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Abstract: Multi-scale modeling of expanding plasmas is crucial for understanding the dynamics and
evolution of various astrophysical plasma systems such as the solar and stellar winds. In this context,
the Expanding Box Model (EBM) provides a valuable framework to mimic plasma expansion in a
non-inertial reference frame, co-moving with the expansion but in a box with a fixed volume, which
is especially useful for numerical simulations. Here, fundamentally based on the Vlasov equation
for magnetized plasmas and the EBM formalism for coordinates transformations, for the first time,
we develop a first principles description of radially expanding plasmas in the EB frame. From this
approach, we aim to fill the gap between simulations and theory at microscopic scales to model
plasma expansion at the kinetic level. Our results show that expansion introduces non-trivial changes
in the Vlasov equation (in the EB frame), especially affecting its conservative form through non-
inertial forces purely related to the expansion. In order to test the consistency of the equations, we also
provide integral moments of the modified Vlasov equation, obtaining the related expanding moments
(i.e., continuity, momentum, and energy equations). Comparing our results with the literature, we
obtain the same fluids equations (ideal-MHD), but starting from a first principles approach. We also
obtained the tensorial form of the energy/pressure equation in the EB frame. These results show
the consistency between the kinetic and MHD descriptions. Thus, the expanding Vlasov kinetic
theory provides a novel framework to explore plasma physics at both micro and macroscopic scales
in complex astrophysical scenarios.

Keywords: plasmas; solar wind; expansion; kinetic theory; magnetohydrodynamics; reference
systems

1. Introduction

Astrophysical plasmas have been widely studied through different theories, simula-
tions, and observations based on plasma physics knowledge. In this case, we have the
chance but also face the major challenge of studying plasma dynamics in various contexts,
from kinetic processes conditioned by the energy (velocity) distributions of plasma particles
to the macro-physics of a hydrodynamic plasma; or from high energy fully relativistic
manifestations of plasmas in quasars and AGN jets to non-relativistic solar outflows filling
the heliosphere and planetary environments [1–4]. However, precisely, these complex
manifestations of the plasma lead to multiple problems, which must be addressed and
solved according to the phenomena of interest in our analysis. We can thus mention the
modeling of turbulence and instabilities, from those at the micro-(kinetic) scales associated
with the anisotropy of charged particles to those characteristic of large-scale plasma systems
in different astrophysical scenarios [5–8]. It is also not trivial to decode the energy transfer
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mechanisms, i.e., between particles and electromagnetic fields, plasma heating, and particle
acceleration [9–12]. Not only the intrinsic properties arouse interest, but also the fact that
natural plasmas are not isolated systems, but are in interaction with the environment that
affects their evolution [13–15].

Plasma clearly dominates most of the visible matter in the universe, but its properties
vary in various astrophysical or space contexts. For instance, plasmas surrounding black holes
(accretion disks), AGN jets [16–19], highly contrast with heliospheric plasmas, solar wind, and
the close-to-earth environment [20–23]. Under any of these circumstances, plasma is not a static
system: it expands, shrinks, and constantly changes its structure. All of these are expanding
plasma systems, whose analysis may invoke both kinetic and magnetohydrodynamic (MHD)
theories, but sometimes also relativistic plasma approaches [24–29]. Theories and numerical
modeling aiming to a better understanding of the plasma expansion and quantifying its
effects, e.g., in the heliosphere but also other astrospheres in our Galaxy, are very complex
and computationally highly demanding. For instance, the most immediate problem when
computing plasma simulations is purely related to computer limitations, especially, memory
limitation to study the expansion of a plasma parcel. If we couple the kinetic physics and
the expansion, not only the computational time but also the memory needed to explore
the possible effects would be ineffective. Therefore, more effective and methodological
frameworks should be applied when studying plasma expansion.

Velli et al. [30] proposed and developed the Expanding Box Model (EBM), which allows
for the study of plasma expansion in a new system of reference. The main idea of this model
came as an answer to the limited memory in computer simulations when studying solar
wind plasma expansion. It enables the study of the radial–spherical expansion through a
Cartesian approximation with a non-trivial change of coordinates. In this context, consider
a plasma parcel expanding in a static and inertial system of reference S. The EBM defines
a new system of reference S′ co-moving with the plasma at constant velocity. In this
new framework, through the change of coordinates, the plasma parcel becomes steady
(non-expanding) and is moving along with it. For instance, from the S system, an observer
will see the plasma expanding and going away, while from the new S′ system, the observer
will move along with the parcel but will not notice the expansion (i.e., the volume of the
plasma parcel/box is constant). The question that arises is how the expansion can be
described in a non-expanding frame. Within this new description, the expansion is no
longer a spatial property of the system. When transforming to the new frame, the expansion
traduces in temporal variations rather than spatial. This idea has the computational
advantage of studying the expansion in a co-moving and non-expanding framework. Also,
this way, we can expect to reduce computational memory limitations in specific studies of
plasma expansion. On the other hand, the EBM has analytical advantages, as we can rewrite
equations using this formalism with an explicit dependence on the expanding parameters.

Originally proposed as a Cartesian description of coordinates, EBM has improved
and generalized to a more diverse description through the years and more recent research.
On the one hand, Grappin and Velli [31] applied this model using polar coordinates to
study the solar wind expansion in the ecliptic plane. On the other hand, more recent
research has generalized this model by considering an accelerated co-moving frame [32],
enabling the study of expansion in the accelerating regions of the solar wind close to the
Sun. These upgrades demonstrate how flexible and diverse the study of the expansion
using the EBM can be. Thus, we can adapt the equations and the model to the applications
of interest, which are in general focused on studying plasma physics in the macroscopic
regime through the MHD description [30,31,33]. It is possible to rebuild the MHD approach
in the co-moving frame, from the well-known MHD equations and the EBM formalism,
and apply them, for instance, in hybrid simulations with kinetic ions and fluid electrons.
Following these ideas, ref. [34] studied the role of the expansion when both kinetic and
fluid populations are in the plasma [35,36]. More recent studies have focused on the
expansion effects in the simulations at microscopic or kinetic scales [37–40]. The results
appear to motivate the utility and advantage when incorporating the expansion through
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the EBM, affecting density, velocity, or even the magnetic field profiles. Physical quantities
are thus conditioned by the EBM, showing, for instance, the temperature or magnetic field
decreases, in agreement with the observations. Moreover, expansion may also play an
indirect role in the heath flux regulation through the excited instabilities [38]. Under this
context, Seough et al. [41] introduced the effect of expansion at the kinetic level to add
wave–particle relaxation to the well-known double adiabatic equations in the EB formalism.
They considered the well-known moment-based quasilinear kinetic theory and added the
EBM temperature evolution to the equations.

