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Abstract: The accelerated expansion of the universe during recent times is well known in cosmology,
whereas during early times, there was decelerated expansion. The ΛCDM model is consistent with
most observations, but there are some issues with it. In addition, the transition from early deceleration
to late-time acceleration cannot be explained by general relativity. Hence, it is worthwhile to examine
modified gravity theories to explain this transition and to get a better understanding of dark energy.
In this work, dark energy in modified f (R, T) gravity is investigated, where R is the Ricci scalar
and T is the trace of the energy momentum tensor. Normally, the simplest form of f (R, T) is used,
viz., f (R) = R + λT. In this work, the more complicated form f (R, T) = R + RT is investigated
in Friedmann–Lemaître–Robertson–Walker spacetime. This form has not been well studied. Since
the jerk parameter in general relativity is constant and j = 1, in order to have as small a departure
from general relativity as possible, the jerk parameter j = 1 is also assumed here. This enables the
complete solution for the scale factor to be found. One of these forms is used for a complete analysis
and is compared with the usually studied form f (R, T) = R + RT. The solution can also be broken
down into a power-law form at early times (deceleration) and an exponential form at late times
(acceleration), which makes the analysis simpler. Surprisingly, each of these forms is also a solution
to the differential equation j = 1 (though they are not solutions to the general solution). The energy
conditions are also studied, and plots are provided. It is shown that viable models can be obtained
without the need for the introduction of a cosmological constant, which reduces to the ΛCDM at
late times.

Keywords: f (R, T) gravity; jerk parameter; non-minimal coupling; dark energy

1. Introduction

It has been a known fact since 1998 that our universe was in a period of slowing
expansion in the past but has recently been in a period of accelerated expansion. The infor-
mation on this accelerated expansion is based on various astrophysical observations [1–4].
Einstein’s General Relativity (GR) fails to explain this observational late-time accelerated
expansion in a natural way. For this reason, it is possible to encounter various attempts and
suggestions in the literature to explain this accelerating expansion at the theoretical level.
One of the suggestions to complement this deficiency is to associate this late accelerated
expansion with an energy of unknown nature called dark energy (DE). What makes the
DE concept exotic is the mention here of a negative-pressure, which is interpreted to cause
accelerated expansion with an anti-gravity effect. In this context, various DE terms are
added to the energy momentum tensor on the right-hand side of Einstein’s field equations,
leaving aside the standard Λ cold dark matter (ΛCDM) model in GR [5–13].

Alongside the DE concept, modified gravity theories also attempt to explain this
accelerated expansion. These theories are mostly constructed by modifying the Ricci scalar
curvature R in the Einstein–Hilbert (EH) action on which GR is based. The first thing that
comes to mind when changing R is to write an arbitrary function f (R) instead of R itself,
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other curvature terms, or some kind of combination of these. The well-known f (R) gravity
is one of the best examples of such theories. However, there is no reason why this function
f should only be a function of the curvature terms. Modified theories of gravity, including
terms related to matter–energy, have also been constructed. The theory of f (R, T) gravity
is a modified theory constructed by changing the EH action with a function of both the
scalar curvature R and the matter source, which is the trace of the energy–momentum
tensor T [14]. In other words, geometry–matter coupling is considered in f (R, T) gravity. In
f (R, T) gravity, various universe models have been examined by considering the different
forms of the f (R, T) function. However, it would be fair to say that, in general, less attention
has been paid to non-minimal coupling forms [15–19].

In this paper, we take into account f (R, T) theory on the background of the flat
Friedmann–Lemaître–Robertson–Walker (FLRW) universe for a non-minimal coupling form
of the function f (R, T), i.e., f (R, T) = f1(R) + f2(R) f3(T). To solve the field equations,
we assume a constant jerk parameter j such that j = 1. We give the complete solution for
the scale factor to the differential equation for j = 1. In addition, this assumption also
leads essentially to two different cosmological solutions. One of them corresponds to the
past period when the universe expanded by decelerating, and the other corresponds to
the late period when it is expanding by accelerating. Both the complete solution and the
other solutions separately are investigated in this work. This article is based on an earlier
abbreviated paper [19] that appeared in the Proceedings of the 2nd Electronic Online Conference
on the Universe held during 16 February–2 March 2023. However, there are several novel
aspects in this work, which we shall elucidate upon in the conclusion.

