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Abstract: The equations of motion of an isospin-carrying particle in a Yang–Mills and gravitational
field were first proposed in 1968 by Kerner, who considered geodesics in a Kaluza–Klein-type
framework. Two years later, the flat space Kerner equations were completed by also considering the
motion of the isospin by Wong, who used a field-theoretical approach. Their groundbreaking work
was then followed by a long series of rediscoveries whose history is reviewed. The concept of isospin
charge and the physical meaning of its motion are discussed. Conserved quantities are studied for
Wu–Yang monopoles and diatomic molecules by using van Holten’s algorithm.
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1. Introduction: A Short History of the Isospin

Certain ideas are put forward, then forgotten, and then reproposed again by various
authors who ignore previous, and indeed each other’s work. A typical example is that of
an isospin-carrying particle moving in a Yang–Mills field, first studied by Kerner [1] Figure 1:

Figure 1. Kerner’s paper in which the equation for particle in a Non-Abelian gauge field was
first proposed.

Two years after Kerner’s pioneering paper, Wong [2], who ignored all of Kerner’s work
and used a different field-theoretical framework, completed the Kerner Equation (17), below,
which describes motion in ordinary space–time, with one for the dynamics of the isospin,
Equation (18).

Their work was subsequently continued by many other researchers [3–15]. Jackiw and
Manton [16], searching for a physical interpretation of some of the quantities found in the
study of symmetries of gauge fields (re)covered the Kerner Equation (17) from a partial
variational principle while assuming the isospin Equation (18).

These studies were parallelled by physical applications that include motion in the field
of a non-Abelian monopole [17–19], which requires an extension to the Yang–Mills–Higgs
systems [20–23].

Yet another application is to the non-Abelian Aharonov experiment proposed by Wu
and Yang [24,25], elaborated in [26]1, which will be further studied in [28]. The effect is
related to topological defects [29–31] and, more recently, to artificial gauge fields that can
be produced in a laboratory [32–39].

As a physical illustration, we derived conserved quantities for Wu–Yang monopoles [40]
and diatomic molecules [41,42].
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This review celebrates the 80th birthday of Richard Kerner by recounting the fasci-
nating story of the isospin-carrying particles initiated by him when his given name was
still “Ryszard”.

2. Gauge Theory and the Kaluza–Klein Framework
2.1. Yang–Mills Theory

The concept of isotopic spin (in short: isospin) was introduced by Heisenberg in
1932 [43], who argued that a proton and a neutron should be viewed as two different states
of the same particle, related by an “internal” SU(2) rotation2.

Let us recall that electrodynamics is an Abelian gauge theory: it is described by a real
1-form A = Aµdxµ called the vector potential, which is, however, determined only up to a
gauge transformation, such as

Aµ → Aµ − ig−1∂µg , (1)

where g(xµ) is a U(1)-valued function in space–time.
Twenty years later, Yang and Mills (YM) generalized Maxwell’s theory to non-Abelian

fields, which take their values in the Lie algebra G = su(2) and can thus be acted upon by
G = SU(2)-valued gauge transformations [27,45]. In detail, YM fields are described by the
Yang–Mills potential, represented either by a 3-vector A = (Aa

µ), a = 1, 2, 3 or, alternatively,
by anti-hermitian su(2) matrices, Aµ = Aa

µ
1
2i σa, where the sigmas are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

which satisfy [σa, σb] = 2iϵabcσc. In what follows, we shall use mainly the matrix-formalism.
Space–time indices will be denoted by Greek letters, typically µ, ν, . . . etc. Latin characters
a, b . . . are used for the internal isospin indices. The Lie bracket in su(2) is(
[A, B]

)a
= ϵa

bc AbBc. The field strength of a Yang–Mills field is

F = 1
2 Fµνdxµ ∧ dxν where Fµν = ∂µ Aν − ∂ν Aµ +

[
Aµ, Aµ] . (2)

The Lie algebra carries a metric given by the trace form gab AaBb = −2tr(AB) that we
also denote by A · B. For su(2), gab = δab.

The fundamental property of the Yang–Mills theory is its behavior under an SU(2)-
valued gauge transformation [27], such as

Aµ → g−1 Aµ g + g−1∂µg , Fµν → g−1Fµν g , (3)

where g(xµ) ∈ SU(2). A particle is coupled to the electromagnetic field Aµ by minimal
coupling, which amounts to replacing ordinary derivatives with gauge-covariant deriva-
tives [45],

∂µ → ∂µ − i Aµ , (4)

where the electric charge is scaled to one. In [1], Kerner argued that in a YM gauge field,
this prescription should be replaced by an expression that (i) describes the properties of
proton/neutron-type “particles with internal YM structure”, and (ii) couples such a particle
to the non-Abelian gauge potential: Rule (4) should be generalized to

∂µ → ∂µ + A µ (5)

acting on fields in the fundamental representation. The non-Abelian coupling constant is
scaled to unity.

