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Abstract: The temperature dependence of the QCD string-breaking distance is evaluated in terms
of the string tension and the rate of production of light mesons in the chromo-electric field of a flux
tube. As a function of the meson mass, the mentioned rate can be falling off either as a Gaussian, as
suggested by the Schwinger formula, or as an exponential, which is the case in the London limit of the
dual superconductor. We find an excellent agreement of the so-evaluated temperature dependence of
the string-breaking distance with the respective lattice data, for the case of the meson-production rate
corresponding to the London limit.
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1. Introduction

In QCD, due to the presence of dynamical quarks, string breaking is expected to
occur with the increase of the distance between a heavy quark and an antiquark. At zero
temperature, the static potential accounting for the phenomenon of string breaking has
been measured on the lattice in Nf = 2 and Nf = 2+ 1 QCD, in Refs. [1] and [2], respectively.
In the present note, we will perform an analytic evaluation of the QCD string-breaking
distance at finite temperature. The purpose of this study is the description of a decrease of
the string-breaking distance with the temperature approaching the deconfinement critical
temperature Tc, found on the lattice [3].

Let us start with the pure Yang–Mills theory and consider there an adjoint string
interconnecting two static adjoint sources separated from each other by a spatial dis-
tance R. There, the string breaking occurs through the creation of a glueball, which
instantaneously—through a recombination process—leads to the formation of two imag-
inary bound states of a gluon in the field of a static adjoint source, called one-gluon
gluelumps [4]. Minimizing the difference of the actions of the initial and the final states as

∂
∂T
(
σRT −M · 2(T + R)

)
= 0, we obtain Rs.b. =

2M
σ . Here, M is the mass of the one-gluon

gluelump, σ is the adjoint string tension, and T is the time of observation. (Note that the
same expression for Rs.b. follows just from the equation σRT −M · 2(T + R) = 0, in the
limit of T � R of interest. This equation stems from the comparison of exponentials in
the expression for the adjoint Wilson loop [5,6], 〈W(C)〉 ∝ e−σRT + 1

N2
c

e−M·2(T +R).) Now,

since M ∝
√

σ [4], we obtain the following critical behavior of Rs.b. at T → Tc (where T
henceforth stands for temperature, and the critical exponent ν is rigorously defined only
in the SU(2)-case, where the so-called Svetitsky–Yaffe conjecture [7] suggests for it the
3D-Ising value ν ' 0.63 [8]):

Rs.b. ∝
1√
σ
∼ 1

tν/2 ,
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where t ≡ (Tc − T)/Tc. That is, Rs.b. increases at T → Tc. (In full QCD, the counterparts
of the one-gluon gluelump would be D-mesons, which are formed, e.g., by breaking the
cc̄-string. Recent studies [9] suggest, however, that the masses of D-mesons stay almost
constant at T → Tc. Therefore, with a decrease of the string tension at T → Tc, Rs.b.
would be increasing in full QCD as well.) On general grounds, however, Rs.b. is expected
to decrease at T → Tc since the string at such temperatures experiences strong thermal
fluctuations, which eventually – at T = Tc – lead to the string breaking even without the
creation of glueballs. The results of lattice measurements, presented, e.g., in Figure 8b of
Ref. [3], indeed yield a decrease of Rs.b. at T → Tc. These results are well described by
a phenomenological model of the Debye screening of the string, developed in Ref. [10].
Within that model, the string breaking thus occurs at the Debye screening length, which
decreases at T → Tc. Nevertheless, the physical mechanism of string screening remains
unclear since there are neither free gluons nor free quarks in vacuum at T < Tc. Hence, it
would be promising to have an alternative method of evaluation of the string-breaking
distance, based on the initial pair-creation process.

Such an evaluation, provided in the next Section, will be based on the model of
the quark–antiquark string as a flux tube in the dual-superconductor scenario of confine-
ment [11,12] (for a review, see [13]). Within that scenario, the confining dynamics of the
Yang–Mills vacuum is modeled by the magnetically charged dual Higgs field. The conden-
sation of that field is described within the dual Abelian Higgs model, which represents a
4D relativistic generalization of the Landau–Ginzburg theory of dual superconductivity.
Once two opposite electric charges are inserted into such a magnetically charged medium,
a dual Abrikosov–Nielsen–Olesen string [14,15], representing a tube of the electric flux in
case of static charges, gets formed between those charges. Such a flux tube is characterized
by two typical transverse distances to its center line, which are given by the inverse masses
of the dual Higgs field and the dual vector boson. As long as the transverse distance to
the center line is smaller than the so-called coherence length, given by the inverse mass
of the dual Higgs field, i.e., in the region inside the core of the dual string, the dual-Higgs
condensate is partially destroyed by the field of the two external electric charges. At the
same time, at transverse distances equal to the London penetration depth, given by the
inverse mass of the dual vector boson, the electric field of the two external charges falls
off exponentially. The type-II dual superconductor, which realizes stable flux tubes, corre-
sponds to the situation where the coherence length is smaller than the London penetration
depth, i.e., the dual Higgs boson is heavier than the dual vector boson.

