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Abstract: In this article, we apply the formalism of (classical) Extended Irreversible Thermodynamics
(EIT) to the dynamics of density fluctuations for a self-gravitating fluid in a static Universe, consider-
ing only bulk viscosity. The problem is characterized by gravitational instability, for which the Jeans
criterion is shown to hold. However, both the relaxation time in the constitutive equation and the
viscosity itself affect the behavior of both stable and unstable modes. In particular, the stable scenario
features three modes, two of them corresponding to damped oscillations which decay faster that in
the CIT scene. The third mode, inexistent in the CIT, corresponds to a very quickly decaying mode.
In the unstable case, growing modes are observed in both EIT and CIT theories, for which the slowest
growth is the one predicted by the CIT theory followed by the EIT, while the non-dissipative case
corresponds to the fastest one.

Keywords: dissipative fluids; jeans mechanism; bulk viscosity

1. Introduction

One of the fundamental current open problems in astrophysics and cosmology is struc-
ture formation; how do galaxies, galaxy clusters, and other large-scale structures emerge?
Sir James Jeans took the first step towards understanding this question in 1902 [1,2], by
determining the criterion under which a small perturbation in the density of an initially
uniform, static, neutral, self-gravitating cloud occupying a vast region of space1 can grow
in time, allowing matter to agglomerate and thus form structure. His research demon-
strates that the gas cloud has a critical size, called Jeans’ wavelength λJ , above which the
cloud becomes unstable since the density perturbation grows exponentially with time,
making a collapse unavoidable if the cloud exceeds such magnitude. Below λJ , the density
perturbation oscillates in time and no structure is formed. General relativity had not yet
been developed at that time, so Jeans’ treatment was purely Newtonian. This had to wait
until 1946 with Lifshitz [4], who extended Jeans’ idea to the relativistic regime. Since then,
several authors have attempted to understand structure formation more deeply.

Current theoretical research on gravitational instability follows the work of Bonnor [5],
who placed Jeans’ idea into a hydrodynamic framework, a treatment now found in many
standard textbooks [3,6]. Bonnor went further, pushing the Jeans’ idea into an expanding
Newtonian universe (or Newtonian cosmology)2 comparing his result with those obtained
from the relativistic point of view, finding agreement with Lifshitz’s work as far as analogy
allows. These first treatments have demonstrated that the Jeans’ criterion is preserved, but
not so the perturbation propagation modes, which at the relativistic level grow not expo-
nentially but as a power law. This difference is intuitively understood, since the expansion
acts against gravity, slowing the agglomeration process. Despite these contributions, there
are pathologies in the Jeans’ mass predictions, and this deficiency has been the impetus for
further research.

In the course of these efforts, the problem has become more refined and less ideal.
One of these considerations has been assuming that the gas in the cloud is ionized [9];
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therefore, besides gravity, magnetic fields are considered—see for example, Ref. [10], and
the case of a dusty plasma discuss in Refs. [11,12]. Another approach, given in Ref. [13], is
to model the medium as a viscoelastic fluid. A further consideration is that the medium is
a non-ideal fluid. This has been the subject of discussion by several authors. For example,
Corona-Galindo and Dehnen [14] consider a compressible fluid with (shear and bulk)
viscosity and heat flux, and follow the standard approach by linearizing the system of
equations and obtaining a dispersion relation, which comes from a constitutive equation for
the heat flux (Fourier law) and additionally the Maxwell relation for the thermodynamic
quantities. Then, from the numerical analysis, they conclude that shear and heat flux
are negligible in a galaxy formation at very high redshifts (z∼1200), while bulk viscosity
becomes relevant. Carlevaro and Montani (CM) in Refs. [15,16] investigate how the bulk
viscosity can affect the top-down fragmentation mechanism of structure formation and
conclude that viscosity dampens the evolution of the density contrast, thereby suppressing
the formation of substructures. At the same time, they demonstrate that Jeans’ criterion is
not modified for a static or an expanding universe. In Ref. [16], (CM), under the assumption
made for the viscosity coefficient, allowed them to treat Jeans’ instability straightforwardly
and completely equivalent to the non-viscous case for both the static and the expanding
universe. Velten and collaborators in [17] consider cold dark matter (CDM) with bulk
viscosity for (i) an expanding Newtonian universe and (ii) a neo-Newtonian expanding
universe, a term they use, which means that they take into account pressure effects in
the Newtonian description, such as Friedman’s equations for the expanding (Newtonian)
cosmology, which hold. The works mentioned above have in common that the viscosity
is modeled by classical irreversible thermodynamics within Eckart’s framework3. In [17],
Velten et al. compare their result with that of Carlevaro [16] for Newtonian cosmology, and
also examine neo-Newtonian and relativistic cosmology cases, concluding that Newtonian
cosmology is unreliable for modeling CDM structure growth.