What are the dynamics of such an isospin-carrying particle (also called a particle with
an internal YM structure)? Kerner answers the question by considering a non-Abelian
generalization of the Kaluza–Klein (KK) theory [46,47].
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2.2. Abelian Kaluza–Klein Theory

Electromagnetism and gravitation were unified into a geometrical framework (now
called fiber bundle theory) by Kaluza [46] and Klein [47] about 100 years ago3.

It is assumed that the world has four spatial dimensions. However, one of them,
which we denote by x5, curled up to form a circle so small as to be unobservable. The
basic assumption is that the correct vacuum is M4 × S1

R, the product of four-dimensional
Minkowski space with the coordinates xµ, µ = 0, 1, 2, 3, and with an internal circle of
radius R.

Then, general relativity in five dimensions contains a local U(1) gauge symmetry
arising from the isometry of the hidden fifth dimension. The extra components of the
metric tensor constitute the gauge fields and could be identified with the electromagnetic
vector potential.

The theory is invariant under general coordinate transformations that are independent
of x5. In addition to the ordinary four-dimensional coordinate transformations, we have a
U(1) local gauge transformation

x5 → x5 + Λ(xµ) (6)

under which the gµ5 component transforms to a U(1) gauge field,

gµ5(x) → gµ5(x) + ∂µΛ. (7)

We write the metric with indices A = µ, 5 as

ds2 = gABdxAdxB where gAB =

(
gµν + Aµ Aν Aµ

Aν 1

)
, (8)

i.e.,
ds2 = gµνdxµdxν + (dx5 + Aµdxµ)2 . (9)

Expressing the five-dimensional scalar curvature R5 in four-dimensional terms,
R5 = R4 +

1
4 FµνFµν where R4 is the f our-dimensional curvature, the effective low-energy

theory is described by the four-dimensional action

S = − 1
16πG

∫
d4x

√
−det (gµν)

(
R4 +

1
4 FµνFµν

)
, (10)

where G = GK/2πR is Newton’s constant. The internal radius R is determined by the
electric charge. The motion is given by a five-dimensional geodesic,

d2xA

dτ2 + ΓA
BC

dxB

dτ

dxC

dτ
= 0 . (11)

The KK space–time possesses a Killing vector, namely

KA ∂

∂xA =
∂

∂x5 , (12)

which implies that

q = KA
dxA

dτ
=

dx5

dτ
+ Aµ

dxµ

dτ
(13)

is a constant of the motion identified with the conserved electric charge. The remaining
equations of motion then take the form of

d2xµ

dτ2 + Γµ
αβ

dxα

dτ

dxβ

dτ
= q

(
gµαFαν

)dxν

dτ
, (14)
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where Γµ
αβ is the Levi–Civita connection constructed from the four-dimensional metric gµν.

On the right, we recognize the Lorentz force of electromagnetism.

2.3. Non-Abelian Generalization

Kerner, in his groundbreaking paper [1], proposed to derive the dynamics of an isospin-
carrying particle in a Yang–Mills (YM) field by generalizing the Abelian KK framework
to non-Abelian gauges. His framework was further generalized [4] and applied later to
particle motion in a Yang–Mills field by projecting the geodesic motion to 4D space [15].
His idea (eqn. #(12) of [1]) was to replace the internal circle U(1) in the fifth dimension
with the non-Abelian gauge group, SU(2), and the gauge potential in (8) by its non-
Abelian counterpart.

The new key ingredient w.r. t. electromagnetism is the isospin, represented by a
su(2) matrix,

Q = Qa 1
2i

σa ∈ su(2) , (15)

which couples the particle to the YM field introduced in Section 2.1, Aa
µ and Fa

αβ, respec-
tively. The covariant derivative is

DµQ = ∂µQ + [Aµ, Q] . (16)

The su(2)-valued YM potential is implemented in the isospin Q ∈ su(2) by commutation.
In a judicious coordinate system chosen by Kerner [1], the equations of motion for a

test particle in the combined gravitational and gauge fields simplify to his eqn. # (34),

d2xµ

ds2 + Γµ
αβ

dxα

ds
dxβ

ds
=
(

gabQb) (gµαFa
αβ

)dxβ

ds
. (17)

Generalizing the gauge group from the U(1) of electromagnetism to the Yang–Mills
gauge group SU(2) is not without consequence though: unlike the electric charge in the
electromagnetic theory, which is a conserved scalar, the isospin has its own dynamics
indeed—it is not a constant but a vector that (as Kerner puts it) “rotates, depending on the
external field”.