As mentioned, even though there have been diverse successful applications of the EBM
in theoretical and, mainly, numerical simulations, there is still no Vlasov theory describing
plasma expansion from a first principles approach, allowing us to describe both micro
and macroscopic plasma physics from the expanding kinetic equation developed in this
manuscript. In this paper, for the first time, we present a novel first principles description
for spatially expanding plasmas, which relies on the Expanding Box formalism. Through
this description, we introduce and develop a new theoretical framework, fundamentally
based on the (collisionless) Vlasov equation written in the co-moving/EB frame, aiming to
fill the gap between theory and simulations, which is especially relevant for the description
of plasmas at kinetic scales. In particular, we present the general considerations and
mathematical formalism when a microscopic description for expanding plasma is needed.
Based on the transformed Vlasov equation, general expressions for the principal moments
of the velocity distribution can be derived, as well as general MHD equations in the EB
framework. From these expressions, we can explicitly test the consistency between micro
and macroscopic physics. Despite the fact that EBM was initially proposed for the study of
expanding solar wind, the main idea of this model is entirely general. Indeed, as starting
from the Vlasov–Maxwell system, most plasma descriptions can be obtained, this new
formalism may open new ways to study the plasma physics of any expanding system, from
a local-to-Earth environment, such as the solar wind, or to wider astrophysical contexts,
such as expanding relativistic plasma. These ideas are the stepping stones for further
research in expanding systems at kinetic scales.

This paper is organized as follows. Section 2 introduces the general formalism and
definitions used when working with the EBM. In Section 3, we derive the expanding
(collisionless) Vlasov equation, which transforms the standard expression to the co-moving
frame. The expanding moments, i.e., continuity, momentum, and energy equations, are
obtained in Section 4, and in Section 5, we develop ideal MHD equations to compare with
the results already existing in the literature. Finally, in Section 7 we summarize our results
and identify a series of implications for future applications.

2. Expanding Box Model (EBM)

The Expanding Box Model (EBM) is a formalism that allows for studying the radial–
spherical expansion through a Cartesian approximation with a non-trivial change of coor-
dinates. Consider a plasma parcel expanding from a static and inertial system of reference
S; the EBM defines a new system of reference S′ co-moving with the plasma at constant
velocity U0. The plasma parcel is not expanding with respect to this new framework
(through the change of coordinates), but it moves together with it (see [31,33] for a detailed
discussion and derivation). The relationship between these two systems, S (non-prime
quantities) and S′ (prime quantities), is defined as a Galilean transformation in the radial
direction x and a re-normalization in the perpendicular direction

x′ = x− R(t) , (1)

y′ =
1

a(t)
y , (2)

z′ =
1

a(t)
z , (3)
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where

R(t) = R0 + U0t , (4)

a(t) ≡ R(t)
R0

= 1 +
U0

R0
t . (5)

The Galilean transformation in the x̂ direction, given by Equation (1), allows the S′

system to move along with the plasma parcel as this transformation is made through the
radial distance R(t) of the plasma. In the transverse directions (i.e., y and z components),
the re-normalization of the quantities is made through the expanding parameter a(t).
As y and z coordinates increase at the same rate as this parameter, the normalization
Equations (2) and (3) allow for maintaining a constant volume of the plasma parcel in the
S′ system or co-moving frame. It is important to stress the following interpretation for
the coordinates transformations: note that only the radial direction is related to a Galilean
transformation, but in the perpendicular directions, there is a non-Galilean time-dependent
renormalization in the quantities. These non-Galilean terms are expected to incorporate
all the expanding effects in the kinetic equations. Figure 1 shows the Cartesian sketch and
the related coordinates and parameters that allow us to work in the co-moving S′ system.
With this transformation, all information about the plasma expanding in the perpendicular
direction (y–z plane) is incorporated and quantified by the a(t) parameter. Even though the
plasma is not expanding in the co-moving system, this parameter will allow us to include
the effects of the expansion in the equations by changing the time and spatial derivatives,
among other physical quantities.

'

'

Figure 1. Expanding Box Model and the related quantities. The radial–spherical expansion of the
plasma is approximated through a Cartesian description of coordinates. The box is expanding
with constant velocity U0 and the radial distance R(t) is related to the Galilean transformation in
the x direction. In the perpendicular direction (y and z coordinates), respect to the expansion, the
re-normalization yields to non-inertial fictitious forces F that maintain a constant volume in the box.

In order to describe the physics in the S′ system, or co-moving framework, we need
to transform all the physical quantities from S to S′. For the detailed derivations, the
interested reader can consult [31,33,34,36]. In this work, we follow the same procedures for
a re-derivation of these quantities in the EBM. One particular difference in our description
is that the spatial and velocity gradients in the S′ system are defined as

∇′ =
(

∂

∂x′
,

∂

∂y′
,

∂

∂z′

)
, ∇v′ =

(
∂

∂v′x
,

∂

∂v′y
,

∂

∂v′z

)
. (6)
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These expressions will allow us to have all the expanding transformations through, i.e.,
the expanding parameter a, explicitly outside the gradient definitions. As a consequence of
that, when studying the expansion dynamics analytically, it becomes more clear where the
explicit time dependencies are. The same consideration applies to all quantities, i.e., bulk
velocity, pressure, and heat fluxes.

To derive the equations, first, we need to align the x̂ axis with the spherical–radial
coordinate. Following the transformations Equations (1)–(3), we can establish more rela-
tionships between S and S′ (see Appendix A for the detailed derivation)

U0 = U0

(
x̂ +

y′

R0
ŷ +

z′

R0
ẑ
)

, (7)

v = A · v′ + U0 , (8)
∂

∂t
=

∂

∂t′
−D · ∇′ , (9)

∇ = A−1 · ∇′ , (10)

∇v = A−1 · ∇v′ , (11)

where

D = U0

(
1,

y′

R
,

z′

R

)
, A(t) =

1 0 0
0 a(t) 0
0 0 a(t)

 .

Note that v′ =
(

v′x, v′y, v′z
)

and ∇′ =
(

∂
∂x′ ,

∂
∂y′ ,

∂
∂z′

)
, as discussed before. These

relationships are now sufficient to re-write Vlasov’s equation in the co-moving system S′.

Motivation for an Expanding Vlasov Equation Approach

The effects of the expansion in the transverse directions (perpendicular to the radial
direction x) can be directly observed and measured only from an inertial framework, such
as the one fixed to the Sun. In the non-inertial framework S′ of the EBM, the effects of the
expansion on the main plasma parameters are indirectly transmitted by the new parameter
a(t) that varies in time according to Equation (5). This helps us to understand how we
can study plasma expansion in the co-moving system. In fact, we convert the spatial and
temporal evolution of the expanding plasma properties to a temporal variation/description
of the same properties in the S′ system. Therefore, even if the plasma parcel is not expanding
in the co-moving frame, the expansion effects are transmitted to the equations via the a(t)
parameter. Moreover, the Expanding Box is not closed or isolated but should allow particle
and energy exchange with the environment plasma.

Even though there are diverse applications of the EBM in, e.g., simulations at different
scales, no kinetic theory applies this model from first principles. We need to start from
the Vlasov equation in order to develop a fundamentally reliable framework for the study
of plasma expansion in the EBM. This equation allows us to study the evolution of the
velocity distribution function (VDF) for each particle population that compounds the
plasma. Through the EBM formalism, we can study how expansion affects this equation.
As mentioned, the expansion is mainly traduced through the directions perpendicular to
the radial direction, and in the co-moving frame, there are non-inertial forces that maintain
the constant volume of the plasma parcel. Thus, these forces will modify the acceleration
term in Vlasov’s equation.