In the astrophysical context, Jeans’ mechanism is also relevant. For example, it is a fun-
damental tool for addressing the problem of star formation (see, for instance, Refs. [18–20]
and references therein), where the current view is that stars are formed from collapsed
dense molecular cloud cores. It is important to note that the molecular clouds that serve as
the seed for star formation are composed of a variety of particle species, mostly hydrogen,
and helium in the form of gas, but also heavier elements such as carbon, oxygen, and so
on, which form dust. It is this mixture that accounts for the appearance of bulk viscosity.
Moreover, works taking into account dark matter modeled as WIMPS are explored (i.e., a
mixture of baryonic matter and dark matter). Kremer et al. [21] also study the formation of
stellar structures, and compare the Jeans mass for an ideal and non-ideal fluid within the
five-field approximation in a static space, neglecting some factors such as radiation pressure
and stellar wind, among others. They conclude that the astrophysical configuration, when
viscosity is considered, requires a higher Jeans mass for collapse. In his book, Weinberg [3]
also discusses the discrepancies between the results for galaxy masses obtained from the
Jeans mechanism and those observed.

Another open question in astrophysics is related to the stability of the spiral structure of
rotationally supported galaxies, a work that began very early with Ostriker and Peebles [22],
who demonstrated that the instability of a self-gravitating rotating disk could be suppressed
if the system is embedded in a static (dark) halo potential. However, more recent work
has pointed out that instability occurs if a dynamic halo is considered [23]; note that these
treatments usually neglect dissipation processes and heavily rely on numerical simulations,
which in certain cases goes beyond a Newtonian treatment and the Jeans mechanism which
we are interested in here.

In the present paper, we aim to analyze the gravitational instability considering a
viscous fluid. We limit ourselves to considering just bulk viscosity; one of the reasons for
this limitation is our interest in the relativistic level, where we have in mind (spatially)
homogeneous and isotropic spacetimes where the only dissipative effect consistent with
the spacetime symmetries is bulk pressure. Our aim in this work is thus to study Jeans
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instability for a viscous fluid within extended irreversible thermodynamics for a static space.
The main motivation for analyzing the results in such a framework are the mathematical
advantages that EIT possesses over CIT, i.e., stability and causality. As far as the authors
are aware, this problem has been addressed under different considerations. For example,
in [24], viscous CDM is considered for an expanding the Newtonian universe using transient
thermodynamics to describe the bulk pressure. Moreover, Kremer and collaborators [21]
carried out an analysis of the Jeans instability for static and expanding universes using
both theories: classical irreversible thermodynamics, and (rational) extended irreversible
thermodynamics. In that work, only shear stress and heat flow are considered, neglecting
bulk viscosity. The argument for this lies in its approach from the kinetic theory, where the
bulk viscosity is not present if one takes into account a small deviation for a non-relativistic
ideal gas. From a phenomenological point of view, however, this kind of dissipation is
present4. The authors refer to this as five and thirteen field theories, following the language
of Müller and Ruggeri [26].

The outline of this article is as follows. In Section 2, we briefly review Jeans’ work,
closely following classic references [3,5]. Section 3 serves to briefly recall the differences
between classical irreversible thermodynamics (CIT) and extended irreversible thermody-
namics (EIT). We are interested in explicitly giving the constitutive equation for the bulk
and the shear stresses in both theories, which will be needed later in the work. In Section 4,
the linearized system of equations is given together with the dispersion relation, which
is analyzed through the Routh–Hurwitz criterion. In Section 5, we analyze the behavior
of the roots of the cubic dispersion relation. In Section 6, we summarize and discuss the
results obtained and sketch some possibilities for future extension.