The organization of the article is as follows: In Section 2, the field equations of f (R, T)
gravity are given. The field equations for the FLRW metric are given in Section 3, and
solutions to the field equations and their consequences are derived in Section 4. The energy
conditions are discussed in Section 5, and the conclusion is made in Section 6.

2. Field Equations of f (R, T) Gravity

The field equations of f (R, T) gravity are based on the gravitational action [14]

S =
∫ √

−g d4x
(

1
16π

f (R, T) + Lm

)
, (1)

where f (R, T) is an arbitrary function of the Ricci scalar R and trace T of the energy mo-
mentum tensor Tab, g is the determinant of the metric tensor gab, and Lm is the Lagrangian
for the matter. The variation in the gravitational action S in Equation (1) with respect to the
metric gab gives the field equations of f (R, T) gravity as:

fR(R, T)Rab −
1
2

f (R, T)gab − (∇a∇b − gab�) fR(R, T) = 8πTab − fT(R, T)(Tab + Θab) . (2)

Here, ∇a is the covariant derivative, � ≡ ∇a∇a is the d’Alembertian operator, and

fR(R, T) = ∂ f (R,T)
∂R , fT(R, T) = ∂ f (R,T)

∂T , Θab = gij δTij

δgab with

Tab = − 2√−g
δ(
√−gLm)

δgab = Lmgab − 2
δLm

δgab . (3)

In the calculation of the variation, the Lagrangian of the matter is taken to depend
only on the metric tensor—but not on the derivatives of the metric tensor. Now, we assume
that the matter–energy that fills the universe is a perfect fluid. In this case, we can write the
energy–momentum tensor of this fluid as follows

Tab = (ρ + p)uaub − pgab. (4)
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Here, ρ and p are the energy density and pressure, respectively, and ua ( uaua = 1) is the
4-velocity vector of the perfect fluid. If the Lagrange density of the matter is taken as
Lm = −p, then Θab becomes

Θab = −2Tab − pgab . (5)

Putting this into Equation (2), the modified field equations take the form

fR(R, T)Rab −
1
2

f (R, T)gab − (∇a∇b − gab�) fR(R, T) = 8πTab + fT(R, T)(Tab + pgab) . (6)

Here, fR(R, T) = ∂ f (R,T)
∂R and fT(R, T) = ∂ f (R,T)

∂T .
The following three different functional forms of the function f (R, T) are pointed out

in the source paper of f (R, T) theory [14]

f (R, T) =


R + 2 f (T),
f1(R) + f2(T)
f1(R) + f2(R) f3(T),

(7)

where each function f is an arbitrary function of its variables.
In this paper, our main goal is to investigate the last one of the three forms (which

is not usually chosen). However, to create integrity and to compare our results, we also
consider the first form (which is the usually chosen form).

2.1. Field Equations for the Non-Minimal Coupling (NMC) Form

Now, let us start with the NMC form

f (R, T) = f1(R) + f2(R) f3(T). (8)

Using Equation (8), Equation (6) takes the form

[ f ′1(R) + f ′2(R) f3(T)]Rab −
1
2

f1(R)gab + [gab�−∇a∇b][ f ′1(R) + f ′2(R) f3(T)]

= [8π + f2(R) f ′3(T)]Tab + f2(R)[ f ′3(T)p +
1
2

f3(T)]gab, (9)

where a prime (′) represents a derivative of f with respect to its argument. Now, we proceed
by taking the following functional form:

f1(R) + f2(R) f3(T) = R + λRT . (10)

Using this particular selection of the function in Equation (9), we obtain

Rab −
1
2

gabR =
8π + λR
(1 + λT)

Tab −
λ

(1 + λT)
[gab� − ∇a∇b] T +

λR
(1 + λT)

pgab , (11)

where λ is a coupling constant. If λ = 0 is taken in Equation (11), one can easily see that
the field equations become the field equations of GR.

Now to use the GR formalism more conveniently, with the help of Equation (11) we
can define the following effective energy momentum tensors

TM
ab =

λ

1 + λT
Tab , (12)

T f
ab =

λ

8π(1 + λT)
[RTab + Rpgab − (gab�−∇a∇b)T] , (13)

and

Ttot
ab = TM

ab + T f
ab , (14)
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where TM
ab is the effective energy momentum tensor of matter, T f

ab is the effective energy
momentum tensor coupled to the contribution from f (R, T), and Ttot

ab is the total effective
energy momentum tensor. Then one can write the modified field equations in the form of
the Einstein field equations as

