by taking

∆Az = |Anum
z − Aana

z |, ∆Bz = |Bnum
z − Bana

z |, ∆φz = |φnum
z − φana

z |. (56)
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The relative errors can be also calculated in the form of

δAz =
|Anum

z − Aana
z |

Anum
z

× 100%,

δBz =
|Bnum

z − Bana
z |

Bnum
z

× 100%,

δφz =
|φnum

z − φana
z |

φnum
z

× 100%. (57)

We find that main differences between numerical solutions and analytic approximation
solutions occur close to the event horizon for metric functions A(z) and B(z) and region
far from the black hole for scalar field function φ(z), see Figure 5.

DΦ
z

DBz

DAz

0.2 0.4 0.6 0.8 1.0

z0.000

0.005

0.010

0.015

0.020

0.025

(a) Absolute errors

∆Φ
z

∆Bz

∆Az

0.2 0.4 0.6 0.8 1.0

z0

2

4

6

8

(b) Relative errors

Figure 5. Absolute and relative errors between numerical and analytical approximate solutions.

5. Discussion and Conclusions

In this work, we investigated the spontaneous scalarization for SAdS black holes
thoroughly in ESGB theory. The SAdS black holes become prone to tachyonic instabil-
ity triggered by the strong space-time curvature in some region of the parameter space.
Then, scalarized AdS black holes could emerge from SAdS black holes at bifurcating
points. Numerical solutions for scalarized AdS black holes are obtained for λ = 0.892 and
−Λ/3 = 0.457.

Later, we derive the analytical approximate solutions for metric functions A(z) and
B(z) and scalar field φ(z) by using the HAM. The region and rate of convergence of the
series solution for the HAM does not depend on the choice of the initial guess function,
auxiliary linear operator, and an auxiliary function, but it can be effectively controlled by
using a convergence control parameter. Since the approximation is significantly accurate in
the entire space-time outside the event horizon, it can be used for studying the properties
of this particular black hole and the various phenomena. The present work is considered
as an important work because we confirm that numerical solutions are consistent with an
analytical approximate solution for the scalarized AdS black hole.

As an avenue of a further research, one may propose the related properties of scalarized
AdS black hole (thermodynamics, Hawking radiation, particle motion, shadow, stability
and QNMs) and compare them with SAdS black holes.
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