The equations for the motion of the isospin,

Q̇ = [Q, Aν ẋν] , (18)

where the “dot” is d/ds, were spelled out two years later by Wong [2]. In geometric
language, the isospin is parallel-transported along the space–time trajectory, x(t) = (xµ).
Written in terms of the covariant derivative (16),

DsQ ≡ Q̇ + [Aν ẋν, Q] = 0 (19)

this equation states that the isospin is covariantly (but not ordinarily) conserved. Equation (18)
is consistent with Kerner’s words, though, and also with what Yang and Mills state in [27],
where they mention “isospin rotation”.

One can wonder why Kerner did not spell out the equations of motion for the isospin
explicitly. A real answer can be given only by him; however, one can try to guess what he
might have had in his mind. One good reason might well have been that considering the
isospin as a non-constant, non-Abelian analog of the constant electric charge could have
appeared too radical and even shocking, and be therefore discarded4.
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Other subtle reasons related to the gauge invariance and the consequent problems
of physical interpretation might also exist [49–53]. Another one could come from the
experimental side.

Wong’s approach [2] is radically different from that of Kerner: Instead of generalizing
the classical dynamics of a charged particle moving in a curved space, he “dequantizes”
the Dirac equation. Balachandran et al. [5,6] studied particles with an internal struc-
ture that were then recast in a symplectic framework by Sternberg [7–9], Weinstein [10],
and Montgomery [14]. Duval [11–13] extended Souriau’s approach [54] to particles with
spin [12]—hitting yet another shocking idea: physicists, referring to Landau–Lifshitz, were
firmly convinced that classical spin just does not exist and rejected Souriau’s ideas [54] that
were rooted in the representation theory.

Gauge fields with spontaneous symmetry breaking admit finite-energy static solutions
with magnetic charges referred to as non-Abelian monopoles [19]. For an isospin-carrying
particle in the field of a self-dual monopole [20–22], Fehér found, moreover, that outside the
monopole core, where the SU(2) symmetry is spontaneously broken to U(1), the dynamics
of a particle with isospin reduces to that of an electrically charged particle in the field
of a Dirac monopole, combined with specific scalar potentials, familiar from the Abelian
theory [55,56].

2.4. Fiber Bundles and a Symplectic Framework

Trautman [3] and Cho [4] reformulated the non-Abelian KK theory in terms of fiber
bundles [57,58]: For the gauge group G, the field is described by a Lie algebra-valued
connection form an α on a principal bundle P with the structure group G over space–time,
M. The YM potential A in Section 2 is the pull-back to M of the connection-1 formed by the
section M → P of the bundle. A gauge transformation amounts to changing the section
and results in (3). Choosing a section yields a local trivialization P = M × G, and the YM
connection form is written as

α = Aµdxµ + g−1dg . (20)

Recall that the Maurer–Cartan form g−1dg takes its values in the Lie algebra G of G.
Using fiber bundles for gauge theory was advocated by T. T. Wu and C.N. Yang [24,25,59]
in the monopole context5; see also [60,61].

A comprehensive KK unification of non-Abelian gauge fields with gravity in principal
fiber bundle terms was put forward by Cho in [4], who derived a unified Einstein–Hilbert
action in (4+n)-dimensions, both in the basis used by Kerner and also in a horizontal-lift
basis, which diagonalizes the KK metric and generalizes (10).

Duval et al. [12,13] proposed an alternative, symplectic version, “à la Souriau” [54],
reminiscent of but different from the Kaluza–Klein approach. Both theories use a higher-
dimensional fiber bundle extension of the conventional space–time structure. Below, we
summarize the main features of the Souriau framework:

1. The system is described by a fiber bundle V over space–time M called an evolution
space—Souriau’s “espace d’évolution”.

2. The dynamics are discussed in terms of differential forms. The main tool is a 1-form
ω̃ on V , whose exterior derivative Ω̃ = dω̃ is, in Souriau’s language, “presymplectic”,
i.e., a closed 2-form that has a constant rank, dim Ker Ω̃ = const. Then, the motions
are the projections onto M of the integral submanifolds of the characteristic foliation
of Ker Ω̃. Factoring out Ker Ω̃ yields U , the space of motions (an abstract substitute for
phase space—Souriau’s “espace des mouvements” [54]). The presymplectic form Ω̃
projects onto U as a symplectic form, i.e., one which is closed and has no kernel, as
illustrated in Figure 2.

3. Group S is a symmetry for a system if it acts on the space of motions U by preserving
the symplectic structure.

4. A system is elementary with respect to a symmetry group S if the action of the latter
on U is transitive. Souriau’s orbit construction [54] applies to an arbitrary symmetry
group: The space of motions of an elementary system is, conversely, a (co)adjoint
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orbit O =
{

g−1Q0g
∣∣ g ∈ S

}
of a basepoint Q0 chosen in the Lie algebra ∈ S of the

symmetry group. O is endowed with its canonical symplectic form:

Ω̃ = dω̃, ω̃ = Q0 · (g−1dg) . (21)

In particular, applying the general construction to gauge group G endows the orbit in
lieu of the Lie algebra G with its canonical symplectic form.