Gab = 8πTtot
ab , (15)

where Gab is the Einstein tensor.
According to Equation (15), through the twice-contracted Bianchi identity (∇bGab = 0),

the total effective energy momentum tensor is conserved (∇bTtot
ab = 0) while the energy–

momentum tensor of matter is not conserved. Therefore, while the usual conservation
equation of GR is not valid, it takes the following form in this modified theory [18]

(8π + λR)ρ̇ + 3H(ρ + p) = −λR
2

(ρ̇− ṗ)− λṘ(ρ + p)

or
8πρ̇ + 3H(ρ + p) = −λR

2
(3ρ̇− ṗ)− λṘ(ρ + p) (16)

where H = ȧ/a is the Hubble parameter, and an over-dot represents a derivative with
respect to cosmic time t. We observe that from a physical point of view, Equation (16) gives
the amount of energy that enters or leaves a specified volume of the physical system. The
source term on the right side of that Equation corresponds to energy creation/annihilation.
The total energy of the gravitating system is conserved only if the right side is zero at
all points of the spacetime. If the right side is nonzero, then energy transfer processes or
particle production takes place in the given system. This situation is not unusual, e.g., if
viscosity or heat conduction is considered.

2.2. Field Equations for the Simplest Minimal Coupling (SMC) Form

For the simplest form of f (R, T), viz.,

f (R, T) = R + 2 f (T), (17)

the field Equation (15) becomes

Rab −
1
2

Rgab = 8πTab + 2 fTTab + [ f (T) + 2p fT ]gab. (18)

If one takes f (T) = λT, where λ is a constant, to make the field equations easier, then
the last equation becomes

Rab −
1
2

Rgab = 8πTab + 2λTab + λ(T + 2p)gab. (19)

In this case, to use the GR formalism (15), we can define the following effective
energy–momentum tensors:

T f
ab =

λ

8π
[2Tab + (T + 2p)gab], (20)

Ttot
ab = λ[2Tab + (T + 2p)gab], (21)

3. Modified Field Equations in the Flat FLRW Background

The homogeneous and isotropic flat FLRW model is given by the metric

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (22)

where a(t) is the time dependent scale factor. For this cosmological model, we now consider
the NMC and the SMC forms of the field equations.
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3.1. The NMC Form

The modified field equations given in Equation (15) yield two independent equations
as follows

3H2 = 8πρtot = 8πρ− 3λH(ρ̇− 3ṗ)− 3λH2(ρ− 3p)− 6λ(Ḣ + 2H2)(ρ + p) , (23)

2Ḣ + 3H2 = −8πptot = −8πp− λ(2Ḣ + 3H2)(ρ− 3p)− λ(T̈ − 2HṪ) , (24)

where ρtot and ptot are the total effective energy density and pressure, respectively. Regard-
ing the trace of the energy momentum tensor T = ρ− 3p, we can write Ṫ = ρ̇− 3ṗ and
T̈ = ρ̈− 3p̈ in Equation (24); then we get

2Ḣ + 3H2 = −8πptot = −8πp− λ(2Ḣ + 3H2)(ρ− 3p)− λ[ρ̈− 3p̈− 3H(ρ̇− 3ṗ)] , (25)

The last equation includes not only ρ and p but also their first and second time deriva-
tives. The inclusion of these terms makes it very difficult to obtain an analytical solution. So
at this stage, we continue with the barotropic equation-of-state (EoS), assumption, p = ωρ.
Accordingly, Equation (16) may be written as

ρ̇ = −
(
3H + λṘ

)
(1 + ω)

8π + 1
2 λR(3−ω)

ρ , (26)

where ω is the EoS parameter.
Taking the time derivative of this last equation once again, we get

ρ̈ = − 3Ḣ(1 + ω) + λR̈
8π + 1

2 λR(3−ω)
+

(
3H + λṘ

)
(1 + ω)

[
(3−ω)λṘ + 2

(
3H + λṘ

)
(1 + ω)

]
2[8π + 1

2 λR(3−ω)]2
ρ . (27)

Here, R = −6(Ḣ + 2H2), Ṙ = −6(Ḧ + 4HḢ) and R̈ = −6(
...
H + 4Ḣ2 + 4HḦ).