2. Jeans’ Gravitational Instability

In this section, we briefly recall Jeans’ work for the sake of completeness and com-
parison. As we already mentioned in the introduction, a self-gravitating (ideal) fluid
in Euclidean 3-dimensional space is considered, for which the Euler–Poisson system of
equations in index notation reads

∂ρ

∂t
+∇b(ρvb) = 0, (1)

∂va

∂t
+ (vb∇b)va − ga +

1
ρ
∇b p = 0, (2)

εabc∇cgb = 0, ∇aga = −4πGρ. (3)

Here, εabc is the Levi–Civita symbol and G denotes Newton’s constant. ρ is the mass
density of the fluid, ga are the Newtonian gravitational force field components, va are
the local 3-velocity components, and all the indices range as {1,2,3}. The interest lies in
the time evolution of a small density fluctuation of the mass density within the cloud.
Thus, a linear perturbation of the system of Equations (1)–(3) is considered, under the
assumption that the background cloud is static and uniform5, requirements lead to the
so-called Jeans–Swindle [6]. Many arguments regarding this hypothesis exist, ranging
from magnetic forces, rotations, or other sources being present and adjusting to cancel
the contribution of the unperturbed gravitational field. A possible argument to solve the
problem is that in an expanding universe with a cosmological constant, there is a term that
balances with the background density, so there would be no need for the swindle [27,28].
As for the perturbation analysis, one assumes that only the fluctuations satisfy Poisson’s
equation, and write

ρ(r, t) = ρ0 + δρ(r, t), va = va
0 + δva(r, t) = δva(r, t), ga(r, t) = ga

0 + δga(r, t), (4)
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where a barotropic equation of state p(ρ0 + δρ) = p(ρ0) + δp with δp = c2
s δρ is also

considered where c2
s = dp

dρ is the speed of sound. The linear version of Equations (1)–(3) is
given by

∂δρ

∂t
+ ρ0(∇aδva) = 0, (5)

∂δva

∂t
− δga +

c2
s

ρ0
∇aδρ = 0, (6)

εabc∇cδgb = 0, ∇aδga = −4πGδρ. (7)

Then, an evolution equation for δρ is obtained by taking the divergence of Equation (6)
together with Equations (5) and (7), it follows that

∂2δρ

∂t2 = c2
s∇2δρ + 4πGρ0δρ. (8)

A plane wave solution of the form δρ = exp(ik · r− iωt) is proposed, with ω the angular
frequency and k the wavenumber. By substituting this into Equation (8), the following
dispersion relation is obtained

ω2 − c2
s k2 + 4πGρ0 = 0, (9)

where k is the magnitude of k and the solutions are given by:

ω = ±
√

ω̄, ω̄ = c2
s k2 − 4πGρ0 = c2

s

(
k2 − k2

J

)
, (10)

where

k J =

(
4πGρ0

c2
s

)1/2
, (11)

is the so-called Jeans wavenumber. For ω̄ > 0, the density perturbation δρ oscillates, while
for ω̄ < 0 the perturbation grows (or decays) exponentially, i.e., δρ behaves like δρ∼e±Γt,
where Γ = cs(k2

J − k2)1/2. If instead of using the wavenumber k J , we use the wavelength,
we can write the Jeans wavelength as

λJ =
2π

k J
=

(
π

Gρ0

)1/2
cs, (12)

which gives us the bound on the size of the system. Moreover, a characteristic dynamical
time can be obtained; this can be observed more properly if Γ is rewritten as

Γ = ±
[

4πGρ0

(
1−

λ2
J

λ2

)]1/2

. (13)

This form of Γ allows us to estimate the dynamical time when the cloud is large enough, i.e.,
when λ� λJ , then the effective frequency goes as Γ∼(Gρ0)

1/2. Therefore, the dynamical
collapse time is about tdyn∼(Gρ0)

−1/2. Finally, the Jeans mass MJ can be obtained by
assuming that the cloud is spherical with radius λJ/2, given as:

MJ =
4
3

πρ

(
λJ

2

)3
=

4
3

πρ

(
π

k J

)3
. (14)

We conclude this section by mentioning that the Jeans instability can be described in terms
of the time scale associated with the gravitational collapse and the time during which
pressure is applied to the system as τG < τp, where τG ∝ (Gρ)−1/2 and τp ∝ λc−1

s . The next
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section will clarify the path when instead of assuming an ideal fluid, as is conducted here,
a non-ideal fluid is considered. Since this problem goes beyond the mechanical treatment,
a thermodynamic point of view is needed. Therefore, the next section serves this purpose.

