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Abstract: The PHENIX experiment measured two-particle Bose–Einstein quantum-statistical cor-
relations of charged kaons in Au+Au collisions at

√
sNN = 200 GeV. The correlation functions are

parametrized assuming that the source emitting the particles has a Lévy shape, characterized by the
Lévy exponent α and the Lévy scale R. By introducing the intercept parameter λ, we account for the
core–halo fraction. The parameters are investigated as a function of transverse mass. The comparison
of the parameters measured for kaon–kaon with those measured from pion–pion correlation may
clarify the connection of Lévy parameters to physical processes .
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1. Introduction

To study the space-time structure of the quark–gluon plasma, the most commonly
used method is femtoscopy. It is a sub-field of high-energy particles and nuclear physics,
and it allows us to explore the properties of the matter created in particle collisions on the
femtometer scale. Femtoscopy typically investigates correlations of particle pairs. However,
it is worth mentioning that prior to the development of femtoscopy, a similar physical phe-
nomenon was discovered and utilized in the field of radio astronomy. R. Hanbury Brown
and R. Q. Twiss measured the angular size of stars by analyzing intensity correlations,
which became known as the Hanbury Brown and Twiss effect (HBT) [1]. Roy Glauber’s
work that laid the foundations of quantum optics [2–4] greatly increased our understanding
of this effect. G. Goldhaber and his collaborators observed intensity correlations among
same-charged pions while searching for ρ mesons in high-energy collisions. These cor-
relations were explained by G. Goldhaber, S. Goldhaber, W-Y. Lee, and A. Pais (GGLP),
based on the Bose–Einstein symmetrization of the wave-function of identical pion pairs [5].
This is the reason why these correlations are often called Bose–Einstein correlations. Due
to the relationship between the two-particle Bose–Einstein correlation function and the
phase-space density of the particle-emitting source, by measuring the correlation function
we can obtain information about the source function.

Let us note that while there are conceptual similarities between the HBT effect in radio
astronomy and the correlations studied in femtoscopy, there are also fundamental differences.
In femtoscopy, we can extract information about the space-time structure of the particle source,
often represented by femtoscopic radii. On the other hand, the HBT effect in radio astronomy
provides insights into the spectral-angular structure of the source radiation.

The fundamentals of modern correlation femtoscopy were established by Kopylov
and Podgoretsky [6,7]. They successfully overcame the drawback of the GGLP technique
by utilizing the momentum differences of the particle pairs instead of the opening angles.

Based on the central limit theorem, it is a good approach to assume a Gaussian shape
for the phase-space density of the particle-emitting source. However, we can go further
and take a more general approach. Anomalous diffusion indicates the appearance of
Lévy-stable distributions for the source [8,9]. In Ref. [10], it was found that Lévy-stable
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source distributions in
√

sNN = 200 GeV Au+Au collisions give a high-quality, statistically
acceptable description of the measured correlation functions in the case of pions. In the
present paper, we will investigate kaon–kaon correlation functions assuming a Lévy shaped
source. By comparing the obtained results with the pion data, more insights can be gained
regarding the Lévy parameters.

The dataset used in this analysis is Au+Au collisions at
√

sNN = 200 GeV recorded
by the PHENIX (Pioneering High Energy Nuclear Interaction eXperiment) detector. It
is one of the four experiments that have taken data at the relativistic heavy ion collider
(RHIC) in Brookhaven National Laboratory. Its primary mission was to search for a new
state of matter called the quark–gluon plasma and to study various different particle types
produced in heavy ion collisions, such as photons, electrons, muons, and charged hadrons.
A beam view layout of the PHENIX detector can be seen in Figure 1. The detectors can be
divided into four main subgroups:

1. Global detectors characterize the nature of heavy ion collision events, i.e., zero degree
calorimeters (ZDC) and beam-beam counters (BBC);

2. Mid-rapidity detectors form the “central arm spectrometer”, which consists of three
sets of pad chambers (PC), drift chambers (DC), electromagnetic calorimeters (Em-
Cal), and time-of-flight detectors (ToF), are used for energy, momentum, and mass
measurements;

3. Two muon spectrometers at forward rapidity;
4. A triggering and computing system to select and archive events of potential physics

interest.