Now, the field Equations (23) and (25) become

3H2 = 8πρtot = 8πρ− 3λ(1− 3ω)H[ρ̇ + Hρ]− 6λ(1 + ω)(Ḣ + 2H2)ρ , (28)

2Ḣ + 3H2 = −8πptot = −8πωρ− λ(1− 3ω)[(2Ḣ + 3H2)ρ− 2Hρ̇ + ρ̈] , (29)

Equations (28) and (29) can be reduced to a single equation as follows

2Ḣ = −8π(1 + ω)ρ− λ(1− 3ω)[(2Ḣ + 3H2)ρ− 2Hρ̇ + ρ̈]

+3λ(1− 3ω)H(ρ̇ + Hρ)− 6λ(1 + ω)(Ḣ + 2H2)ρ . (30)

The last equation is known as the generalized Raychaudhuri equation. One can solve
for ρ from Equation (30) in terms of its first and second time derivatives as

ρ =
1
4

[
2Ḣ − 5λH(1− 3w)ρ̇ + λ(1− 3w)ρ̈

−2π(1 + w) + λ(1 + 3w)Ḣ + 3λ(1 + w)H2

]
, (31)

By substituting Equations (26) and (27) for ρ̇ and ρ̈, respectively, and then rearranging,
the exact expression of ρ in NMC form for the FLRW universe is obtained as follows:

ρ =
−2Ḣ

8π(ω + 1) + λ
[(

9AH − 2Ḣ − B
)
(3ω− 1)− 6

(
2H2 + Ḣ

)
(ω + 1)

] , (32)

where

A = −
(
λṘ + 3H

)
(1 + ω)

8π + 1
2 λR(3−ω)

, (33)
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B =
2(1 + ω)

{
λ2[RR̈(ω− 3) + Ṙ2(3ω− 1)

]
+ λ

[
3HṘ(5ω + 1) + 3ḢR(ω− 3)

]
+ 18H2(ω + 1)

}[
8π + 1

2 λR(3−ω)
]2 (34)

−
16π

(
λR̈− 3Ḣ

)[
8π + 1

2 λR(3−ω)
]2

We make use of the above expression for ρ when we discuss the transit model for
NMC later.

3.2. The SMC Form

For the SMC form of the f (R, T) function, the modified field equations, Equation (27),
result in two independent component equations as follows:

2Ḣ + 3H2 = −8πptot = −(8π + 3λ)p + λρ , (35)

3H2 = 8πρtot = (8π + 3λ)ρ− λp , (36)

Equivalently, for solving for ρ and p, we can write these equations in the form of

ρ =
1
4

12 H2π + 3 H2λ− Ḣ λ

8 π2 + 6 π λ + λ2 , (37)

p = −1
4

12 H2π + 3 H2λ + 8 Ḣ π + 3 Ḣ λ

8 π2 + 6 π λ + λ2 . (38)

4. Solution of the Field Equations

Now, to solve for ρ from Equation (31), we need the expression of the Hubble parame-
ter. Therefore, we limit ourselves to assuming a constant jerk parameter of j = 1. The jerk
parameter is basically the third derivative of the scale factor. Therefore, the assumption is

j =
...
a

aH3 = 1 . (39)

Note that in the ΛCDM model of GR, the jerk parameter j is constant and j = 1. This is
the motivation for us assuming this condition. The six solutions of Equation (39) as found
by Mathematica are:

a(t) = −
(
− 2

3
)1/3c1

1/3(−Tanh
[ 3

2 (t
√

c2 +
√

c2c3)
])2/3(

−c2 + c2Tanh
[ 3

2 (t
√

c2 +
√

c2c3)
]

2
)

1/3
(40)

a(t) =

( 2
3
)1/3c1

1/3(−Tanh
[ 3

2 (t
√

c2 +
√

c2c3)
])2/3(

−c2 + c2Tanh
[ 3

2 (t
√

c2 +
√

c2c3)
]

2
)

1/3
(41)

a(t) =
(−1)2/3( 2

3
)1/3c1

1/3(−Tanh
[ 3

2 (t
√

c2 +
√

c2c3)
])2/3(

−c2 + c2Tanh
[ 3

2 (t
√

c2 +
√

c2c3)
]

2
)

1/3
(42)

a(t) = −
(
− 2

3
)1/3c1

1/3Tanh
[ 3

2 (t
√

c2 +
√

c2c3)
]2/3(

−c2 + c2Tanh
[ 3

2 (t
√

c2 +
√

c2c3)
]

2
)

1/3
(43)

a(t) =

( 2
3
)1/3c1

1/3Tanh
[ 3

2 (t
√

c2 +
√

c2c3)
]2/3(

−c2 + c2Tanh
[ 3

2 (t
√

c2 +
√

c2c3)
]

2
)