In the EBM, the modified expanding-Vlasov equation facilitates the multi-scale phys-
ical analysis of the expanding plasma. For instance, the macroscopic properties of the
expanding plasma are given by the main moments of the velocity distribution, while the
equations describing their time–space evolution, i.e., continuity, momentum, and energy
equations, are obtained by integrating the modified Vlasov equation. In this way, we are
entitled to compare our results with those already published [31,34], but this time starting
from the first principles in the derivation of the Vlasov equation. We recall that in the cited
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literature, the expanding MHD equations were obtained directly from transforming the
physical quantities for the continuity, momentum, and pressure equations to the co-moving
frame. There are multiple applications, and as a first choice, we can use it to explore
linear and quasilinear properties of plasma waves and instabilities, expected to govern the
dynamics of poorly collisional plasmas from space.

3. Vlasov and Maxwell Equations
3.1. Vlasov Equation

In this section, we transform the Vlasov equation into the non-inertial system S′. We
start from the kinetic equation for a collisionless magnetized plasma in the inertial system S

∂ fµ

∂t
+ v ·

∂ fµ

∂r
+ a ·

∂ fµ

∂v
= 0 , (12)

where µ represents the species that may be relevant for the plasma system, e.g., electrons,
protons, and heavier ions. In order to obtain this equation in the new system S′, we must
re-write every derivative and physical quantity. In addition, as in many astrophysical envi-
ronments, magnetic field effects are dominant; for the electromagnetic field transformation,
we consider the so-called “magnetic limit”; i.e., E ∼ (U0/c)B � B, with c the speed of
light [42]. Namely,

E = E′ − 1
c

U0 × B′ , B = B′ . (13)

As in this work we aim to describe non-relativistic plasmas, the transformations given
by Equation (13) have been obtained in the low-velocity limit (v/c � 1) and constitute
a Galilean transformation (please note that Equation (13) follows assumptions that may
require further elaboration in future works). A relativistic plasma description can be found
in ref. [42], where extensive discussions and formalism are described for the constitutive
equations in both relativistic and Galilean limits for electric and magnetic fields. Never-
theless, note that in the EB context, these transformations are not purely Galilean. Even
though they have the same form as the Galilean’s, we recall that the quantities are projected
into the co-moving frame. For instance, the coordinates of the expanding velocity U0 are
written in terms of the EB variables, given by Equation (7). Therefore, these transformations
are not purely Galilean, and these terms are expected to give us the plasma’s expanding
properties. Equation (13) has been widely studied and applied to different physical sce-
narios. In the EBM context, several applications are found in both theory and simulations;
see, for example, references [31,33,34,36], where they used the transformations given by
Equation (13) to develop macroscopic physics in the EB frame.

On the other hand, and also in non-relativistic conditions, the acceleration a′ (species
of sort µ) in the S′ system reads

a′ =
qµ

mµ
A ·
(

E′ +
1
c
[
A · v′

]
× B′

)
− U0

R0
T · v′ , (14)

where the first terms related to the electric and magnetic fields are the Lorentz force written
in the co-moving frame, and qµ and mµ are the charge and mass of species of sort µ. The
last term represents the non-inertial result of the transformation, and T is a diagonal matrix
that projects a vector in the perpendicular direction respective to the expansion

T =

0 0 0
0 1 0
0 0 1

 . (15)

Thus, with the definitions described above, the Vlasov equation in the co-moving
frame reads as
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∂ f ′µ
∂t′

+ v′ · ∇′ f ′µ +
qµ

mµ

{
E′ +

1
c
[
A · v′

]
× B′

}
·
[
∇v′ f

′
µ

]
=

U0

R0

(
T · v′

)
·
[(

A−1 · ∇v′
)

f ′µ
]

. (16)

See Appendix A for details of its derivation.
The modified Vlasov’s Equation (16) has explicit dependence on the expanding prop-

erties expressed in the EBM framework. Note that the left side of the equation keeps the
same form as the one in the inertial frame (S system), but with primed quantities. This
is mainly because of the following two reasons: (1) the first two terms in Equation (12) is
a total derivative d f /dt, as we are working in a non-relativistic frame dt = dt′, and the
total time derivatives are invariant to the transformation from S to S′; (2) The Lorentz force
from the acceleration Equation (14) is multiplied by the matrix A that is compensated by its
inverse A−1 in the inner product with velocity gradient of the distribution function. The
only expanding modification in the Lorentz force is due to velocity. On the right-hand
side of the Vlasov equation, there is a new term relating to the non-inertial force from the
second term in Equation (14). Despite the fact that in this model the co-moving frame is
not accelerating, the re-normalization in the transverse components (i.e., y′ and z′) leads
to a non-inertial force that maintains a constant volume in the box: work must be applied
upon the walls of the box to compensate for the expansion of the plasma. This force
contains all the expanding information related to the EBM and now implicitly modifies
Vlasov’s equation.

In this paper, we aim to introduce such a framework for studying kinetic physics
using the EBM. There are different possibilities and paths to follow. On one side, we
can obtain fluid equations by integrating Equation (16) and obtaining the moments of
the Vlasov equation, i.e., continuity, momentum, and pressure equations. This first step
would allow us to compare the already published work with the results derived from
the Vlasov equation. On the other hand, we could also study kinetic physics by coupling
to the electromagnetic fields self-consistently described by the Maxwell equations. The
advantage of having an extended description of the Vlasov equation is that we can now
study expansion effects with both micro and macroscopic approaches. Aiming to provide
an example of how we can work with the modified Vlasov equation, in the following
sections, we will derive the expanding moments of Equation (16), which further enables
obtaining an ideal MHD description of the expanding plasma.

3.2. Maxwell Equations

Maxwell equations have been widely studied in the EB context; see, for example, [37].
In this section, we will only re-write those equations in terms of our notation in order to
have the complete set of kinetic equations. Maxwell equations in the S system read as

∇ · E = 4πρ , ∇ · B = 0 ,

∇× E = −1
c

∂B
∂t

, ∇× B =
4π

c
J +

1
c

∂E
∂t

.