Figure 1. View of the PHENIX central arm spectrometer detector setup in the 2010 data-taking period.

2. Femtoscopy and Lévy Sources

As we mentioned in the previous section, there is a connection between the Bose–
Einstein correlation function and the phase-space density of the particle-emitting source.
Let us discuss this relationship in more detail. The one- and two-particle momentum
distributions can be expressed as [11]

N1(p) =
∫

d4rS(r, p)|ψp(r)|2, (1)

N2(p1, p2) =
∫

d4r1d4r2S(r1, p1)S(r2, p2)|ψ
(2)
p1,p2(r1, r2)|2, (2)

where S(r, p) is the source function, which describes the probability density of particle
creation at space-time point r with four-momentum p; ψp(r) denotes the single-particle

wave function; and ψ
(2)
p1,p2 is the two-particle wave function, which must be symmetric in

the spatial variables r1 and r2 for bosons. Bose–Einstein correlations arise from this sym-
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metrization effect. Using Equations (1) and (2), we can express the two-particle correlation
function as [12,13]

C2(p1, p2) =
N2(p1, p2)

N1(p1)N1(p2)
. (3)

Let us introduce the average momentum K = 0.5(p1 + p2) and relative momentum
q = p1 − p2 as new variables. If p1 ≈ p2 ≈ K and the final state interactions are neglected,
the two-particle correlation function can be written as

C(0)
2 (q, K) ≈ 1 +

|S̃(q, K)|2

|S̃(0, K)|2
, (4)

where the superscript (0) denotes the neglection of final state interactions and S̃(q, K) is the
Fourier transform of the source with

S̃(q, K) =
∫

S(x, K)eiqxd4x. (5)

The significance of Equation (4) lies in the fact that by measuring the Bose–Einstein
correlation function, we can obtain information about the spatial shape of the source function.

The correlation function depends on the four-momentum difference and the average
four-momentum. Since the Lorentz product of q and K is zero in the case of identical parti-
cles, the correlation function depends only on the spatial q instead of the four dimensional
q vector:

qK = q0K0 − qK = 0 ⇒ q0 =
qK
K0

. (6)

In Ref. [7], Kopylov and Podgoretsky showcased the three-dimensional character of
the momentum correlation effect due to the particles detected on-mass-shell.

For our correlation function measurements, we use the co-moving system (LCMS)
frame, where it was found in earlier measurements [14] that the correlation function is
nearly spherically symmetric. Due to the relatively low number of produced kaons and
this symmetrical characteristic, we have chosen to perform a one-dimensional (1D) analysis
instead of a three-dimensional (3D) one. Based on Ref. [10], we used Q = |qLCMS| as the 1D
variable of the correlation function.

We assumed that the source emitting the particles has a Lévy shape. The symmetric
Lévy-stable distribution is defined as

L(r; R, α) =
1

(2π)3

∫
d3ϕ eiϕre−

1
2 |ϕR|α , (7)

where R is the Lévy scale parameter, α is the Lévy exponent, and ϕ is a three-dimensional
integration variable. The α parameter describes the shape of the distribution, in the case of
a Gaussian distribution α = 2, while for a Cauchy distribution, the value of α is 1.

In case of such Lévy-stable source functions, the raw (i.e., final-state interaction ne-
glected) correlation function in the observable Q-range will be [8]

C(0)
2 (Q; λ, R, α) = 1 + λe−|QR|α , (8)

where the intercept parameter λ is introduced as the extrapolated C(0)
2 (Q = 0) value.