Dedicated lattice simulations in the Yang–Mills theory [16–19] indicate that the
transverse-distance dependence of the chromo-electric field in the flux tube, which is
formed between an external static quark and an antiquark, is indeed very similar to the
one described above. Still, the open question is whether the type-II dual-superconductor
vacuum is closer to the so-called London limit, where the coherence length is much smaller
than the London penetration depth, or to the so-called Bogomolny limit [20], which is the
border regime between the type-II and type-I dual superconductors, where the coherence
length is equal to the London penetration depth. It turns out that, due to the specific
logarithmic increase of the chromo-electric field towards the center line of the flux tube in
the London limit, the standard Schwinger formula, describing the pair-production rate in a
constant electric field, gets changed [21]. By evaluating the temperature dependence of the
string-breaking distance with the use of the standard and the modified Schwinger formulae,
we will demonstrate in the next Section that the respective lattice data in Nf = 2 QCD
can be well described by the modified Schwinger formula, while the standard Schwinger
formula fails to describe them. This finding indicates that, at least at temperatures rela-
tively close to Tc, the confining Yang–Mills vacuum resembles the London limit of the dual
superconductor much stronger than the Bogomolny limit.
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2. Evaluating the String-Breaking Distance and Its Temperature Dependence

Let us now see how the rate of pair production in the field of a flux tube can be used
for a derivation of the static potential, VQQ̄(R), with the account for the phenomenon
of string breaking in full QCD with light quarks. Such a potential can be obtained by
diagonalizing the matrix, whose diagonal entries represent eigenenergies of the initial and
the final states of the system, while the off-diagonal entries represent the matrix element
of some phenomenological Hamiltonian, which describes the transitions between those
initial and final states. That is, one has to solve the secular equation [22] corresponding to
the following matrix [23]: (

σR V
V 2M

)
. (1)

Henceforth, σ stands for the fundamental string tension, and M stands for the mass of one
of the two heavy-light mesons that constitute the final state of the system. These mesons
emerge by way of the hadronization process, i.e., through the recombination of light quarks,
q and q̄, which form the initially produced light meson, with the heavy quarks Q and Q̄.
Furthermore, the parameter V stands for the aforementioned phenomenological matrix
element. By solving the secular equation corresponding to matrix (1), one obtains the
following potential:

VQQ̄(R) =
1
2

[
σR + 2M−

√
(σR− 2M)2 + 4V2

]
.

At asymptotically large Q-Q̄ separations of interest, namely, at R� 2M
σ , it goes over to

VQQ̄(R) ' 2M− V2

σR
. (2)

In order to express the matrix element V through the rate w of production of light mesons
in the flux-tube field, we use Fermi’s golden rule [22]:

dw = 2π · 4NcNf · |V|2 · δ(
√

p2 + m2 − σR) · d3 p
(2π)3 . (3)

Here, m is the mass of a light meson, and the factor of 4 represents the number of spin
states of two spin- 1

2 quarks. In order to integrate both sides of Equation (3), we introduce
the function f (p) =

√
p2 + m2 − σR, for which we have

|∇ f |
∣∣∣∣
p2=(σR)2−m2

=
|p|√

p2 + m2

∣∣∣∣
p2=(σR)2−m2

=

√
(σR)2 −m2

σR
,

so that∫ d3 p
(2π)3 δ( f ) =

σR
2π2

√
(σR)2 −m2

∫ ∞

0
dp p2 δ(p−

√
(σR)2 −m2) =

σR
2π2

√
(σR)2 −m2.

Thus, Equation (3) yields w = 4Nc Nf
π · |V|2 · σR

√
(σR)2 −m2, which results in the following

expression:

|V|2 =
πw

4NcNf σR
√
(σR)2 −m2

.

Substituting it into Equation (2), we obtain:

VQQ̄(R) ' 2M− πw
4NcNf (σR)3 at R� 2M

σ
. (4)
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By using further for w, in Equation (4), an expression that one has away from the London
limit of the dual superconductor,

w ∝ NcNf σ2 · e−const·m2/σ, (5)

or in the London limit [21],

w ∝ NcNf m5/2σ3/4 · e−const·m/
√

σ, (6)

we estimate the temperature dependence of the string-breaking distance Rs.b. at T → Tc.
To this end, we notice that, in the absence of string breaking, the thickness r⊥ of the flux
tube in the dual superconductor is ∝ 1√

σ
. For the potential accounting for the effect of

string breaking, one can introduce an effective string tension σeff(R) as

σeff(R) =
dVQQ̄

dR
→ 3πw

4NcNf σ3R4 .