1/3
(44)
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a(t) =
(−1)2/3( 2

3
)1/3c1

1/3Tanh
[ 3

2 (t
√

c2 +
√

c2c3)
]2/3(

−c2 + c2Tanh
[ 3

2 (t
√

c2 +
√

c2c3)
]

2
)

1/3
(45)

Here c1, c2 and c3 are constants of integration. Now we will continue with the second
of these solutions (Equation (41)). It is important to note that our choice of the second
solution is not arbitrary. When trying to analyze other solutions, complex expressions or
complex numbers are encountered. These make it very difficult to analyze further. Now by
a simple simplification and rearrangement of the integral constants, it is also possible to
write Equation (41) as

a(t) = k1

[
sinh2(k2t + k3)

]1/3
(46)

Here k1, k2 > 0 and k3 are arbitrary constants. We call this solution the transit solution.
This Equation (46) can be analyzed as it is.

What is interesting is that the following two solutions:

a =

(
3
2

t + c
) 2

3
, (47)

a = αeβt , (48)

where c, α and β are constants of integration, are also exact solutions to Equation (39). The
power-law solution Equation (47) is important for explaining the early universe, and the
exponential solution Equation (48) applies to the late universe. We discuss these three
solutions separately. Now, regarding the definitions of the Hubble parameter H and the
deceleration parameter q:

H =
ȧ
a

, (49)

and

q = −1− Ḣ
H2 , (50)

we get the values of these parameters. We now consider the three different solutions:

4.1. Decelerating Model for NMC Form

The power-law solution Equation (47) yields

H =
2
τ

, (51)

and
q =

1
2

, (52)

where τ = 3t + 2c. The positivity or negativity of q gives information about the nature of
the expansion of the universe. A positive sign for q indicates decelerating expansion, and a
negative sign for q indicates accelerating expansion. In this model, the fact that q equals
1/2 indicates that the power-law solution produces a decelerating universe model.

By using Equations (26) and (27) for the time derivatives of the energy density, we
can obtain the explicit expression for ρ. However, the expression is very crowded and
complicated as given in Equation (32). Hence, we use Equations (26) and (51) to get

ρ̇ = −
(

72
λ

τ3 + 6
1 + ω

τ

)(
8 π − 6

λ (3−ω)

τ2

)−1
ρ . (53)
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On integrating, we obtain

ρ = ρ0τ
4(1+ω)

3−ω [4 π τ2 + 3 λ (ω− 3)]
(1+ω)(−ω+16 π+3)

8π(−3+ω) , (54)

where ρ0 is a constant of integration.
Here it should be noted that using Equations (28) and (29), we have calculated the

total effective energy density and pressure. However, since the mathematical expressions
for both are quite long, we only give their graphs below.

Figures 1–3 show the temporal changes in the energy density of matter and the total
effective energy density and pressure, respectively, of the decelerating model for the choice
of the integration constants c = 0, c1 = 0, ρ0 = 1 for the coupling constant λ = −0.1
and for different positive values of the EoS parameter ω. We can see from Figures 1 and 2
that ρ and ρtot are positive-valued for all t. These are vital conditions for the viability of
the model. At the same time, we see from Figure 3 that ptot is always positive, which
is consistent with the decelerating universe scenario. In fact, this is the reason for only
considering positive values of ω: the decelerating universe does not contain exotic matter
with negative pressure.

Figure 1. Evolution of the energy density of matter ρ against time t for decelerating model in
NMC form.



Universe 2023, 9, 430 9 of 24

Figure 2. Evolution of the total effective energy density ρtot against time t for decelerating model in
NMC form.

Figure 3. Evolution of the total effective pressure ptot against time t for decelerating model in
NMC form.
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4.2. Accelerating Model for NMC Form

For Equation (48), the exponential solution yields

H = β , (55)

and
q = −1 . (56)

The appearance of the negative deceleration parameter indicates that this model is
an accelerating model. For this case, if one follows the same procedure as in the previous
model, then Equation (26) becomes

ρ̇ = − 3β(1 + ω)

8π − 6λβ2(3−ω)
ρ , (57)

and its integration gives

ρ = ρ0 e
− 3

2
β (1+ω)t

3λ β2(ω−3)+4 π . (58)

Here again, instead of writing the expressions for ρtot and ptot that can be obtained by
Equations (28) and (29), we show below how they evolve by using their graphs.