According to the transformations of the electromagnetic fields Equation (13), Maxwell’s
equations in the co-moving frame read as
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(
A−1 · ∇′

)
· E′ = 4πa2ρ′ +

1
c

(
A−1 · ∇′

)
·
[
U0 × B′

]
, (17)(

A−1 · ∇′
)
· B′ = 0 , (18)(

A−1 · ∇′
)
× E′ = −1

c
∂B′

∂t′
− U0

Rc
L · B′ , (19)(

A−1 · ∇′
)
× B′ =

4π

c

[
a2A · J′ + a2ρ′U0

]
+

1
c

∂E′

∂t′
+

1
c2

[
U0 ·

(
A−1 · ∇′

)](
U0 × B′

)
− 1

c

[
U0 ·

(
A−1 · ∇′

)]
E′ − 1

c2 U0 ×
∂B′

∂t′
, (20)

where the charge density and current between both systems relate according to

ρ = a2ρ′ , (21)

J = a2A · J′ + a2ρ′U0 , (22)

and

ρ′ = q
∫

f ′
(
r′, v′, t′

)
dv′ , (23)

J′ = q
∫

v′ f ′
(
r′, v′, t′

)
dv′ , (24)

L =

2 0 0
0 1 0
0 0 1

 . (25)

The a2 parameter in Equations (21) and (22) explicitly appears when transforming the
velocity differential between both system through the Jacobian matrix as dv = a2dv′ in
the density and current integrals. Note that these equations can be simplified considering
non-relativistic plasma U0/c � 1. Nevertheless, for consistency, all the terms of the
equations are shown. It is worth mentioning that Maxwell’s equation can be simplified
for the magnetic limit in the transformations of the field (13). In such cases, where the
magnetic effects govern plasma dynamics, the displacement current can be neglected in
Ampere’s Law, which significantly reduces the complexity of these equations (see [42] for
Galilean Electromagnetism). In the co-moving frame and for the magnetic limit, Maxwell’s
equations read as (

A−1 · ∇′
)
· E′ = 4πa2ρ′ +

1
c

(
A−1 · ∇′

)
·
[
U0 × B′

]
, (26)(

A−1 · ∇′
)
· B′ = 0 , (27)(

A−1 · ∇′
)
× E′ = −1

c
∂B′

∂t′
− U0

Rc
L · B′ , (28)(

A−1 · ∇′
)
× B′ =

4π

c

[
a2A · J′ + a2ρ′U0

]
. (29)

We recall that both sets of equations are written in the EB frame; the first set,
Equations (17)–(20), explicitly shows how the displacement current changes between
both frames. On the other hand, in the magnetic limit, this current can be neglected, and
Maxwell’s equations are described by Equations (26)–(29).

4. Moments of Vlasov’s Equation

In this section, we will focus on developing equations for a magnetized fluid with the
EB formalism. This first approach is a possible example of working with Vlasov’s equation
in the co-moving frame. To do so, we first need to obtain the first three moments from
Equation (16): continuity, momentum, and pressure. We stress that these moments are
expressed in the non-inertial co-moving frame S′. As Equation (16) is now written in the
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EB frame, we only need to integrate this equation by the primed moments in the velocity
space (similar to the non-expanding cases).

Note that the left-hand side of Equation (16) is almost the same as in the non-expanding
case. Therefore, the same ideas used in that case are still valid but with primed quantities.
Note that the modification of the equation is mainly through the tensor A(t). One advantage
of this description is that moments are obtained via integrating Vlasov’s equation in the
velocity space. As this tensor is only a function of time, such integrals will not be affected
(only the components through the inner products). Therefore, we will only focus on the
right-hand side integrals of Equation (16). For the notation and solution of the related
integrals, see Appendix B.

For developing the equations, we will follow the ideas of Hunana et al. [43]. Related
to the moments of the velocity distribution function f ′ (density, mean velocity, pressure
and heath flux), we will use the same definitions as in the non-expanding cases, but with
primed quantities

n′ =
∫

f ′(r′, v′, t′)dv′ . (30)

u′ =
1
n′

∫
v′ f ′(r′, v′, t′)dv′ , (31)

P′ = m
∫

w′w′ f ′(r′, v′, t′)dv′ , (32)

Q′ = m
∫

w′w′w′ f ′(r′, v′, t′)dv′ , (33)

where the velocity w′ denotes the fluctuations with respect to the mean velocity u′, so that

v′ = u′ + w′ .

Since we will continue to work only in the co-moving system, the primes in the
variable notations will be omitted in the equations from now on.

4.1. First Moment: Continuity Equation

As a first example of working out the equations in the S′ system, we will develop in
detail the first moment. For the other moments, the same ideas are applied. When we
integrate Equation (16) in the velocity space, from the first two terms, we have the usual
expression from the continuity equation (omitting the primes):∫ (

∂ f
∂t

+ v · ∇ f
)

dv =
∂n
∂t

+∇ · (nu) .

The Lorentz force terms are still zero as for the non-expanding case. For example, for
the electric field ∫

E · [∇v f ]dv = Ei

∫
∂ f
∂vi

dv = 0 ,

coupled to the condition

lim
v→±∞

f (v) = 0 .

Finally, the integral reads as

I =
U0

R0

∫
(T · v) ·

[(
A−1 · ∇v

)
f
]
dv

=
U0

R0

∫ (vy

a
∂ f
∂vy

+
vz

a
∂ f
∂vz

)
dv .
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The two terms in the integral are similar; hence, we are basically solving the same
integral twice. Let us fix one coordinate (say the y-coordinate), multiply that expression by
two and integrate by parts, which yields

I =
2U0

aR0

∫
vy

∂ f
∂vy

dv = −2U0

aR0

∫
f dv = −2U0

aR0
n .

Therefore, the continuity equation reads as follows in the co-moving system

∂n
∂t

+∇ · (nu) = −2U0

aR0
n . (34)

With this first example, we can already start noticing how the expansion affects the
equations through the expanding parameter a(t). The continuity Equation (34) has a non-
zero term on the right-hand side that modifies the behavior of the density. As we mentioned
before, even though in the co-moving frame, the box is not spatially expanding; all the
expanding information is traduced in time variations by the a(t) parameter, allowing us to
study how the expansion affects the physical quantities (i.e., density, velocity, and pressure)
we are interested in. It is essential to mention that the obtained Equation (34) is the same as
the one published by Grappin et al. [33]. Here, we are presenting the kinetic formalism for
deducing the fluid equations.

4.2. Second and Third Moment: Momentum and Pressure Equation

For the second and third moment, we multiply Vlasov’s equation by v and vv, respec-
tively, and integrate it over velocity space in order to obtain the momentum and pressure
equation. For the detailed derivation, see Appendix B. For these cases, we will only focus
in the right-hand side integrals related to the non-inertial force. The integral I for the
momentum equation reads as

Ij =
U0

R0

∫ {
(T · v) ·

[(
A−1 · ∇v

)
f
]
v
}

j
dv

=
U0

aR0

∫
Tiivi

∂ f
∂vi

vjdv

= − U0

aR0

∫ (
Tiivj + Tiivi

)
f dv

= −nU0

aR0
{[2I+T] · u}j . (35)

Therefore, the expanding momentum equation becomes

∂u
∂t

+ (u · ∇)u =
q
m

[
E +

1
c
(A · u)× B

]
− 1

ρ
∇ · P− U0

aR0
T · u . (36)

On the other hand, for the third moment/pressure equation, the right-hand side
integral I reads as

Ijk =
U0

R0

∫ {(
T · v′

)
·
[(

A−1 · ∇v′
)

f
]
vv
}

jk
dv

=
U0

aR0

∫
Tiivi

∂ f
∂vi

vjvkdv

= − U0

aR0

(
2
∫

vjvk f dv + Tjj

∫
vjvk f dv + Tkk

∫
vkvj f dv

)
.
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For solving these integrals, we only need to decompose the velocity in terms of the
mean velocity and its fluctuations v = u + w, obtaining

I = −2U0

aR0

(
uun +

1
m
P
)
− U0

aR0

[
T ·
(

uun +
1
m
P
)]s

, (37)

where the supra-index s represents a symmetric operator that acts on a matrix C as
Cs = C+CT or in index notation Cij = Cij + Cji. Finally, using the previous moments
Equations (34) and (36), the pressure equation takes the following form:

∂P
∂t

+∇ · (uP+Q) + [P · ∇u]s +
q

mc
[B× (A · P)]s = −2U0

aR0
P− U0

aR0
[T · P]s , (38)

where the cross product between a vector V and a tensor C is defined as

[V×C]ik = εijlVjClk .