5. The symmetry group S w.r.t., where the system is elementary, can be viewed as
evolution space, V = S [62]; S is a principal fiber bundle over its (co)adjoint orbit O.

Figure 2. Souriau’s framework: the worldline in M is the projection of a characteristic sheet of the
2-form Ω̃ = dω̃ on the evolution space, V . Factoring out the characteristic foliation tangent to ker ω̃,
V projects to the space of motions, U , to which the 2-form dω̃ projects as a symplectic form dω̃ and
corresponds to the worldlines in M.

Now, we spell out a simplified form of the Souriau–Duval framework in flat space.
For further details, the reader is advised to consult [12,13].

• A massive free relativistic particle. The Poincaré group (P) is a fiber bundle over
Minkowski spacetime M with the Lorentz group as structure group [12,62]. We represent

the Poincaré group by 5 × 5 matrices
(

L x
0 1

)
, where the 4 × 4 matrix L belongs to the

Lorentz subgroup and x = (xµ) ∈ M. Then,

Poincaré/Lorentz = M = Minkowski . (22)

Moreover, we chose the basepoint Qm in the Poincaré Lie algebra,

Qm =

(
0 xm
0 0

)
with xm = m

(
0

.

.

.
1

)
∈ M (23)

where m = const, interpreted as rest mass. Writing the Maurer–Cartan form as

g−1dg =

(
L−1dL L−1dx

0 0

)
(24)

we obtain, on the Poincaré orbit Om of Qm,

ω̃m = mIµdxµ ⇒ Ω̃m = mdIµ ∧ dxµ (25)
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where Iµ is a component of the Lorenz matrix, which is future pointing and belongs to the
unit tangent bundle of M [12,13,62]. Then, the characteristic foliation projects in a suitable
parametrisation to M onto a curve, which is a solution of

ẋµ = Iµ, İµ = 0 . (26)

Equation (26) describes the geodesic motion in Minkowski space, i.e., the motion of a
free relativistic particle with no spin6.

• The free theory based on the Poincaré group P is readily extended to a (still free)
relativistic particle with an internal structure, thus enlarging the evolution space and 1-form,
P and ω̃m, respectively, to

P = P × G and ω = ω̃m + Q0 · g−1dg , (27)

where g takes its values in the gauge group G and the basepoint is Q0 ∈ G (the Poincaré
part being understood).

The kernel of Ω̃ in (21) implies the free Equation (26), supplemented by that for the
isospin (19), whose properties will be further studied in Section 3. In geometric language,
the isospin belongs to the associated bundle P×G O0, where O0 is the (co)adjoint orbit of
Q0 in G. In local coordinates, P×G O0 ≃ M ×O0 [13]. The space of motions is Om ×O0
endowed with the projection of Ω̃ in (21).

For G = U(1), the free-charged particle is recovered, with Q identified as the constant
electric charge.

• Minimal coupling to a Yang–Mills field amounts, in bundle language, to general-
ize (27) on P by

ω = ω̃m + Q0 · α , (28)

with Q0 ∈ G, which, in view of (20), is indeed the geometric form of (5). In local coordinates,

ω =
(
∂µ + Q0 · Aµ

)
dxµ + Q0 · g−1dg . (29)

The 2-form Ω = dω is, by the Cartan structure equations [57,58], p. 78,

Ω = Ω0 + Q0 · dα = Ω0 + Q0 ·
(

Dα − [α, α]
)

, (30)

where the last term also involves, in addition to the Lie bracket, the wedge product of the
differential forms. Its kernel projects to the Kerner–Wong Equations (17) and (18) [13].

3. Physical Meaning of Isospin Dynamics

Limiting our investigations to flat Minkowski space, the Kerner Equation (17) simplify
to

ẍµ = Qa Fa
µν ẋν , (31)

supplemented by the isospin Equation (18)7.
To what extent is the isospin vector, Q, an analog of the constant electric charge? We

argue that Q = const would be inconsistent with gauge invariance: if we had Q̇ = 0, the
rhs of (18) would change under a gauge transformation as

0 = [Q, Aµ ẋµ] → [Q, (g−1 Aµg)ẋµ] + [Q, (g−1∂µg)ẋµ] ,

and there is no reason for the rhs to vanish. The situation improves, though, if the gauge
transformation is non-trivially implemented on the isospin8

Q → g−1Q g . (32)
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Then, the rhs of (18) would transform as

[Q, Aµ ẋµ] → g−1
{
[Q, Aµ ẋµ] +

(
Q∂µg g−1 − ∂µg g−1Q

)
ẋµ
}

g .