3. Non-Equilibrium Thermodynamics: CIT and EIT

As mentioned above, our interest in this work is to consider non-ideal fluids. In
order to treat these media properly, it is necessary to appeal to a non-equilibrium theory.
It is therefore important to consider the framework under which we will describe these
phenomena, since there is a wide range of theories that attempt to adequately include
dissipation; see, for instance, Refs. [29,30] for an overview6. In this article, we consider
two theories known in the literature as classical irreversible thermodynamics (CIT) and
extended irreversible thermodynamics (EIT). The reasons for this particular choice are:
(i) The structure of the theories allows a direct application and (ii) the relativistic extensions
are widely employed7.

In CIT, the constitutive equations linearly relate dissipative fluxes and forces and give
rise to Navier–Stokes–Fourier type equations. Indeed, the distinction between (CIT) and
(EIT) can be observed in the expressions for the dissipative fluxes. In the case at hand, the
relevant difference resides in the equations for the quantities p(v) and σab

(v), which appear in

the stress tensor σab, which decomposes as follows8

σab = −pgab − σ̂ab, σ̂ab = p(v)gab + σab
(v), σa

a(v) = 0, a, b ∈ {1, 2, 3} (15)

where p is the hydrostatic pressure, σ̂ab denotes the viscous stress tensor while p(v) and
σ̂ab
(v) denotes the bulk pressure and the shear stress (a spatially symmetric traceless tensor),

respectively, with gab the Euclidean inverse metric with gab = diag(1, 1, 1). However, the
real difference resides on their foundations, which deserves a closer look. We devote the
next two subsections to a brief outline on this regard in a phenomenological sense.

3.1. CIT

The main tenet in this formalism is the local equilibrium postulate, which assumes
that at each point, considered as an infinitesimal volume element, the fluid is in thermo-
dynamical equilibrium. Under this assumption, at any point (r, t) within the media all
relations of equilibrium thermodynamics are valid. This allows one to define in a clear
manner the concept of entropy, pressure, etc., and make use of the Gibbs relation with one
major difference: that the thermodynamical quantities are now space and time-dependent:

T(r, t)ds(r, t) = dε(r, t) + p(r, t)d
(

1
ρ(r, t)

)
. (16)

Above s denotes the entropy density, ε is the internal energy per unit mass (specific internal
energy), and v(r, t) = 1/ρ is the specific volume. The Gibbs relation (16) comes along with
an equation for the balance of energy and mass conservation. The behavior of the entropy
density along the flow lines is given by:

ρṡ +∇a Ja
E = σ. (17)

Above and here on, a dot over a quantity denotes

ḟ =
∂ f
∂t

+ va ∂ f
∂xa . (18)

Moreover, JE is the entropy flux vector (which can enter or leave the volume element), and
σ denotes the entropy production which, according to the second law of thermodynamics,
must satisfy that σ ≥ 0. The particular form of JE and σ comes from two aspects (i) the
Gibbs relation (16), and (ii) the balance equation for ε (which takes into account the Cauchy
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stress tensor, heat flux, and heat supply). Among the relevance of these lines of thought is
that the Fourier–Navier–Stokes laws are proposed in order to comply with the second law.
That is, they are not taken as known a priori9 but formulated as:

p(v) = −ζ∇ava, σ(v)ab = −2ηu(t)ab, a, b ∈ {1, 2, 3} (19)

with

ζ > 0, η > 0, u(t)ab =
1
2

(
va,b + vb,a −

2
3
(∇cvc)gab

)
, ua,b =

∂va

∂xb
, (20)

η and ζ denoting the shear viscosity and bulk viscosity, also referred to as first and second
viscosity, respectively. The expressions (19) and (20) will be used later on in this paper and
are the constitutive equations for bulk viscosity and shear stress within CIT theory. As we
will observe below, within the extended theory, the constitutive relations given above cease
to be purely algebraic relations between the primary variables (ρ, v) and (p(v), σ(v)), with
the latter becoming dynamic.