The obtained moments Equations (34), (36), and (38) are completely general regarding
the Expanding Box Model. The expansion effects are clearly visible and change the usual
(non-expanding) equations. In particular, the right-hand sides of the equations are now
affected by the EBM terms (i.e., the a parameter, the expanding velocity U0, and the initial
distance R0). For the cases of the continuity and momentum equation, the terms− 2U0

aR0
n and

− U0
aR0

T · u are the same as those that Grappin et al. [33] developed from transforming the
continuity and momentum equation from the S to the S′ system/co-moving frame. Here,
we developed another framework to obtain these equations. The advantage of working
from Vlasov’s equation with the EBM is that we can explore the kinetic effects and compare
our results with the already published work in MHD.

On the other hand, it is expected that if the plasma is not expanding, we should
recover the usual magnetized fluid equations. Note that this case is obtained in the non-
expanding limit U0 = 0 or a = 1; therefore, Aij = δij is the identity, and we recover the
usual expressions for the moments of Vlasov’s equation in the inertial frame, namely

∂n
∂t

+∇ · (nu) = 0 , (39)

∂u
∂t

+ (u · ∇)u =
q
m

[
E +

1
c

u× B
]
− 1

ρ
∇ · P , (40)

∂P
∂t

+∇ · (uP+Q) + [P · ∇u]s +
q

mc
[B× P]s = 0 . (41)

In the next section, we will focus on obtaining the ideal MHD equations with the EBM
formalism in order to compare with the work of Grappin et al. [33] and prove the consis-
tency of the obtained equations. As an improvement of the published equations, in this
work, we are also presenting the evolution for the pressure tensor given by Equation (38).
This allows us to study how the expansion also affects the pressure tensor.

5. Expanding Ideal-MHD

In order to compare our results with the ones already published in the literature,
we will develop, from the moments we already obtained, an ideal description for the
magnetohydrodynamic equations using the Expanding Box Model. In this section, we will
explicitly work with the primed quantities so it is clear in which frame we are working.
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Consider a magnetized electron–proton plasma, where the momentum Equation (36)
in the co-moving frame describes the evolution for each species

∂u′p
∂t′

+
(

u′p · ∇′
)

u′p =
qp

mp

[
E′ +

1
c

(
A · u′p

)
× B′

]
− 1

ρ′p
∇′ · P′p −

U0

aR0
T · u′p , (42)

∂u′e
∂t′

+
(
u′e · ∇′

)
u′e =

qe

me

[
E′ +

1
c
(
A · u′e

)
× B′

]
− 1

ρ′e
∇′ · P′e −

U0

aR0
T · u′e . (43)

Defining the fluid velocity as

u =
meue + mpup

me + mp
≈ up , (44)

for me
mp
� 1 in Equation (43) and in the cold electron approximation (P′e = 0), we can relate

the magnetic and electric fields as

E′ = −1
c
(
A · u′e

)
× B′ . (45)

In the inertial system, assuming quasi-neutrality (ne = np = n), for the the total
current density J, we obtain

J = qpnup + qenue = en
(
up − ue

)
, (46)

where e is the electron charge. Therefore, expressing J in terms of the co-moving variables

J = A · J′ = en′A ·
(

u′p − u′e
)

, (47)

where J′ ≡ en′
(

u′p − u′e
)

, the electron velocity can be expressed as

u′e = u′p −
1
en

J′ . (48)

Therefore, using Equation (48) in (45), we obtain

E′ =
1

en′c
(
A · J′

)
× B′ − 1

c

(
A · u′p

)
× B′ . (49)

In the inertial frame, we can obtain the current density in terms of the magnetic field
from Ampere’s law. Neglecting the displacement current (for studying lower frequency
waves as in the proton’s scale), Ampere’s law reads as

∇× B =
4π

c
J . (50)

Therefore, in the co-moving system, we have

A · J′ = c
4π

(
A−1 · ∇′

)
× B′ . (51)

Finally, the electric field reads as

E′ =
1

4πen′
[(

A−1 · ∇′
)
× B′

]
× B′ − 1

c

(
A · u′p

)
× B′ . (52)
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The first term of this equation is related to the Hall term, and the second term is the
usual one from the MHD induction equation. Finally, using Equation (52) in the momentum
equation for protons Equation (43), we obtain

∂u′p
∂t′

+
(

u′p · ∇′
)

u′p +
1
ρp
∇′ · P′p +

1
8πρ′p

[(
A−1 · ∇′

)]
B′2

− 1
4πρ′p

[
B′ ·

(
A−1 · ∇′

)]
B′ = − U0

aR0
T · u′p , (53)

where ρ′p is the proton density. Equation (53) is the same as the one obtained by
Grappin et al. [33]; the only difference here is that we explicitly work with the A tensor,
outside the definition of the gradient.

Pressure Equation

As a final application of the presented framework, we will develop the polytropic equa-
tion from Equation (38) that also was published in Grappin and Velli [31], Grappin et al. [33].
For this case, consider an isotropic pressure p′ given by

P′ =

p′ 0 0
0 p′ 0
0 0 p′

 . (54)

Neglecting the heat flux from Equation (38), we obtain

∂P′
∂t′

+∇′ ·
(
u′P′

)
+
[
P′ · ∇′u′

]s
+

q
mc
[
B′ ×

(
A · P′

)]s
= −2U0

aR0
P′ − U0

aR0

[
T · P′

]s . (55)

Calculating the trace, assuming a pressure tensor given by Equation (54), we obtain
the scalar pressure equation for a polytropic index γ = 5/3:

∂p′

∂t′
+ u′ · ∇′p′ + γp′∇′ · u′ = −γ

2U0

aR0
p′ . (56)

This equation is the same as the one published in the cited works. In this section, we
aimed to study the consistency between the micro and macroscopic approaches. The results
show that we are able to reproduce expanding (ideal-) MHD through the modified Vlasov
Equation (16). Developing an ideal MHD description allows us to validate the expanding
Vlasov Equation (16). In order to study kinetic physics, we first needed to validate the
kinetic equation. As there is already published work in the EBM–MHD frame, this is the
natural starting point to apply the kinetic-EBM.