The first term in the curly bracket would be perfect, but the second one would vanish
only for g = const. However, the terms coming from d(g−1Q g)/ds cancel the unwanted
terms, leaving us with the desired covariant transformation law cf. (32),

DsQ → g−1DsQ g . (33)

Further insight into isospin dynamics can be gained by assuming, for simplicity, that
the curvature of the connection form (in physical terms, the Yang–Mills field) is zero,
F = Dα = 0, which is a gauge-independent statement by (3), and the space–time motion is
free. Do we also have Q̇ = 0 ? The answer is yes and no. Let us explain. In topologically
trivial situations9, F = Dα = 0 implies that one can find a gauge where Aµ = 0. Then,
Q̇ = 0 follows obviously from the isospin Equation (18). This is a gauge-dependent statement,
though: We are allowed to apply a gauge transformation by an arbitrary G = SU(2)-valued
function g(xµ), which changes Aµ = 0 to a pure gauge Aµ = g−1∂µg. However, it also rotates
the isospin (32). Further, d

(
g−1Q g

)
/ds ̸= 0 in general; the gauge-covariant statement is that

the isospin is covariantly conserved (19).
What is then the physical meaning of the isospin vector? First, we note that

|Q|2 = QaQa (34)

is gauge invariant, and deriving it implies, using (33), that the length |Q| is conserved,

d|Q|
ds

= 0 ⇒ |Q| = const . (35)

The isospin is thus constrained to lie on an adjoint orbit of the gauge group G in its Lie

algebra G, and in our case, to a sphere, Q ∈ O =
{

g−1Q0g
∣∣∣ g ∈ SU(2)

}
≈ S2 . This fact is

behind the Souriau-type construction of isospin-extended models [12,13,63].
Which components of Q have a gauge invariant physical meaning? This question

leads to the so-called “color problem” [65–67]. The point is the subtle difference between
gauge transformations and internal symmetries [52,53].

In physical terms, can we implement an element of the gauge group on the physical
fields? And if we can, will it be symmetry in the usual sense [68]? In bundle language, a
gauge transformation acts on the fibers from the right [57,58], while symmetry should act
from the left [52,53]. Can we transfer the right action to a left action? In geometric terms,
“implementable” means that the G = SU(2) bundle P should be reducible, and “symmetry”
requires that the connection form α in (20), which represents the YM potential, should also
be reducible to the reduced bundle.

When the underlying topology is non-trivial (as non-Abelian monopoles [19]), there
can be an obstruction, such as "global color can not be defined”, as is mentioned in refs. [65–67].
Another physical instance is provided by the non-Abelian Aharonov–Bohm effect [24], for
which there is no obstruction but an ambiguity of how it should be implemented [28].

4. Conservation Laws with Isospin
4.1. Van Holten’s Covariant Framework

The Hamiltonian of a point particle of unit mass carrying isospin Q⃗ = (Qa) that moves
in a static YM field is

H =
1
2

(
p⃗ − A⃗aQa

)2
, (36)
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where we again scaled the coupling constant equal to one. Defining the covariant Poisson
bracket as [69],

{
f , g
}
= Dj f

∂g
∂πj

− ∂ f
∂πj

Djg + QaFa
jk

∂ f
∂πj

∂g
∂πk

− f abc ∂ f
∂Qa

∂g
∂Qb Qc, (37)

where the f abc are the structure constants of the Lie algebra, and the covariant phase-space
derivative is

Di f = ∂i f − f abcQa Ab
i

∂ f
∂Qc . (38)

The nonzero Poisson brackets are{
xi, pj

}
= δij,

{
Qa, Qb

}
= − f abcQc . (39)

Then, the Hamilton equations with π⃗ = ṙ,

ẋi =
{

xi, H
}

, π̇i =
{

πi, H
}

, Q̇a =
{

Qa, H
}

(40)

allow us to recover the flat-space Kerner–Wong equations,

ẍi = QaFa
ij ẋ

j = Qaεijk ẋjBk
a , (41a)

Q̇a = f abc ẋi Ai
bQc , (41b)

equivalent to (31) and (18).
Following van Holten [69–72], constants of the motion can be sought by expanding

into the powers of the covariant momentum,

q = C(r) + Ci(r)πi +
1
2!

Cij(r)πiπj + . . . (42)

Skipping the Abelian case, we move directly to the non-Abelian one. Requiring q
to Poisson-commute with the Hamiltonian thus yields a series of constraints, eqn. # (70)
in [69].

DiC = QaFa
ijCj ,

DiCk + DjCi = Qa(Fa
ikCkj + Fa

jkCki
)

,

DiCjk + DjCki + DkCij = Qa(Fa
ilCl jk + Fa

jlClki + Fa
klClij

)
,

...
...

(43)

The expansion (43) can be truncated at a finite order when the covariant Killing
equation is satisfied at some order n. When we have a Killing tensor, D(i1 Ci2 ...in) = 0 , then
we can set

Ci1 ...ip = 0 (44)

for all p ≥ n and find a constant of the motion of the polynomial form [69]. Referring to
the literature for details [69–72], we mention that in the Abelian theory, Q⃗ is just a constant
identified with an electric charge.

q =
p−1

∑
k=0

1
k!