According to the core–halo model [15,16], the source can be divided into two parts:
the core, which contains the promptly produced particles, and the halo, which is composed
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of the products of resonance decays. The ratio of these two parts can be characterized by
the correlation strength parameter:

λ =

(
Ncore

Ncore + Nhalo

)2
, (9)

where Ncore refers to the number of particles produced in the core, while Nhalo denotes
the number of particles produced in the halo. Considering that the particles from the halo
contribute to the correlation function as an unresolvably narrow peak around Q = 0, we
indeed see that this λ value will be the extrapolated C(0)

2 (Q = 0) value.
For charged particles, the most significant final state interaction is the Coulomb

interaction. To take care of this effect, we used the Sinyukov–Bowler method [17,18].
Taking an additional possible linear background shape into account, our final assumption
for the functional form of the correlation function is

C2(Q; λ, R, α) =
[
1− λ + K(qinv; α, R) · λ ·

(
1 + e−|QR|α

)]
· N · (1 + εQ), (10)

where K is the Coulomb correction, N is the normalization parameter, and ε represents a
small background long-range correlation effect. Let us note that the Coulomb correction is
a function of qinv, which is the Lorentz invariant four-momentum difference1, while the
correlation function has a different variable, denoted by Q. We calculated the Coulomb
correction K with the variable Q and analyzed the error coming from this approximation,
which was handled as a source of systematic uncertainty the same way as in Ref. [10].
The correction is quite small compared to other sources, so it does not mean a large
additional term to the systematics, and this way we have more comparable results to
the pions.

3. Motivation

In Ref. [10], the significance of the appearance of the Lévy distribution in the case
of pion–pion correlations was investigated. In order to dive into the exploration of the
Lévy-shape, we aimed to analyze kaon correlations.

The Lévy source parameters for kaon–kaon two particle correlations have never been
measured in PHENIX before.

Anomalous diffusion could be a reason for a Lévy distribution [19]. In such a scenario,
the Lévy index for the different particles is different, i.e., απ

Lévy 6= αK
Lévy. The smaller the

cross section is, the longer the mean free path, thus the longer the power-law like “tail” of
the source distribution. Kaons have a smaller cross section than pions, so we would expect
that απ

Lévy > αK
Lévy. If this explanation fails to match the reality, other alternatives should

be investigated.
The Lévy width (or, equivalently, scale parameter) R has an unclear interpretation.

It exhibits similar behavior as the Gaussian source radii, but its precise relation to the
geometrical source size is not clear. By measuring this parameter for kaons, we can get
closer to clarifying its precise physical interpretation.

4. Measurement Details

In this measurement, we analyzed Au+Au collisions at
√

sNN = 200 GeV. The dataset
consists of about 7.3 billion (minimum bias triggered) events. As the number of produced
kaons is relatively low, all minimum bias events (of any centrality) were taken together.
We cut out those events whose distance from the nominal collision point was greater than
30 cm along the beam axis.

We also need to take into account the detector inefficiencies and the particularities
of the track reconstruction algorithm, which sometimes splits one track into two. On the
other hand, when two different tracks are too close to each other, it is possible that they
will be detected as a single track. To remove these possible effects, we applied cuts in the
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∆φ and ∆z variables, where ∆φ and ∆z stand for the azimuthal angle and longitudinal
position difference of track pairs, respectively (as measured in the drift chamber, the main
tracking detector).

For particle identification (PID), we calculated the square of the particle mass:

m2 =
p2

c2

[(
ct
L

)2
− 1

]
, (11)

where t is the time of flight (measured either in the PbSc or the ToF East/West detectors), L
is the path length, and p is the momentum. The distributions of m2 were fitted mostly using
single Gaussians; in cases of merging peaks, a double Gaussian was applied. To identify
kaons, we applied a 2.5 standard deviation (σp) cut around the nominal kaon m2 peak
position and a 2.5σp veto cut around the pion and proton m2 peaks. An example scatter
plot of the charge times momentum vs. m2 before and after the cuts can be seen in
Figure 2a,b, respectively.