3.2. EIT

In extended irreversible thermodynamics, the local equilibrium postulate is discarded.
Instead, a drastic and novel perspective is considered. The idea was first put forward by
Müller in 1967 [45] and led him and collaborators to formulate the program of rational10

extended irreversible thermodynamics, as well as its extension to the relativistic case known
as the theory of Liu, Müller and Ruggeri (or relativistic extended thermodynamics) [34].
It turns out that the work of Müller at the relativistic level served as the basis for a new
formulation given a few years later, known as the divergent type theory.

The central point in extended thermodynamics is the assumption that there exists a
function called the “generalized entropy”, which depends not only on the equilibrium state
variables but now also on the dissipative fluxes11, i.e., sge

(
e, v, p(v), σab

(v)

)
. Now, since the

entropy density sge must be maximal at equilibrium and must be a scalar function, the dissi-
pative fluxes appear quadratic in it (see, for instance, Refs. [26,29,30] and references therein).

sge(r, t) = sleq(ε, v) + b(p(v))2 + cσab
(v)σ(v)ab, a, b ∈ {1, 2, 3}. (21)

As in the previous subsection, the behavior of the generalized entropy along the flow lines
results in a continuity equation for sge, and demanding that the second law should be
fulfilled leads to the following equation for p(v) and σ(v)

p(v) = −ζ∇ava − τ0 ṗ(v), σ(v)ab = −2ηu(t)ab − τ2σ̇(v)ab, a, b ∈ {1, 2, 3}. (22)

where τ0 and τ2 are relaxation times. The resulting expressions (22) turn out to be the
Maxwell–Cattaneo equations12, first proposed ad hoc in order to remove the infinite speed
of propagation but now derived from the first principles. Our aim in this work is to consider
Equation (22) to treat Jeans’ instability when bulk viscosity is considered and obtain the
CIT counterpart by taking the τ0 → 0 limit. Following the approach outlined in Section 2,
we now consider a non-ideal fluid and close the system of equations with Equation (22).

4. Stability Criterion in the Presence of Bulk Viscous Dissipation

In this section, the dynamics of the fluctuations are analyzed in the linear regime by
considering only bulk viscous dissipation, as mentioned above. With the discussion of
Section 3 in mind, we propose an analysis based on EIT which reduces mathematically to
the CIT case when considering τ0 = 0. Thus, the viscous contribution to the stress tensor is
given by

σab = −
(

p + p(v)
)

gab, a, b ∈ {1, 2, 3} (23)
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with p(v) being given by the dynamic equation (221). Upon considering the hypotheses in
Equation (4) and adding an analogous one for p(v), the linearized set of equations for the
corresponding fluctuations is given by

∂δρ

∂t
+ ρ0δθ = 0, (24)

ρ0
∂δva

∂t
− ρ0δga +

kT
m
∇aδρ +∇aδp(v) = 0, (25)

εabc∇cδgb = 0, ∇aδga = −4πGδρ, (26)

τ0
∂δp(v)

∂t
+ δp(v) + ζ0δθ = 0, (27)

where we write again Equation (7) for the gravitational field for completeness. Notice
that Equations (24) and (27) only depend on the velocity fluctuations through its di-
vergence. Thus, in order to analyze the modes, we separate the problem by defining
δUa = εabc∇cδvb = 0 and δθ = ∇aδva. Such a procedure decouples the so-called transverse
mode which, in this particular case where only bulk viscous dissipation is considered,
remains constant. Indeed, calculating the curl of Equation (25), one obtains ρ0

∂δUa

∂t = 0.
On the other hand, the behavior of the longitudinal mode is given by the solution of

the following system:

∂2δρ

∂t2 − 4πGρ0δρ− kT
m
∇2δρ−∇2δpv = 0, (28)

τ0
∂δp(v)

∂t
+ δp(v) − ζ0

ρ0

∂δρ

∂t
= 0. (29)

Notice that this procedure not only isolates the components of the velocity which can
lead to an instability but also reduces the system of equations significantly. Assuming
a plane wave solution (denoting the wave vector as qa instead of ka) as in Section 2,
Equations (28) and (29) can be recast as(

s2 + q2 kT
m − 4πGρ0 q2

− ζ0
ρ0

s τ0s + 1

)(
δ ˆ̃ρ

δ ˆ̃p(v)