Figures 4–6 show the temporal changes in the matter energy density and the total
effective energy density and pressure, respectively, of the accelerating model for the choice
of constants β = 1, ρ0 = 1, λ = 0.1 and for different values of the EoS parameter ω.
Unlike the previous model, we take into account both positive and negative ω values to be
compatible with the accelerating universe scenario. We can see that both the densities are
positive-valued for all t. Further, ptot can take negative values for negative ω.

Figure 4. Evolution of the energy density ρ against time t for accelerating model in NMC form.
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Figure 5. Evolution of the total effective energy density ρtot against time t for accelerating model in
NMC form.

Figure 6. Evolution of the total effective pressure ptot against time t for accelerating model in
NMC form.
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4.3. Transit Model for NMC Form

For the transit model incorporating the scale factor a as given by Equation (46), the
Hubble and the deceleration parameters are obtained as

H =
2
3

k2 coth(k2 t + k3) , (59)

q =
1
2
− 3

2
tanh2(k2 t + k3) . (60)

Here, we obtain a time-dependent deceleration parameter. A time-dependent deceleration
parameter is important for explaining the transition of the expansion of the universe from
the past decelerating phase to the recent accelerating phase.

In Figures 7 and 8, the evolutions of the Hubble and deceleration parameters are
shown. We see that q exhibits the phase transition from the decelerating to the acceler-
ating expansion phase. In order for the behaviors of q and H and their current values
to be compatible with current observations, the values of the constants were chosen as
k2 = 0.08743 and k3 = −0.009764. According to this, the transition time is almost 7.643 Gyr,
the present value of the deceleration paramater is almost q0 = −0.54, and the present
value of the Hubble parameter is almost 0.0699 Gyr−1. On the other hand, the value of the
deceleration parameter at the beginning is q(t = 0) = 0.499, which is the value of q in our
decelerating model; and q approaches −1 as t approaches infinity, which is the value of q
in our accelerating model.

Figure 7. Evolution of the Hubble parameter q against time t for transit model.

Now, let us discuss the dynamic quantities of this model. In the last two subsections
above, we obtained ρ by integrating Equation (26). However, for this model, since an
exact solution of the differential Equation (26) cannot be obtained, we obtain ρ using
Equation (32). After obtaining ρ, we obtain ρtot and ptot by using Equations (23) and (24),
respectively. But since all of these expression are quite long, we refrain from writing the
expressions of ρ, ρtot and ptot here. Instead, we content ourselves with presenting the
graphs that show the changes over time, drawn using the values of the constants given
above. We can see from Figures 9 and 10 that the energy densities are positive-valued for all
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values of ω, while ptot is positive-valued only for positive values of ω as seen in Figure 11
in this model.

Figure 8. Evolution of the deceleration parameter q against time t for transit model.

Figure 9. Evolution of the energy density ρ against time t for transit model in NMC form.
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Figure 10. Evolution of the total effective energy density ρtot against time t for transit model in
NMC form.

Figure 11. Evolution of the total effective pressure ptot against time t for transit model in NMC form.

4.4. Decelerating Model for SMC Form

For the decelerating model in which H is given by Equation (51), Equations (37) and (38)
become

ρ =
3
2

8 π + 3 λ

(8 π2 + 6 π λ + λ2)(3 t + 2 c)2 , (61)
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p =
3
2

λ

(8 π2 + 6 π λ + λ2)(3 t + 2 c)2 . (62)

Here, we have obtained the solutions of the energy density and pressure without the
need for a constant EoS parameter. However, if we calculate the expression of the EoS
parameter using the definition ω = p/ρ, we still get a constant ω as follows:

ω =
λ

8 π + 3 λ
. (63)

To investigate the time evolution of these dynamical parameters by means of their
graphs, an important point to note is that ω and λ are connected to each other by
Equation (63). Accordingly, the ω values that we discussed for the decelerating model
in the previous subsections are constrained here. The first and obvious restriction is that ω
must be different from 0 because if ω = 0, then λ = 0, and this is the GR case. The second
constraint, as seen from Equation (63), is that

λ = −8π
ω

3 ω− 1
, (64)

which tells us that ω cannot take the value of −1/3. The third and final constraint is that
w 6=1; otherwise, the energy density ρ diverges. Therefore, only the value of w = 2/3
remains among the w values we used for the examination of the previous sub-cases. Our
examination for this value (w = 2/3) gives us the energy density that only takes negative
values, ρ = − 3

10π t2 ; that is, it has no physical meaning. Consequently, we can interpret that
the decelerating expansion solution of the constant jerk parameter is not the solution to the
field equations of the SMC form of f (R, T) theory in the flat FLRW background.