(a) (b)

Figure 2. Example plots for PID. (a) Scatter plot of the charge times momentum vs. m2 in TOF West
with no cut. (b) Scatter plot of the charge times momentum vs. m2 in TOF West after the applied cuts.

Since the correlation function’s dependence on K is smoother than its dependence
on Q, it is reasonable to create several K bins, and in each bin, the Q dependence can be
investigated. At midrapidity, the transverse mass mT can be used instead of K:

mT =
√

m2 + (KT/c)2, (12)

where m is the mass of the particle and

KT =
√

K2
x + K2

y (13)

is the average transverse momentum. In this analysis, 7 mT bins were created. In each bin,
we analyzed the dependence of the correlation function on Q.

To measure the correlation functions, “actual” (foreground) and “background” distri-
butions of the kaon pairs were created. To construct the actual pair distribution, the mo-
mentum differences were calculated of the same-charged particles from the same event
and filled into a histogram. Since there are other effects (stemming from acceptance, single-
particle distributions, efficiency, etc.) in the actual pair distribution that are not related to
the HBT effect, we have to cancel them out with a properly constructed background distri-
bution that contains pairs from different events, where there can be no HBT effect. To create
the background pair distribution, we employed the same mixed event method as described
in Ref. [10]. The first step is to construct a pool that contains several events. This pool
needs to be at least as large as the number of produced kaons in the event with the highest
multiplicity. In order to ensure that we meet this condition, a pool with 50 events was used.
Every time we process an event to construct the actual pair distribution, we construct a
mixed event for the background distribution as well. Since we do not want to introduce any
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correlations and we would like to avoid the presence of the quantum-statistical correlation
between the particles in the background, we have to select the particles as follows. First
of all, to ensure that the background event exhibits the same kinematics and acceptance
effects, we have to construct the background event from events of similar centrality and
with a similar z coordinate of the collision vertex. To accomplish this, we used 5% wide
centrality and 2 cm wide z-vertex bins. Secondly, it is essential that the selected particles for
the background pair distribution originate from different events. After the particle selection
from mixed eventsm we calculate the momentum differences of these particles.

The two-particle correlation function can be calculated from the ratio of the normalized
actual and background pair distributions:

C2(mT, Q) =
A(mT, Q)

B(mT, Q)
·
∫ Qmax

Qmin
B(mT, Q)∫ Qmax

Qmin
A(mT, Q)

, (14)

where A is the actual, B is the background pair distribution, and the integral is performed
over a range (Qmin − Qmax), where the correlation function does not exhibit quantum
statistical features.

We fitted the measured correlation functions with the Coulomb-corrected Lévy-type
correlation function and the linear background. Of all the final state interactions, the Coulomb
effect has the greatest impact as it causes same-charged pairs to repel each other. As shown in
Figure 3, the function drops off sharply at small Q due to the Coulomb effect.

Q [GeV/c]
0 0.05 0.1 0.15 0.2 0.25 0.3

C
(Q

)

0.9

1

1.1

1.2

1.3

1.4

1.5
Measured data

Fit function

 0.32± = 1.12 λ
 0.95) fm±R = (4.84 

 0.19± = 1.21 α
 0.05) c/GeV± 0.05 − = (∈

 0.01±N = 1.01 

 / NDF = 16.71 / 20, C.L.:67.2 %2χ
 0.232) GeV/c−Fit range: Q = (0.040 

fit status: converged

cov. matrix: accurate

+K++K−K− = 200 GeV, KNNsPHENIX Au+Au @ 
2 0.940) GeV/c− = (0.856 Tm

PH ENIX
preliminary

Figure 3. An example fit with the Coulomb-corrected correlation function based on a Lévy source for
kaon pairs with transverse mass ranging from 0.856 GeV/c2 to 0.940 GeV/c2.