6. Equations Summary

After obtaining all equations for different levels of plasma descriptions, in this
section, we summarize our main results in the co-moving frame. Table 1 shows all
obtained equations. The expanding (ideal-) MHD equations, which describe the plasma
dynamics in the EBM frame, are given by the continuity Equation (34), the momentum
equation for protons Equation (53), and the polytropic Equation (56). The magnetic field
equation is obtained by neglecting the Hall term in Equation (52) when replacing it in
Faraday’s Law.
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Table 1. Equation summary in the EB frame.

Expanding/Co-Moving Frame

First Principles:

Vlasov Equation
∂ f ′µ
∂t′ + v′ · ∇′ f ′µ +

qµ

mµ

{
E′ + 1

c [A · v′]× B′
}
·
[
∇v′ f ′µ

]
= U0

R0
(T · v′) ·

[(
A−1 · ∇v′

)
f ′µ
]

(
A−1 · ∇′

)
· E′ = 4πa2ρ′ + 1

c
(
A−1 · ∇′

)
· [U0 × B′]

Gauss’ Law (
A−1 · ∇′

)
· B′ = 0

Faraday’s Law
(
A−1 · ∇′

)
× E′ = − 1

c
∂B′
∂t′ −

U0
RcL · B

′

Ampere’s Law
(
A−1 · ∇′

)
× B′ = 4π

c
[
a2A · J′ + a2ρ′U0

]
+ 1

c
∂E′
∂t′ +

1
c2

[
U0 ·

(
A−1 · ∇′

)]
(U0 × B′)

− 1
c
[
U0 ·

(
A−1 · ∇′

)]
E′ − 1

c2 U0 × ∂B′
∂t′

Multi-Fluids:
Continuity Equation ∂n

∂t +∇ · (nu) = − 2U0
aR0

n

Momentum Equation ∂u
∂t + (u · ∇)u = q

m

[
E + 1

c (A · u)× B
]
− 1

ρ∇ · P−
U0
aR0

T · u

Energy/Pressure Equation ∂P
∂t +∇ · (uP+Q) + [P · ∇u]s + q

mc [B× (A · P)]s = − 2U0
aR0

P− U0
aR0

[T · P]s

Expanding (ideal-) MHD:
Continuity Equation ∂n

∂t +∇ · (nu) = − 2U0
aR0

n

Momentum Equation ∂u
∂t + (u · ∇)u + 1

ρ∇p + 1
8πρ

[(
A−1 · ∇

)]
B2 − 1

4πρ

[
B ·
(
A−1 · ∇

)]
B = − U0

aR0
T · u

Polytropic Equation ∂p
∂t + u · ∇p + γp∇ · u = −γ 2U0

aR0
p

Magnetic Field Equation ∂B
∂t + (∇ · u)B + (u · ∇)B−

[
B ·
(
A−1 · ∇

)]
(A · u) = − U0

aR0
L · B

where a = a(t) = 1 + U0 t/R0 , and

L =

2 0 0
0 1 0
0 0 1

 , T =

0 0 0
0 1 0
0 0 1

 , A =

1 0 0
0 a 0
0 0 a

 . (57)

Equations in the last section of Table 1 describe the ideal MHD equations in the co-
moving/EB frame. The right-hand side of the equations is no longer equal to zero (compared
with the ideal MHD in the inertial frame), and there is a clear dependence on the expanding
parameters. These modifications are related to the work done in the transverse directions (y−
and z−coordinates) of the box to maintain a constant volume in the new frame. For instance,
the momentum equation clearly shows these non-inertial forces represented through the T
tensor, which projects the velocity in the transverse directions.

7. Discussions and Conclusions

In this paper, we have developed a novel first principles Vlasov-based approach to
describe astrophysical plasma expansion, using the Expanding Box Model (EBM) formalism.
Under appropriate coordinate transformations, we transferred the analysis to a non-inertial
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frame co-moving with the expanding plasma parcel identified with the EBM. This EBM
frame is characterized by a re-normalization of components that maintains a constant
volume of the plasma parcel. Within this description, in the EBM frame, plasma does not
expand, but its properties vary in time as an effect of the expansion. Thus, the expansion
was traduced and simplified from complex spatio-temporal variations in the inertial frame
(fixed to, e.g., the Sun), to purely local temporal variations in the co-moving non-inertial
EBM frame, mainly represented by the bulk speed of the plasma U0 and the a(t) parameter.

This procedure allowed us, for the first time, to rewrite all fundamental plasma physics
equations with explicit dependence on the EBM parameters. In particular, through the
coordinate transformation given by Equations (1)–(3), we derived the Vlasov equation in
the EBM frame, which explicitly considers the non-inertial fictitious forces related to the
expanding parameters. These coordinate transformations are not purely Galilean. In the
transverse directions with respect to the expansion, there is a non-Galilean re-normalization
of the quantities. From these transformations, it is possible to transform all the physical
quantities (i.e., electric and magnetic fields, spatial and temporal derivatives, etc.) into
the co-moving frame through a Galilean-like transformation, in which the variables are
projected into the EB frame adding the non-Galilean/inertial terms. Therefore, the EBM
formalism provides a new framework to study the kinetic and fluid dynamics of expanding
plasma, to be applied to different expanding systems. For instance, the modified Vlasov
equation allows us to study the expansion effects in the evolution of velocity distribution
functions of plasma particles. We can couple it with Maxwell’s equations and resolve kinetic
spectra of plasma wave fluctuations, spontaneous or induced by the kinetic anisotropy of
charged particles, their linear dispersion relations, quasi-linear and nonlinear interactions
with plasma particles, etc.

To explore the physical interpretations of the modified Vlasov equation, in Section 4,
we derived the related moments, i.e., continuity, momentum, and pressure/energy equa-
tions, which provide a fluid description of magnetized expanding plasmas. This description
allowed us to characterize the physical meaning of the new effects introduced by the ex-
pansion. Namely, the EBM modifies the continuity equation written in the co-moving
frame Equation (34) by affecting the conservative form of the equation. The advantage
is that within this framework, there is no need to consider a “source” or a “sink” in the
plasma description. Those effects appear naturally through the non-inertial forces in the
modified Vlasov equation and represent the density decrease as the plasma moves away
from its source (e.g., the Sun). Furthermore, the expanding momentum Equation (36)
explicitly shows the non-inertial (fictitious) forces acting in the transverse directions of
the plasma parcel as expected. Finally, in the EBM referential, the conservative form of
the pressure Equation (38) also changes. It should be noted that even if the heat flux is
neglected (see Equation (55)), the framework provides a way to describe the energetic
losses due to the expansion (i.e., associated with the plasma cooling when it is expanding).
This description allowed us to develop a general version of the pressure equation existing
in the literature [31,33] by explicitly developing it in its tensor form. This new result,
which to our knowledge has not been published before, enables us to study more complex
systems when an isotropic pressure is not sufficient to describe the plasma dynamics. The
present results have also been tested in the limit case when there is no expansion (i.e., for a
zero expanding velocity), and, as expected, we recovered the common equations given by
Equations (39)–(41) not modified by the expanding effects.