Ci1 ...ik πi1 . . . πik (45)

The van Holten algorithm can be generalized by adding a static scalar potential, which
may also depend on the isospin. The Hamiltonian (36) then becomes

H =
1
2

π2
i + V

(
xi, Qa

)
(46)
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with the equations of motion

ẍi = QaFa
ij ẋ

j − DiV , (47a)

Q̇a = f abc ẋi Ai
bQc + f abcQb ∂V

∂Qc . (47b)

A comparison with (41) then shows that (47a) picks up a covariant force term. Note
also that when V does depend on Q⃗, the isospin is no longer parallel transported.

Generalizing (42) to isospin-dependent coefficients,

q(r, Q⃗) = C(r, Q⃗) + Ci(r, Q⃗)πi +
1
2!

Cij(r, Q⃗)πiπj + . . . (48)

the constraints (43) are also generalised [70]:

CiDiV + f abcQa ∂C
∂Qb

∂V
∂Qc = 0 ,

DiC = QaFa
ij Cj + CijDjV + f abcQa ∂Ci

∂Qb
∂V
∂Qc ,

DiCj + DjCi = Qa(Fa
ikCkj + Fa

jkCki) + CijkDkV + f abcQa ∂Cij

∂Qb
∂V
∂Qc ,

...
...

(49)

New gradient-in-V terms thus arise, even when the potential does not depend on
the isospin V = V(r). These terms play a role for self-dual Wu–Yang monopoles [40] and
diatoms [41], as seen in Sections 4.2 and 4.3, respectively.

1. When Ci(r) is a Killing vector, then we have p = 2, and the expansion can be reduced
to a linear expression,

q = C(r) + Ci(r)πi , (50)

allowing us to recover the conserved and angular momentums [69]. Focusing our
attention on the latter, we chose a unit vector n⃗. Then,

C⃗ = n⃗ × r (51)

is a Killing vector for the rotations around n⃗ and thus generates conserved angular
momentum J⃗. Furthermore, van Holten’s recipe can also be applied to a Dirac
monopole of charge q = eg, recovering the angular momentum vector

J⃗ = r × π⃗ − q r̂ , (52)

which includes the celebrated radial “spin from isospin” term [70,73].
2. Similarly, choosing unit vector n⃗ again,

Cij = 2δij n⃗ · r − (nixj + njxi) (53)

is a Killing tensor of order 2, which generates the well-known Runge–Lenz vector of
planetary motion, [69–72]

K⃗ = π⃗ × J⃗ + α r̂ . (54)

More generally, the framework also applies to the so-called “MIC-Zwanziger” sys-
tem [55,56], which combines a Dirac monopole of charge q with an arbitrary r−1

Newtonian and a fine-tuned inverse-square potential,

V(r) =
q2

2r2 +
α

r
. (55)
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The combined system generalizes the well-known dynamical O(4)/O(3,1) symmetry
of planetary motion spanned by the angular momentum and the Runge–Lenz vector,
J⃗ in (52) and K⃗, respectively [55,56]. The relations

J⃗ · r̂ = −q and
[
K⃗ + α

q J⃗
]
· r = J⃗2 − q2 (56)

then imply that the motion is a conic section, as depicted in Figure 3.

Figure 3. The conservation of the monopole angular momentum J⃗ implies that a particle moves on a
cone, whose axis is J⃗. The O(4)/O(3, 1) dynamical symmetry generated by the angular momentum
and the Runge–Lenz vector K⃗ implies, in turn, that the trajectory lies in the plane perpendicular to
N⃗ = K⃗ + (α/q)⃗J and is therefore a conic section.

Spin can also be considered [23].
We mentioned that the MIC–Zwanziger system is essentially equivalent to the one that
describes the long-range monopole scattering [74] alias Kaluza–Klein monopole [48,75];
see also [22,76–81]. Dynamical symmetry for a self-dual Wu–Yang monopole [82] will
be further analyzed in the next subsection.

3. The van Holten algorithm also applies to quantum dots, Hénon-Heiles, and Holt
systems, with Killing tensors whose rank ranges from one to six are studied in [71,72].

4.2. Motion in the Wu–Yang Monopole Field

The Wu–Yang monopole [40] is given by the non-Abelian gauge potential with a
“hedgehog” magnetic field:

Aa
i = ϵiak

xk
r2 , Fa

ij = ϵijk
xk xa

r4 . (57)

The terminology is justified by presenting the field strength as

Ba
k = 1

2 ϵijkFa
ij =

xkxa

r4 . (58)

The projection of the Wu–Yang magnetic field onto the “hedgehog” direction is thus

Ba
k · x̂a =

xk

r3 , (59)

which shows that the Wu–Yang magnetic field is that of a Dirac monopole of unit charge
embedded into isospace. The remarkable feature of this expression is that the external and
internal coordinates are correlated.
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Let us consider an isospin-carrying particle moving in a Wu–Yang monopole field
augmented with a rotationally invariant scalar potential V(r) and inquire about the con-
served quantities.