Accordingly, r⊥ in this case can be formally defined as a quantity proportional to 1√
σeff(R)

.

Therefore, due to the R-independence of w, r⊥ grows at large R’s asO(R2), which explicitly
demonstrates that the string gets broken since its thickness gets parametrically larger
than its length. With the decrease of R, one eventually reaches some critical distance for
which r⊥ becomes equal to R. Such a distance can, therefore, be identified with Rs.b. and
defined through the relation (In macroscopic physics, an analogous situation, leading to
the appearance of a certain critical distance, takes place in the problem of the gravitational
instability of large bodies. In that case, the Schwarzschild radius rg of a body is proportional
to its mass, i.e., to R3, for a body of a constant energy density. Accordingly, as soon as
the equality rg = R is reached with the increase of R, the gravitational instability occurs.)

Rs.b. ∼
√

Nc Nf σ3

w R2
s.b., which yields

Rs.b. ∼
√

w
NcNf σ3 .

We will now use Equations (5) and (6) to confront this estimate for Rs.b. against the lattice
data for Rs.b.(T). To this end, we assume that m is the pion mass, and we make use of the
known critical behavior, σ ∼ tν and m2 ∼ tγ, as well as of the critical index γ corresponding
to the O(4) RG fixed point [24,25], γ ' 1.44. Here, O(4)' SUL(2)×SUR(2) corresponds to the
chiral-symmetry group of QCD with two massless flavors. The respective critical exponent ν

of the O(4)-invariant φ4-theory in D = 3 reads [26] ν ' 1
2 + N+2

4(N+8) ε
∣∣∣

N=4, ε=1
= 0.625. We

note that it coincides remarkably well with the mentioned value of ν ' 0.63 in the 3D
Ising model, which describes the second-order phase transition at finite temperature and
magnetic field, with the counterpart of the magnetic field for the second-order phase
transition in QCD at Nc = 3 and Nf = 2 being the (approximately one and the same)
mass of light u- and d-quarks. Hence, we adopt the approximate value of ν ' 0.63. On
the other hand, lattice values for Rs.b. can be extracted from the mentioned Figure 8b of
Ref. [3]. Defining Rs.b. as a distance at which each of the curves depicted in that figure
deviates from the linear potential more than by the corresponding error bars, one gets the
following naked-eye values of

√
σ0Rs.b.: 2.4 for T = 0.76Tc, 2.30 for T = 0.81Tc, 2.13 for

T = 0.87Tc, 2.0 for T = 0.9Tc, and 1.7 for T = 0.96Tc, where σ0 is the zero-temperature
string tension. The ratio m2

σ ∼ tγ−ν vanishes at t→ 0, so that Equation (5) yields an increase,
Rs.b. ∼ t−ν/2, instead of the decrease, thereby ruling out the applicability of Equation (5) at
such temperatures. Rather, Equation (6) yields

Rs.b. ∼ m
5
4 σ−

9
8 ∼ t

5
8 γ− 9

8 ν ' t0.19.
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Fitting the cited values of Rs.b.(T) by the function a
(
1 − T

Tc

)b, we obtain an excellent
agreement with this prediction, corresponding to b ' 0.195 and a ' 3.171, as shown in
Figure 1.

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

T/Tc

Figure 1. Plotted are the cited values for
√

σ0Rs.b. vs. the fitting function 3.171
(
1− T

Tc

)0.195.

3. Summary

In this note, we evaluated the QCD string-breaking distance in terms of the string
tension and the rate of production of light mesons in the field of a flux tube. That rate is
given by Equations (5) and (6), away from the London limit and in the London limit of the
dual superconductor, respectively. The major difference between Equations (5) and (6) is
that, due to the logarithmic increase of the chromo-electric field towards the center line of
the flux tube in the London limit, Schwinger’s Gaussian dependence—of the production
rate on the meson mass—gets changed to the exponential dependence. Additionally, the
pre-exponential factor in Equation (6) differs from that in Equation (5). It turns out that,
due to this difference, at temperatures close to the critical one, Equation (6) reproduces
the respective lattice data for the temperature dependence of the string-breaking distance
remarkably well, while Equation (5) yields the wrong prediction for that dependence. This
finding indicates that, at least at temperatures deviating from the critical one by less than
25%, i.e., corresponding to t . 0.25, the Yang–Mills vacuum is likely to be much closer,
in its confining properties, to the London limit of the dual superconductor than to the
opposite, Bogomolny, limit.
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