To deal with the Coulomb correction, we applied the same method that was used
in Ref. [10] for pions; we did this to obtain comparable results. First, we needed to
numerically solve the Coulomb correction; then, the results were loaded into a binary look
up table as described in Refs. [20,21]. This numerical table contains the values discretely,
so interpolation was needed, which can cause numerical fluctuations. These fluctuations
can be handled with a proper iterative fitting procedure. The first round fit was performed
with a functional form of the correlation function incorporating the Coulomb correction,
which yields a set of parameters λ0, R0, and α0. Based on Equation (10), the second round
fit was with

C(0)
2 (Q; λ, R, α)

C2(Q; λn, Rn, αn)

C(0)
2 (Q; λn, Rn, αn)

· N · (1 + εQ), (15)
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where the fitted parameters are denoted as λ, R, α, N, and ε. In the second round, the values
of λn, Rn, and αn were equal to the corresponding values from the first fit. The correlation
function without the Coulomb correction is denoted by C(0)

2 (Q; λ, R, α), while C2(Q; λ, R, α)
refers to the Coulomb-corrected one. We continued this iterative procedure until the param-
eters of the previous fit (λn, Rn, αn) and the new ones from the latest fit (λn+1, Rn+1, αn+1)
differed less then 2%. Let us note that usually N ≈ 1 and ε ≈ 0, and these parameters
converge faster than λ, R and α, so only the latter parameters are used in the test of the
convergence criteria.

To determine the systematic uncertainties of the parameters, alternative measurement
settings were applied. These considered settings can be seen in Table 1. In case of the
PID cut, the default setting was 2.5σp, while the lower one was 2.0σp and the upper one
was 3.0σp. As for the PC3 matching cut, there was no cut in the default setting, but an
alternative cut of 2.0σm was applied, where σm is the standard deviation of the differenece
of the projected track position and the closest hit position in the detector, in both the φ and
z directions. Regarding the EMCal/ToF track matching cut, the default setting was 1.5σm,
while the lower one was 1.0σm and the upper one was 3.5σm. Pair cuts were applied in the
∆φ− ∆z plane by cutting off a two-dimensional region, as described in Ref. [10]. The fit
range (Qmin − Qmax) was also varied. We modified the default setting with ±8 MeV/c.
As we mentioned earlier in this paper, the Coulomb correction is a function of qinv, while
the correlation function has a different variable, denoted by Q. We calculated the Coulomb
correction with the variable Q and treated this approximation as a systematic uncertainty.
The parameters were recalculated by individually changing each of the measurement
settings; then, we calculated the relative difference of the values of the parameters obtained
from the alternative settings and from the default settings. After calculating the relative
differences for all the settings, we obtained the final systematics by taking into account the
statistical uncertainties of the data points. A similar argument can be found in Ref. [22].

Table 1. The varied settings in order to determine the systematic uncertainties of the results.

Setting Name Settings

PID cut 3 cut settings
PC3 matching cut 1 cut setting

EMCal/ToF matching cut 3 cut settings
DC pair cut 3 cut settings

ToF East pair cut 3 cut settings
ToF Wast pair cut 3 cut settings
EMCal pair cut 3 cut settings
Fit range (Qmax) 3 ranges
Fit range (Qmin) 3 ranges

Coulomb correction variable 2 versions

The method we used is described below. The variance of the difference of two
variables is

σ2(Adef − Aalt) = σ2(Adef) + σ2(Aalt)− 2cov(Adef, Aalt), (16)

where Adef represents the parameter value obtained from the default cut, while Aalt, the
parameter value, is obtained from the alternative cut; cov(Adef, Aalt) = ρσ(Adef)σ(Aalt)
is the covariance matrix; and ρ is the correlation coefficient. The total uncertainties are
composed of the systematic and the statistical uncertainties:

σ2
tot = σ2

stat + σ2
syst so σ2

syst = σ2
tot − σ2

stat. (17)
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We require that the total uncertainty cover 1 standard deviation (1σ), i.e., σtot =
|Adef − Aalt|. Thus,

σ2
syst = (Adef − Aalt)

2 − σ2
stat(Adef)− σ2

stat(Aalt) + 2ρσstat(Adef)σstat(Aalt). (18)

The advantage of using Equation (18) is that it allows us to consider the impact of the
statistical uncertainties. In this analysis, we assumed that Adef is completely correlated with
Aalt, thus ρ = 1. The final systematic uncertainties were obtained by taking the squared
sum of the calculated σsyst values for each alternative setting.