In Section 5, we focused on developing an expanding (ideal) MHD description of the
plasma, through the obtained moments and the usual approximations (e.g., neglecting
electron’s inertia, cold electron approximation, neglecting the Hall term, etc.). These results
allow us to test the consistency and agreement between the modified expanding-Vlasov
equation and the results in ideal-MHD, which in the literature were obtained only through
a direct transformation of the inertial MHD equations to the co-moving frame [31,33]. It is
not only these agreements that validate the developed framework, but also the physical
meaning and correct interpretation of the non-inertial/fictitious term, which modifies the
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kinetic equation. This allows us to explicitly describe the expanding effects by modifying
the conservative forms of the continuity, momentum, and energy equations. An accurate
description and interpretation of the Vlasov equation in the co-moving frame are vital and
substantial for a multi-scale agreement.

Our results should facilitate a series of applications and future investigations. Thus,
the expanding moments Equations (34), (36) and (38) can be exploited, mainly through the
pressure equation, to explore the modifications of the double adiabatic invariants given
by the CGL equations [26], which describes the evolution of parallel and perpendicular
pressures when no heat flux is considered. Moreover, aiming to implement the kinetic
effects in the MHD equations, as for a characterization of the Landau fluids [44], the
expansion moments can also be used through, e.g., the heat flux term in Equation (38). The
advantage is that we can reproduce previous results in the EBM context, which enables the
quantification of the expansion effects by comparing them with the non-expanding results.
Nevertheless, in the microscopic regime, we can couple Vlasov equation with Maxwell
equations to develop linear and quasi-linear theory for, e.g., spontaneous and induced
emissions, and explore the effects of expansion at kinetic scales. Moreover, this work can be
complemented if an accelerated Expanding Box is needed for the desired description [32].

The general theoretical formalism developed here can be applied to any astrophysical
expanding plasma, from stellar to solar winds, or AGN jets to Coronal Mass Ejections
(CMEs). As already motivated in the introduction, astrophysical plasmas are not static
systems but are open and in continuous interaction with the environments. Therefore,
different approaches and considerations are needed in order to describe their dynamics.
The underlying ideas of an EBM framework can provide essential support when a kinetic
description of an expanding plasma is needed. In this paper, we aimed to introduce a
stepping stone for future work. Even though here we have described non-relativistic
plasma expansion at large (fluid) and small (kinetic) scales, a general relativity description
can be employed through the coordinates transformations, allowing us to explore further
applications of the developed framework. It thus stands out as one of the coordinate
transformations by which methods of describing plasma physics in a co-moving framework
can be adapted to any astrophysical scenario.
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Appendix A

For transforming all the physical quantities related to the EBM, we align the x̂ axis with
the spherical–radial coordinate. In this frame, the radial expanding velocity U0 = U0r̂ read as

U0 = U0r̂ = U0

(
x′ + R

r
,

ay′

r
,

az′

r

)
.

The spherical–radial coordinate r can be written in terms of the new coordinates

r =
√

x2 + y2 + z2 =
√
(x′ + R)2 + a2y′2 + a2z′2

≈ R

(
1 +

x′

R
+

1
2

(
x′2

R2 +
y′2

R2
0
+

z′2

R2
0

))
,

for small parameters x′, y′, z′ � R. Therefore, the expanding velocity in first order reads as

U0 = U0

(
x̂ +

y′

R0
ŷ +

z′

R0
ẑ
)

.

Thus, temporal and spatial derivatives are

∂

∂t
=

∂

∂t′
−U0 · ∇

=
∂

∂t′
−U0

(
∂

∂x′
+

y′

R
∂

∂y′
+

z′

R
∂

∂z′

)
=

∂

∂t′
−D · ∇′ ,

∇ =

(
∂

∂x′
,

1
a

∂

∂y′
,

1
a

∂

∂z′

)
= A−1 · ∇′ ,

where

D = U0

(
1,

y′

R
,

z′

R

)
, A(t) =

1 0 0
0 a 0
0 0 a

 .

On the other hand, the velocity in the co-moving frame in terms of the inertial variables

v′x =
dx′

dt′
=

d(x− R)
dt

= vx −U0 ,

v′y =
dy′

dt′
=

d
dt

(
1
a

y
)
=

1
a

vy −
y′

a
da
dt

,

v′z =
dz′

dt′
=

d
dt

(
1
a

z
)
=

1
a

vz −
z′

a
da
dt

.

Thus, velocity written in S′

v =

(
v′x + U0, av′y +

da
dt

y′, av′z +
da
dt

z′
)

=
(

v′x, av′y, aV′z
)
+

U0

R0

(
R0, y′, z′

)
= A · v′ + U0 , (A1)
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From that result, we can also write the velocity gradient as

∇v =

(
∂

∂vx
,

∂

∂vy
,

∂

∂vz

)
=

(
∂v′x
∂vx

∂

∂v′x
,

∂v′y
∂vy

∂

∂v′y
,

∂v′z
∂vz

∂

∂v′z

)

=

(
∂

∂v′x
,

1
a

∂

∂v′y
,

1
a

∂

∂v′z

)
= A−1 · ∇v′ ,

Now we can write Vlasov’s equation in the co-moving frame. On one side, the first
term in Equation (12)

∂ f
∂t

=
∂ f ′

∂t′
−
(
D · ∇′

)
f ′ , (A2)

where f ′ = f (r′, v′, t′). On the other hand, the second term of Equation (12)

v · ∂ f
∂r

=
[
A · v′ + U0

]
·
[(

A−1 · ∇′
)

f ′
]

= v′ · ∇′ f ′ + U0 ·
[(

A−1 · ∇′
)

f ′
]

(A3)

Adding the first and second term (Equations (A2) and (A3)) from Vlasov’s equation,
the expressions remains the same but with the prime variables

∂ f
∂t

+ v · ∂ f
∂r

=
∂ f ′

∂t′
+ v′ · ∂ f ′

∂r′
,

due to

U0 ·
[(

A−1 · ∇′
)

f ′
]
−
(
D · ∇′

)
f ′ = 0 .

But it was also expected due to the first two terms in Vlasov equation are a total time
derivative d f

dt . As we are working in a non-relativistic transformation dt = dt′; therefore,
d f
dt = d f ′

dt′ . Finally, we only need to write the acceleration a. In the inertial system, this was equal
to the Lorentz Force, but as we are working in a non-inertial system, this term will be different

a =
dv
dt

=
q
m

(
E +

1
c

v× B
)

.

With the results from Equation (A1), we can calculate the acceleration in S′

dv
dt

=
d

dt′
(
A · v′ + U0

)
= A · dv′

dt′
+

U0

R0
T · v′ , (A4)

where T is a diagonal matrix that projects the vector in the perpendicular directions with
respect to the expansion

T =

0 0 0
0 1 0
0 0 1

 ,

and the first term of Equation (A4) is the Lorentz force measured in the co-moving frame
using field transformations Equation (13)

m
dv′

dt′
= qE′ +

q
c
[
A · v′

]
× B′ . (A5)
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Therefore, the acceleration in the co-moving frame is given by

a′ =
qµ

mµ
A ·
(

E′ +
1
c
[
A · v′

]
× B′

)
− U0

R0
T · v′ . (A6)

Appendix B

In this appendix, we will develop in detail the momentum and pressure equation in
the context of the EBM. For the first case, we integrate Vlasov’s Equation (16) by

∫
vdv. The

first term reads as

I1 =
∫

v
∂ f
∂t

dv =
∂

∂t

∫
v f dv =

∂

∂t
(nu) .