)
=

(
sδρ̃(q, 0) + ∂δρ̃

∂t (q, 0)
τ0δ p̃(v)(q, 0)− ζ0

ρ0
δρ̃(q, 0)

)
(30)

where the behavior of the solution can be inspected by analyzing the nature of the roots of
the dispersion relation, which is given by

s3 +
1
τ0

s2 + s
((

c2
s +

ζ0

ρ0τ0

)
q2 − 4πGρ0

)
+

1
τ0

(
c2

s q2 − 4πGρ0

)
= 0. (31)

Indeed, the solution for density fluctuations will present the following structure

δρ ∼
3

∑
i=1

(cos(Im(si)t) + i sin(Im(si)t)) exp(Re(si)t), (32)

being Re(si) and Im(si) the real and imaginary parts of the three roots of Equation (31),
respectively. An instability thus occurs if at least one root of the dispersion relation lies on
the right half of the complex plane. Notice that, normalizing the norm of the wave vector
and time parameter, as follows

S = τGs, K =
q2

q2
J
,
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allows us to write Equation (31) in a compact form, namely

a3S3 + a2S2 + a1S + a0 = 0, (33)

a3 = 1, a2 = R, a1 = (1 + χR)K− 1, a0 = R(K− 1),

where χ =
ζ0qJ
ρ0cs

, and R = τG/τ0 is the ratio of the relaxation time of the dynamic pres-
sure and a time characterizing the scale corresponding to the gravitational field of the
equilibrium state:

τG =

√
1

4πGρ0
.

Notice that in the limit τ0 → 0, one recovers the case of CIT [16], where the dispersion
relation is a quadratic polynomial, namely,

S2 + χKS + (K− 1) = 0. (34)

Unstable modes can be identified by applying the Routh–Hurwitz criterion to the
cubic polynomial given by Equation (33). Indeed, the number of roots with positive real
parts is given by the number of sign changes in the following array

{a3, a2, b1, a0}, b1 =
a2a1 − a3a0

a2
.

Clearly a3 > 0 and a2 > 0, while for b1, one has

b1 = χRK,

which is also positive. This leaves the criterion for instability up to a0 < 0, or K < 1,
which entails

q2 < q2
J .

Thus, the threshold for the system to be unstable is not altered by introducing a dynamic
pressure as a dissipation effect within EIT. Indeed, the relaxation time contained in the
parameter R does not enter the criterion whatsoever, and the result obtained by considering
the dispersion relation given by Equation (33) holds as is the case in the CIT scenario.
However, notice that in the present situation, the requirement χ ≤ 1 is not present and the
Jeans criterion applies for any magnitude of the bulk viscosity.

The analysis performed above yields a criterion that separates two physical scenarios.
For q2 > q2

J , the density fluctuations decay in time and the system remains stable, returning
to its equilibrium state. On the other hand, for K < 1 the initial fluctuation grows expo-
nentially, which may be traced down to the gravitational field created by it winning over
the pressure gradient of the cloud, even in the presence of dissipation. Figure 1 shows the
real and imaginary parts of the corresponding modes in both scenarios for the CIT and EIT
cases. Notice that for K < 1 both theories feature a growing mode, corresponding to the
gravitational instability. However, there exists a narrow region within this scenario in the
EIT case where the unstable mode oscillates with a growing amplitude. This behavior is
exclusive of this framework and depends on the magnitude of the corresponding relaxation
time τ0.
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2.0
K

-1.0

-0.5

0.5

1.0

S

CIT

2.0
K

-1.0

-0.5

0.5

1.0

S

EIT

Figure 1. The real (continuous line) and imaginary (dotted line) parts of the corresponding modes in
the CIT (left) and EIT (right) scenarios for χ = 0.05, just for schematical purposes. The different roots
of the corresponding modes are plotted in different colors (blue, red, and gray) and the background
colors separate the behavior of the former. It must be mentioned that the red background region
decreases with growing R and disappears when R→ ∞.