• A most important observation states that for an arbitrary radial potential V(r), we
can choose C = Q⃗ · r̂, which is covariantly constant, such as

DiC = 0. (60)

Then, (49) is satisfied with Ci = Cij = ... = 0 . The van Holten algorithm then applies,
proving that the projection of the isospin onto the radial direction

q = C = Q⃗ · r̂ (61)

is a constant of the motion [69].
The Wu–Yang Ansatz (57) played an important role in later developments, as it

prefigured the finite-energy non-Abelien monopoles [17–19]. The “hedgehog” is the large-r
behavior of the Higgs field, and (61) is identified by the electric charge outside the monopole
core. See, for e.g., [19] or [81] for comprehensive reviews.

• Applied to the Killing vector (51), we obtain the conserved angular momentum [69]

J⃗ = r × π⃗ − q r̂ , (62)

which looks formally identical to the Abelian expression (52). Remember, however, that
q here is not a universal constant but the (conserved) projection of the isospin onto the
“hedgehog” direction r̂, which mixes internal and external coordinates. Thus, we have the
familiar radial term but now in the non-Abelian context.

• We now inquire about the quantities that are quadratic in the momentum. Inserting
(53) into (49) from the second-order equation, we find

C⃗ = n⃗ × (q r̂) . (63)

For which potentials do we obtain a quadratic conserved quantity? Referring to [69,70]
for details, we record the answer:

C = α n⃗ · r̂ and V(r) =
q2

2r2 +
α

r
+ β , (64)

where α and β are arbitrary constants. The coefficient of the r−2 term is correlated with
the conserved charge q (61) as (55) for the MIC–Zwanziger system [55,56,79]. Collecting
our results,

K⃗ = π⃗ × J⃗ + α r̂ (65)

is a conserved Runge–Lenz vector for an isospin-carrying particle in the Wu–Yang monopole
field combined with the fine-tuned potential V(r) in (64).

The conserved quantities J⃗ and K⃗ span an O(4)/O(3, 1) dynamical symmetry that
allows us to describe the large-r motion, both classically and quantum mechanically [21,22].
The trajectories are again conic sections of the MIC–Zwanziger system in Figure 3.

This generalizes the Abelian result to an isospin-carrying particle outside the core of a
self-dual non-Abelian monopole [82]. This “coincidence” is explained as follows: For large-
r, the gauge field of a self-dual non-Abelian monopole of charge m [19] is of the radially
symmetric Wu–Yang form, Equation (57), completed with a “hedgehog” Higgs field,

Φa =
(

1 − m
r

) xa

r
, (66)



Universe 2023, 9, 519 13 of 17

whose direction is precisely

Φ̂ =
Φ
|Φ| = r̂ . (67)

The projection of the isospin onto Φ̂, q in (61) is thus conserved, and outside the core,
the motion is that of an electric charge in the MIC–Zwanziger field [21,22,55,56,79]. The
isospin-dependent dynamical symmetry is analyzed in [82].

4.3. Diatomic Molecules

In Ref. [41], Moody, Shapere, and Wilczek have shown that nuclear motion in a
diatomic molecule can be described by the effective non-Abelian gauge field,

A a
i = (1 − κ)ϵiaj

xj

r2 and F a
ij = (1 − κ2)ϵijk

xkxa

r4 , (68)

respectively, where κ is a real parameter. For κ = 0, (68) is the field of the Wu–Yang
monopole [40], (57). For other values of κ, it is a truly non-Abelian configuration (except
for κ = ±1, when the field strength vanishes and (68) is a gauge transform of the vacuum).

Dropping scalar potential V(r), we return to the Hamiltonian of a spinless particle
with a non-Abelian structure, (36),

H = 1
2 π⃗2, π⃗ = p⃗ − A⃗ . (69)

Inquiring about conserved quantities, we note first that when κ ̸= 0, then q is not
covariantly conserved in general,

Djq =
κ

r

(
Qj − q

xj

r

)
̸= 0 , (70)

implying that q in (61) is not conserved for κ ̸= 0,{
H, q

}
= −π⃗ · D⃗q ̸= 0 , (71)

unless the isospin is also radial. The bracketed quantity in (70) is indeed the non-aligned-
with-the-field piece of the isospin. When the isospin spin and magnetic field happen to be
aligned, then q in (61) is conserved.

Nor is the length of the to-become-charge q conserved in general:{
H, q2} = −2κq (π⃗ · D⃗q) ̸= 0 . (72)

Whereas the length of the isospin, Q⃗2, is conserved: {H, Q⃗2} = 0. Thus, electric charge
non-conservation comes from isospin precession, as in the non-Abelian Aharonov–Bohm
effect [24,28,41]. For κ = 0, we recover the Wu–Yang case when q is conserved, as seen in
Section 4.2.