4.5. Accelerating Model for SMC Form

For the accelerating model in which H = β, the energy density and pressure given by
Equations (37) and (38), respectively, are reduced to constants as follows

ρ =
3
4

β2

2 π + λ
, (65)

p = −3
4

β2

2 π + λ
. (66)

Although a positive energy density condition is met for λ that meets the 2π > −λ
condition, this situation is not consistent with the expanding universe scenario. Therefore,
we can interpret that, as in the previous subsection, the accelerating solution of the constant
jerk parameter does not give a physical solution of the field equations of the SMC form.

It should also be noted here that the EoS parameter, as seen immediately from
Equations (65) and (66), is ω = −1, and this is equivalent to a cosmological constant.

4.6. Transit Model for SMC Form

For the transit model, in which the scale factor a is given by Equation (46),
Equations (37) and (38) become

ρ =
k2

2
6(8 π2 + 6 π λ + λ2)

2 (4 π + λ) cosh2(k2 t + k3) + λ

sinh2(k2 t + k3)
(67)

p = −
k2

2
6(8 π2 + 6 π λ + λ2)

2 (4 π + λ) cosh2(k2 t + k3)− 8π − 3λ

sinh2(k2 t + k3)
(68)
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In this case, the EoS parameter ω is obtained as

ω =
2 (4 π + λ) cosh2(k2 t + k3)− 8π − 3λ

sinh2(k2 t + k3)
(69)

We see that unlike the accelerating model for the SMC form, ω is not constant in this
transit model for the same form.

The behavior of ρ, p and ω are given in Figures 12–15, respectively. As can be seen from
these figures, ρ is always positive; p starts its evolution with a positive value, decreases over
time, and ends with a negative value; and therefore ω, while initially taking positive values,
decreases over time, goes to zero, and then continues its evolution by taking negative
values. It can be seen that ω converges to −1 as t approaches infinity. In this case, ptot is
obtained as a negative constant.

ptot = −1
6

k2
2

π
. (70)

Figure 12. Evolution of the energy density ρ against time t for transit model in SMC form.

Figure 13. Evolution of the energy density ρtot against time t for transit model in SMC form.
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Figure 14. Evolution of the pressure p against time t for transit model in SMC form.

Figure 15. Evolution of the EoS parameter ω against time t for transit model in SMC form.

5. Wec Analysis

The condition that the sum of the energy density and pressure is not negative must
also be satisfied, as well as the requirement for a positive energy density for any physically
valid cosmological model. The requirement of these two conditions together is called
the weak energy condition (WEC). In addition, in modified gravity theories, the WEC is
generalized and similar conditions must be satisfied for the effective fluid. The generalized
WEC demands

ρ ≥ 0 and ρtot ≥ 0 , (71)

and
ρ + p ≥ 0 and ρtot + ptot ≥ 0 . (72)

Since the SMC form of the models we discussed above does not give the desired
solutions for both the accelerating and decelerating models, we now analyze the WEC only
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for the NMC form. Therefore, from now on, we use the decelerating and accelerating model
expressions (unless otherwise specified) only for the NMC form. But for the transition
model, we consider both the NMC and SMC forms in the following.

The conditions (71) are satisfied for all the decelerating, accelerating and transit models
we have discussed above and are illustrated in Figures 1, 2, 4, 5, 9, 10, 12 and 13. Now, the
conditions (72) are illustrated again in Figures 16–23.

Figure 16. Evolution of ρ + p against time t for decelerating model in NMC form.

Figure 17. Evolution of ρtot + ptot against time t for decelerating model in NMC form.
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Figure 18. Evolution of ρ + p against time t for accelerating model in NMC form.

Figure 19. Evolutionof ρtot + ptot against time t for accelerating model in NMC form.
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Figure 20. Evolutionof ρ + p against time t for transit model in NMC form.

Figure 21. Evolution of ρtot + ptot against time t for transit model in NMC form.
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Figure 22. Evolution of ρ + p against time t for transit model in SMC form.

Figure 23. Evolution of ρtot + ptot against time t for transit model in SMC form.

We can see from Figures 16 and 17 that conditions (72) are satisfied in the decelerating
model for all selected values of ω. On the other hand, while the first condition of (72) is
satisfied in the accelerating model, as seen from Figure 18, its second condition is satisfied
only for negative values of ω. In the transit model for the NMC form, the first condition is
satisfied for all selected values of ω, while the second condition is not satisfied for negative
values of ω. Also, the condition is satisfied, as seen in Figure 23, in the transit model for
the SMC form. Thus, there are different situations for which the WEC is satisfied for the
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decelerating and accelerating models in the NMC form and for the transit models in both
the NMC and SMC forms that we consider in this study.