5. Results

In this section, we present our main results: a comparison of the transverse mass
dependence of the Lévy parameters in the case of kaon–kaon and pion–pion correlations.

One of the main reasons why analyzing the kaon–kaon Lévy distribution is interesting
is because it could shed light on the physical interpretation of the Lévy exponent. The Lévy
exponent α is shown in Figure 4. Within statistical uncertainties, we can draw the conclusion
that the value of the parameter is between 1 and 2; however, the systematic uncertainties
are quite large. As it is described in Ref. [19], a higher α value is expected for pions than
for kaons based on the anomalous diffusion; however, we cannot observe this trend here,
which indicates that beside anomalous diffusion of hadrons, there may be other physical
processes causing the appearance of Lévy distributions, such as the resonances, as was
concluded in Ref. [23]. The violation of the mT-scaling of the two-pion and two-kaon
correlations suggested by hydrodynamic models was explained by a rescattering phase in
Ref. [24], which was not taken into account in the pure hydrodynamic models. A slight
increase in the α values of the kaon measurements can be observed, although the large
uncertainties do not allow us to draw any strong conclusions.

0.2 0.4 0.6 0.8 1 1.2

α

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
+K+ + K−K−K

PRC97,064911

+ππ, −ππ

+K+ + K−K−K

PRC97,064911

+ππ, −ππ

]2 [GeV/cTm

 = 200 GeVNNsPHENIX Au+Au @ 

 = 1α

 = 2α

PH ENIX
preliminary

Figure 4. Values of the α parameter in the case of pions and kaons. Boxes indicate the systematic
uncertainties, while error bars are used to represent the statistical ones.

The transverse mass dependence of the intercept parameter λ is shown in Figure 5.
Compared to the pion data, it is not inconsistent with the given large uncertainties, having
approximately matching values at around mT = 0.7 GeV/c2, although their trends appear
to be different. No significant mT dependence was observed for this parameter, and
it is fairly constant; however, we have to note that a slight decreasing trend is visible.
This parameter characterizes the strength of the correlation as it was introduced as the
extrapolated C(0)

2 (Q = 0) value. Since there is no correlation between particles of different
species, a possible worsening of PID efficiency may cause a decrease in the value of this
parameter as our dataset may contain particles other than kaons.
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0.2 0.4 0.6 0.8 1 1.2

λ

0

0.5

1

1.5

2

2.5
+K+ + K−K−K

PRC97,064911

+ππ, −ππ

+K+ + K−K−K

PRC97,064911

+ππ, −ππ

]2 [GeV/cTm

 = 200 GeVNNsPHENIX Au+Au @ 

PH ENIX
preliminary

Figure 5. Values of the λ parameter in the case of pions and kaons. Boxes indicate the systematic
uncertainties, while error bars are used to represent the statistical ones.

The transverse mass dependence of the Lévy scale parameter R is shown in Figure 6.
The mT scaling of HBT radii across particle species has been predicted in Ref. [25]. From the-
oretical works, e.g., Refs. [8,26], we know that R is not an RMS so it cannot be related to
the source size directly. However, it was clear from previously published analyses (see
Refs. [10,27–32]) that the Lévy-scale R exhibits a similar trend as its Gaussian counterpart,
namely, it decreases with mT. In the case of a Gaussian source, hydrodynamic models
predict a linear scaling for its inverse square [33–35]:

1
R2 = A ·mT + B. (19)

As we see it on Figure 7, the linear scaling holds for the Lévy source as well, requiring
the need for further theoretical investigations.