5. Dynamics of Fluctuations in the Low-Density Limit

Extended irreversible thermodynamics leaves the magnitude of the relaxation param-
eter unspecified while assuming that it shall be “small”. Due to this assumption, it seems
plausible to consider R� 1 as a relevant case to study. Moreover, this assumption implies
a weak gravitational field in the equilibrium configuration, which is consistent with the
classical treatment carried out in this work. Notice that this limit shall contain the result
obtained for the dynamics of fluctuations in the CIT case. Indeed, the dispersion relation in
such a scenario is given by Equation (34), where one can readily identify the threshold for
stable behavior to be also given by K > 1. Moreover, the regime which is here considered
for the EIT case corresponds to the blue (middle) region of the right-hand side plot of
Figure 1, where the three roots of the dispersion relation are real.

5.1. Damped Modes

If K > 1, the three roots of Equation (33) lie on the left hand side of the complex plane
and thus an exponential decay is expected for density fluctuations. Figure 2 shows the
behavior of the roots. Notice that the purely decaying mode is not plotted and the figure
only features the damped oscillating ones. In order to simplify the notation and allow for a
more direct comparison with previous results, we introduce the following definitions.

2.0
K

-1.0

-0.5

0.5

1.0

S

Figure 2. The behavior of the oscillating modes in the case K > 1 as functions of K and for the values
R = 0.001 and χ = 0.05. The root corresponding with the decaying mode is not being plotted because
it is at least 3 orders of magnitude larger than the others. Again, the continuous lines represent the
real parts, and the dotted lines represent the imaginary parts of the roots.
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τ(CIT) =
2

Kχ
, ω(CIT) =

1
2

√
K(4− Kχ2)− 4, (35)

which correspond to the characteristic decay time and oscillation frequency respectively in
the stable CIT case, namely the two roots of Equation (34) in the K > 1 case. The modes in
the EIT can thus be written in this approximation as

S(EIT)1 ∼ −R + Kχ

(
1 +

Kχ

R

)
, (36)

and

S(EIT)2,3 ∼ −
1

τ(CIT)

(
1 +

Kχ

R

)
± iω(CIT)

(
1 +

Kχ

2R

(
1− K2χ2

4ω2
(CIT)

))
. (37)

The real root s(EIT)1 corresponds to a very fast decaying mode. To leading order, the
characteristic decay time for this component goes as τ/τG � 1. On the other hand, the
conjugate roots imply damped modes whose decay time and frequency can be rewritten in
terms of the corresponding quantities in the CIT case, as follows:

S(EIT)2,3 ∼ −
1

τ(CIT)(1− ε1)
± iω(CIT)(1− ε2), (38)

with

ε1 =

(
1 +

R
Kχ

)−1
, (39)

ε2 =
1

Rτ(CIT)ω
2
(CIT)

(
1− K +

2
τ2

(CIT)

)
. (40)

Figure 3 shows the behavior of the characteristic time and oscillation frequency for these
conjugate roots compared with the CIT case (R→ ∞). Here, it is worthwhile to comment
that in this stable region, the non-dissipative characteristic time can be thought of as infinite
since the modes present a free oscillation. Thus, in this stable scenario, one obtains τ(ND) →
∞, where here and in the rest of the analysis we use ND to denote the non-dissipative case
quantities. This implies that in the stable case, the decay time for fluctuations in the three
theories satisfies:

τ(EIT) < τ(CIT) < τ(ND) (41)

ω(CIT)

ω(EIT)

1.2 1.4 1.6 1.8 2.0
K

-0.2

0.2

0.4

0.6

0.8

1.0

τ(CIT)

τ(EIT)

1.2 1.4 1.6 1.8 2.0
K

2.5

3.0

3.5

4.0

Figure 3. The oscillation frequency (left) and the decay time (right) of the stable modes for CIT and
EIT theories.

5.2. Ustable Mode

Even though the criterion for instability to be present in the system is not modified
by bulk viscous dissipation, its effect in the characteristic time for the growth of unstable
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modes can be addressed in the relevant limit. Considering as before R� 1 and K < 1, the
three roots of Equation (33) are real and can be written as

S(EIT)1J ∼
K2χ2

R
+ Kχ− R, (42)

and

S(EIT)2,3J ∼
1

4α

[
−2Kχα± 4α2 +

Kχ

R

(
−2Kχα±

(
4α2 − 2(1− K)

))]
, (43)

where α = 1
2

√
4− K(4− Kχ2) = −iω(CIT). In particular, one can demonstrate that the

exponentially growing behavior for large values of R corresponds to s(EIT)2 (considering
the “+” sign in Equation (43)). In order to compare the growth time with the one obtained
in the CIT case, we define the corresponding root in the R→ ∞ limit as (and for emphasis
we have added a subscript J in the following equations to indicate Jeans’ instability.)