6. Conclusions

We have studied dark energy with a constant jerk parameter j = 1 in an FLRW model
in f (R, T) = f1(R) + f2(R) f3(T) gravity. The simplest form f (R, T) = R + λT, λ = const.
is usually studied in the literature. For this reason, to compare our results, we also discussed
the simplest case as well as the more complicated form. In the papers [20,21], the authors
also studied a constant jerk parameter j = 1 in a Bianchi I model in f (R, T) gravity, but
they used the form f (R, T) = R + λT, λ = const., so that work is different from ours.

This theory does not have energy conservation, but energy can be lost or gained
or particle production may occur. This is similar to having a more generalized energy–
momentum tensor, including viscosity or heat conduction in GR.

In the standard ΛCDM model in GR, which fits observational constraints reasonably
well, we have j = 1. We expect any generalized cosmological model to tend to the ΛCDM
model at late times. By choosing j = 1 as a starting point, we obtained, for the first time
we believe, Equations (40)–(45). However, since these solutions are complicated, we chose
one of them, viz., (41), and were able to write it as Equation (46). We call this solution the
transit solution. However, a power law solution Equation (47) and an exponential solution
Equation (48) are also exact solutions to the differential equation for j = 1. The power
law solution is valid at early times, and the exponential solution applies at late times. We
analyzed these three solutions separately. Hence, by choosing j = 1 as a starting point, we
ensured that the relevant model approximates that of the ΛCDM model at late times. We
have plotted the energy densities, effective energy densities and effective pressures for the
decelerating model in Figures 1–3, for the accelerating model in Figures 4–6 and for the
transit model in NMC form in Figures 9–11.

A detailed energy analysis of the weak energy condition has been carried out, and the
decelerating model satisfies the WEC. The accelerating model satisfies the WEC except for
positive values of ω. Conversely, the transit model satisfies the WEC except for negative
values of ω. These results are illustrated in Figures 16–23. We have also plotted the Hubble
and deceleration parameters for the transit model in Figures 7 and 8, showing that the
transition time is 7.643 Gyr and that the present values of the Hubble and deceleration
parameters are consistent with recent observational values.

Finally, we mentioned in the introduction that this work is based on an earlier abbrevi-
ated paper [19] that appeared in the Proceedings of the 2nd Electronic Online Conference on
the Universe held during 16 February–2 March 2023. We shall now point out briefly what
was done in that paper along with the novel aspects in this work. In our earlier paper,
we chose a nonlinear functional form for f (R, T), given by f (R, T) = R + RT. For the flat
FLRW metric, we worked out the field equations and then chose the jerk parameter to
be j = 1. Since this nonlinear differential equation was difficult to solve, we managed to
only find exact power law and exponential solutions at that stage. The former represents
deceleration, and the latter represents acceleration. We also found the expressions for the
energy density for both solutions, and we plotted these.

In this work, the novel aspects are:

• This study entails a much deeper analysis of the concept of the implications of a
constant jerk parameter for modified gravity.

• Most studies of f (R, T) theory are based on the linear form of f (R, T). In this work,
we considered the nonlinear form f (R, T) = R + RT. This is much more difficult
to analyze.

• The complete solution to the differential Equation (39) for j = 1 has been presented
for the first time here as far as we are aware.

• Since these equations are fairly complicated, and some of them are complex (and
therefore imaginary), we selected one of the solutions. We simplified it to a manageable
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form that could be analyzed more easily, and we provided a complete analysis of this
solution (the transit solution).

• Using observations, we calculated the values of the parameters that occur in the
transit solution. Then, we calculated the Hubble parameter at the present time, the
deceleration parameter at present and at transition, and the transition time from
deceleration to acceleration. The transit solution appears to be viable, but we plan a
more detailed analysis of its implications in the future, including observations.

• The transit solution was compared with the two other solutions (power law and
exponential). Detailed plots were provided for all three solutions to illustrate the
results more clearly.

• Energy conditions were analyzed in this paper; these were not addressed in the Phys.
Sc. Forum paper. These conditions were analyzed in detail for all three types of models,
and detailed comparisons were made amongst all three.

• This work has 23 figures illustrating our results here, as compared to 2 in the
previous work.
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