The second term

I2 =

[∫
v(v · ∇) f dv

]
i
=
∫

vivj
∂ f
∂xj

dv =
∂

∂xj

∫
vivj f dv. (A7)

For solving this integral, we decompose the velocity between its mean u and the
fluctuations w

v = u + w .

Therefore,

vivj = (ui + wi)
(
uj + wj

)
= uiuj + uiwj + wiuj + wiwj .

Thus, in Equation (A7),

I2 =
∂

∂xj

∫ (
uiuj + uiwj + wiuj + wiwj

)
f dv

=
∂

∂xj

∫ (
uiuj + wiwj

)
f dv =

∂

∂xj

(
uiujn

)
+

1
m

∂Pij

∂xj
.

Note that P is symmetric. Hence,

I2 =
∂

∂xj

(
uiujn

)
+

1
m

∂Pji

∂xj
.

In vector notation,

I2 = ∇ · (uun) +
1
m
∇ · P ,

where the inner product between a vector V and a tensor C is defined as

[V ·C]i = VjCji ,

[∇ ·C]i =
∂Cji

∂xj
.

The electric field integral

I3 =
∫

Ei
∂ f
∂vi

vjv = Ei

∫
∂ f
∂vi

vjdv

= −Ei

∫
f δijv = −n[E]i .
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On the other hand, for the magnetic field,

I4 =
∫
{[A · v]× B} · [∇v f ]vv ,

is in index notation

I4 =
∫

AiiviBjεijk
∂ f
∂vk

vlv

= −AiiBjεijk

∫
f

∂

∂vk
(vivl)v

= −nAiiBjεijk(δikul + uiδlk)

= −nAiiBjεijkui .

In vector notation,

I4 = −n[(A · u)× B] .

Finally, the integral for this case is

I5 =
U0

R0

∫
(T · v) ·

[(
A−1 · ∇v

)
f
]
vdv

=
U0

aR0

∫
Tiivi

∂ f
∂vi

vjdv

= − U0

aR0

∫ (
Tiivj + Tiivi

)
f dv

= −nU0

aR0
[(2I+T) · u]i ,

where I is identity. Using the continuity Equation (34), we obtained the expanding-
momentum equation

∂u
∂t

+ (u · ∇)u =
q
m

[
E +

1
c
(A · u)× B

]
− 1

ρ
∇ · P− U0

aR0
T · u . (A8)

For the pressure/energy equation, we integrate Vlasov’s equation by
∫

vvdv. Again,
the first two terms of this equation are the same as in the non-expanding case. For a detailed
derivation, see Hunana et al. [43] or Webb et al. [45] (we will follow the same definitions).
The first term from the Vlasov’s equation

I1 =
∫

vv
∂ f
∂t

dv =
∂

∂t

(
uun +

1
m
P
)

. (A9)

The second term

I2 =
∫

vv(v · ∇) f dv.

Solving in index notation

I2 =
∫

vivjvk
∂ f
∂xk

dv =
∂

∂xk

∫
vivjvk f dv .
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The non-zero terms from the integral

I2 =
∂

∂xk

∫ (
uiujuk + uiwjwk + wiujwk + wiwjuk + wiwjwk

)
f dv

=
∂

∂xk

[
nuiujuk +

1
m

uiPjk +
1
m

ujPik +
1
m

ukPij +
1
m
Qijk

]
. (A10)

Note that the first and the last two terms from Equation (A10) can be identified as

∂

∂xk

[
nuiujuk +

1
m

ukPij +
1
m
Qijk

]
= ∇ ·

[
nuuu +

1
m

uP+
1
m
Q
]

ij
. (A11)

The remaining terms will be treated later. On the other hand, the electric field integral is

I3 =
∫

vv[E · ∇v f ]dv .

In index notation,

I3 =
∫

vivjEk
∂ f
∂vk

dv = −Ek

∫ d
dvk

(
vivj

)
f dv

= −nEiiuj − nEjjui .

In tensor notation,

I3 = −n[uE]s , (A12)

where the supra-index s represents a symmetric operator that acts on a matrix C as Cs =
C+CT or Cs

ij = Cij + Cji. For the magnetic field integral,

I4 =
∫

vv[(A · v)× B] · ∇v f dv .

In index notation,

I4 =
∫

vivjAkkvkBlεklm
∂ f

∂vm
dv

= −AkkBlεklm

∫
∂

∂vm

(
vivjvk

)
f dv

= −AkkBlεkli

(
nujuk +

1
m
Pjk

)
−AkkBlεklj

(
nuiuk +

1
m
Pik

)
.

In tensor notation,

I4 =− n[((A · u)× B)u]s +
1
m
[B× (A · P)]s , (A13)

where the cross product between a vector and a tensor is defined as

[B× P]ik = εijl BjPlk .
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Finally, the expanding integral in this case read as

I5 =
U0

R0

∫ (
T · v′

)
·
[(

A−1 · ∇v′
)

f
]
vvdv

=
U0

aR0

∫
Tiivi

∂ f
∂vi

vjvkdv

= − U0

aR0

(
2
∫

vjvk f dv + Tjj

∫
vjvk f dv + Tkk

∫
vkvj f dv

)
.

For solving those integrals, we only need to decompose the velocity in terms of the
mean velocity and its fluctuations v = u + w, obtaining

I5 = −2U0

aR0

(
uun +

1
m
P
)
− U0

aR0

[
T ·
(

uun +
1
m
P
)]s

.

We can reduce the equations if we use the continuity and momentum equation. Note
that from the first terms of Equations (A9) and (A11)

∂

∂t
[uun]ij +∇ · [uuun]ij =

[(
∂ui
∂t

+ uk
∂ui
∂xk

)
ujn
]s

+ uiuj

[
∂n
∂t

+
∂uk
∂xk

n + uk
∂n
∂xk

]
.

The first parenthesis can be written in terms of the momentum equation, and the
second in terms of the continuity equation

∂

∂t
[uun] +∇ · [uuun]

=
qn
m

[{
E +

1
c
(A · u)× B

}
u
]s
− 1

m
[u∇ · P]s

− U0

aR0
[uT · u]s − 2nU0

aR0
uu . (A14)

Note that the first term from this equation is the same as in Equation (A12) and the first
one from Equation (A13), but with an opposite sign. Finally, recall that from Equation (A10),
we still need to work with second and third terms. From Equation (A14),

∂

∂xk

(
uiPjk + ujPik

)
− [u∇ · P]sij = Pik

∂uj

∂xk
+ Pjk

∂ui
∂xk

= [P · ∇u]sij .

Finally, the expanding pressure equation reads as

∂P
∂t

+∇ · (uP+Q) + [P · ∇u]s +
q

mc
[B× (A · P)]s = −2U0

aR0
P− U0

aR0
[T · P]s .
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