0.2 0.4 0.6 0.8 1 1.2

R
 [f

m
]

2

3

4

5

6

7

8

9

10

11
+K+ + K−K−K

PRC97,064911

+ππ, −ππ

+K+ + K−K−K

PRC97,064911

+ππ, −ππ

]2 [GeV/cTm

 = 200 GeVNNsPHENIX Au+Au @ 

PH ENIX
preliminary

Figure 6. Values of the R parameter in the case of pions and kaons. Boxes indicate the systematic
uncertainties, while error bars are used to represent the statistical ones.

It is worthwhile to note that there is a significant amount of point-by-point fluctuation
in the systematic uncertainties. Furthermore, the non-fluctuating part of the systematic
uncertainty of the pion and kaon data points is also partly correlated.
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0.6 0.7 0.8 0.9 1 1.1 1.2

]2
 [1

/fm
2

1/
R

0

0.05

0.1

0.15

0.2

0.25

0.3

]2 [GeV/cTm

 = 200 GeVNNsPHENIX Au+Au @ 

 + BTLinear fit: Am

GeV2fm

2c 0.050 ±A = 0.150 

2fm
1 0.039 ± 0.075 −B = 

 / NDF = 1.91 / 5, C.L.: 86.2%2χ

+K++K−K−K
Fit function

PH ENIX
preliminary

Figure 7. The transverse mass dependence of the 1/R2 points. It is worthwhile to note that due to the
large uncertainties, one could fit these data points with different powers of mT as well. A line is fitted
to the data points, and the fitted parameters are shown in the legend. Boxes indicate the systematic
uncertainties, while error bars are used to represent the statistical ones.

In Ref. [10], a new empirical scaling variable was found:

R̂ =
R

λ(1 + α)
. (20)

The motivation behind this parameter was the fact that the α, R, and λ parameters are
strongly correlated, and it is possible to obtain good fits with multiple sets of co-varied
parameters. The discovery of R̂ was made without any theoretical motivation, and in
Ref. [10] it was observed that 1

R̂
scales linearly with mT. In Figure 8, we can see the same

linear behavior for kaons as well.
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preliminary

Figure 8. The transverse mass dependence of the 1/R̂ points. It is worthwhile to note that due to the
large uncertainties, one could fit these data points with different powers of mT as well. A line is fitted
to the data points, and the fitted parameters are shown in the legend. Boxes indicate the systematic
uncertainties, while error bars are used to represent the statistical ones.

6. Conclusions

In this paper, we discussed two-kaon Bose–Einstein correlation functions in Au+Au
collisions at

√
sNN = 200 GeV, from the PHENIX experiment. We assumed that the source

has a Lévy shape. The Lévy parameters were investigated as functions of mT and compared
to the pion results. In the case of the Lévy stability index α, the large uncertainties prevent
us from drawing any strong conclusions. The prediction that was based on anomalous
diffusion that απ

Lévy > αK
Lévy does not seem to be strongly supported. To clarify this question,

further measurements and investigations might be necessary. Considering the intercept



Universe 2023, 9, 336 11 of 12

parameter λ, kaons and pions have matching values at around mT = 0.7 GeV/c2, and a
slight decreasing trend is visible for kaons, possibly due to the worsening of the PID
efficiency. The Lévy-scale R exhibits a similar trend as its Gaussian counterpart; it decreases
with mT, and its inverse square is linear in mT, although this was predicted only for the
Gaussian width. A new empirical scaling variable, R̂, was found, and it was observed that
1
R̂

scales linearly with mT.
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Abbreviations
The following abbreviations are used in this manuscript:

HBT R. Hanbury Brown and R. Q. Twiss
GGLP G. Goldhaber, S. Goldhaber, W-Y. Lee, and A. Pais
RHIC Relativistic heavy ion collider
LCMS Longitudinal co-moving system
PCMS Pair co-moving system
Au+Au Gold–gold
RMS Root mean square

Note
1 This variable can be expressed in the PCMS system, which is the pair rest frame: qinv = |qPCMS|.
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