The gauge field (68) is rotationally symmetric, and an isospin-carrying particle sub-
mitted to it has, nevertheless, conserved angular momentum [41,42]. Its form is, however,
somewhat unconventional.

Our starting point is the first-order condition in (49). We consider first V = 0 ; then,
with Fa

jk in (68), the equation to be solved is

DiC = (1 − κ2)
q
r

(
(⃗n · r̂)

xi
r
− ni

)
. (73)

In the Wu–Yang case, κ = 0, we have C = −n⃗ · q r̂; however, for κ ̸= 0, the to-be
electric charge q is not conserved. Using (71) allows us to infer [70] that

C = −n⃗ ·
(

q r̂ + κ(Q⃗ − qr̂)
)

. (74)
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The conserved angular momentum is, therefore:

J⃗ = r × π⃗ − Ψ⃗, (75)

Ψ⃗ = q r̂ + κ (Q⃗ − qr̂) = q r̂ + κ
(
r̂ × Q⃗

)
× r̂, (76)

which are consistent with the results in [41,42]. Note, however, that the spin-from-isospin
contribution changes, w.r.t. (62):

q r̂ → Ψ⃗ . (77)

For κ = 0, we recover the Wu–Yang expression, (62). Eliminating π⃗ in favor of
p⃗ = π⃗ + A⃗ allows us to rewrite the total angular momentum as

J⃗ = r × p⃗ − Q⃗ , (78)

making manifest the “spin from isospin term”, which is, however, not aligned with the
“hedgehog” magnetic field. Consistent with (70), the non-conservation of q in (61) is achieved
precisely for this non-alignment.

Restoring the potential, we see that again, due to the non-conservation of q, DjV ̸= 0
in general. The zeroth-order condition C⃗ · D⃗V = 0 in (49) is nevertheless satisfied if V is a
radial function independent of Q⃗, V = V(r), since then D⃗V = ∇⃗V, which is perpendicular
to infinitesimal rotations C⃗. Alternatively, a direct calculation using the same formulae
allows us to confirm that J⃗ commutes with the Hamiltonian, {Ji, H} = 0.

Multiplying (78) by r̂ yields, once again,

J⃗ · r̂ = −q (79)

as in the Wu–Yang case. This is, however, less useful, as before, since q is not a constant of the
motion anymore; thus, the angle between J⃗ and the radius vector r(t) is not constant either:
the motion is not confined to a cone anymore.

Our attempts to find a conserved Runge–Lenz vector for the diatomic system have failed.

5. Conclusions and Outlook

The groundbreaking work of Kerner [1] and Wong [2], and continued by many oth-
ers [3–16], allows us to gain an insight into the structure of non-Abelian gauge theory [27].
Our paper reviews the KK framework, retraces the chronological order of these discoveries,
and analyzes the subtle physical meaning of isospin dynamics.

In addition to the conceptual works above, we underlined that the Kerner–Wong
model [1,2] admits important physical applications.

The analysis of a self-dual monopole field [22,23,78,79] could be paralleled by studying
motion in pure YM configurations with no scalar field [83,84] and also the monopole
scattering [74,76–78,80] alias Kaluza–Klein monopole [48,75,77].

In Section 4, we applied van Holten’s algorithm [69–72] conservation laws for a particle
with isospin in the non-Abelian fields exemplified by a Wu–Yang monopole [40,69], and
of diatomic molecules [41,42,70]. The O(4)/O(3,1) dynamical symmetry of a Wu–Yang
monopole augmented with a self-dual Higgs field and implying elliptic trajectories is
broken for diatomic molecules due to the non-conservation of the to-become electric charge,
q in (61).
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Notes
1 To study the Non-Abelian Aharonov–Bohm effect was suggested to one of us (PAH) in the early eighties by Tai Tsun Wu, who

also insisted that we should study the original paper of Yang and Mills [27]. We are grateful for his advices and would like to
congratulate him on his 90th birthday.

2 The fascinating story of gauge theory is recounted by O’Raifeartaigh [44].
3 Our outline follows [48].
4 Duval’s note [11] was rejected from Comptes Rendues de l’Académie des Sciences without refereeing.
5 Souriau has discussed the fiber bundle description of a monopole in “Prequantization” chapter of his never completed and thus

unpublished revision of his book [54].
6 Spinning particles are obtained by modify the basepoint Q0 in (23), cf. eqn. #(3.9) in [13].
7 The Equations (18)–(31) were also studied by refining the field-theoretical arguments of Wong [49]. The classical isospin is the

expectation value of the non-Abelian field, Qa = 1
2

∫
ψ†σaψ .

8 The covariant transformation rule (32) is consistent with the geometric status of the isospin viewed as a section of the associated
bundle P×G O [13,63].

9 The topologically non-trivial case is studied in [26,63,64].
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