S(CIT)J =
1
2

(√
4− K(4− Kχ2)− Kχ

)
, (44)

which enables us to write

S(EIT)2J = S(CIT)J +
Kχ

4Rα

(
4α2 − 2(1− K)− 2Kχα

)
, (45)

or, in terms of the characteristic growth time

τ(EIT)J = τ(CIT)J(1− ε3),

where

ε3 =
2Kχ(1− K)

4Rα2 + 2Kχ(1− K + Rα)
> 0.

The present result implies a smaller growth time compared to CIT, but still larger than in
the non-dissipative case, where τ(ND) =

√
1− K. Indeed, one can demonstrate that

τ(ND)J < τ(EIT)J < τ(CIT)J (46)

which is illustrated in Figure 4. Thus, dissipation clearly delays the onset of the gravitational
instability, demonstrating that viscosity works in favor of the pressure gradient. This effect
is less sharp in the EIT case compared to the CIT one.

τ(ND)

τ(CIT)

τ(EIT)

0.2 0.4 0.6 0.8 1.0
K

2

3

4

5

6

Figure 4. In the unstable region: the growth times for the non-dissipative, CIT and EIT cases.
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6. Discussion and Concluding Remarks

In this work, we have used the classical theory of extended irreversible thermodynam-
ics to study the gravitational instability of a fluid with viscous pressure. To keep the work
self-contained, we used the first sections of the paper to recall the Jeans mechanism, i.e.,
the Euler–Poisson, and Navier–Stokes–Poisson systems of equations. It is worth noting
that our treatment is entirely Newtonian, although our interest is in the relativistic regime.
This remark is intended to draw attention to the fact that, as we mentioned in the introduc-
tion, several works combine two aspects: on the one hand, the fluid is described by the
classical Navier–Stokes–Poisson system within Newtonian or neo-Newtonian cosmology,
while the bulk viscosity is described by Eckart’s theory and transient thermodynamics,
which are completely relativistic. We would like to emphasize that although the basis of
first- and second-order non-equilibrium thermodynamics follows the “same principles”,
whether relativistic or not, and the structure is quite similar, the relativistic case has its own
complications. For example, in the relativistic case, the 4-velocity plays a role in first-order
theories, in which it is not uniquely defined. Moreover, Eckart’s theory, which is formulated
in the particle frame, leads to unphysical dynamics in the linear regime, and thus one needs
to be cautious when applying such theory to physical problems such as gravitational insta-
bility. Landau’s energy frame or modifications to Eckart’s formulation have been shown
to circumvent this problem in a comoving frame but present pathologies in a boosted
one [35,46]. On the other hand, in the second-order theory, there is freedom; any 4-velocity
within the cone of pseudo-angle φ is adequate, and the theory is form-invariant under a
change of frame in this case. However, this does not happen in the Newtonian domain
where the 3-velocity is unambiguously defined.

As we have demonstrated, the introduction of an extended theory to describe dissipa-
tion leads to a cubic dispersion relation for the linearized system, instead of the quadratic
relation which appears in the non-dissipative case as well as in the dissipative one when
CIT is used. Here, we have carefully analyzed the modes’ propagation and compared
them with the case of those obtained in the CIT scenario; the results are summarized in
Table 1. The precise dynamics of both damped and growing modes were addressed in the
low-density scenario.

Table 1. A summary of the growth times and oscillation frequencies obtained from the non-dissipative,
CIT and EIT theories for the stable (K > 1) and the unstable (K < 1) regions.

K < 1

ND CIT EIT

τ(ND)J =
1√

1− K
τ(CIT)J = τ(ND)J(1 + ε3) τ(EIT)J = τ(CIT)J(1− ε3)

ε3 =
2

τ(ND)J

1√
4(1− K) + K2x2 − Kx

− 1 > 0 ε3 =
2Kχ(1− K)

4Rα2 + 2Kχ(1− K + Rα)
> 0

K > 1

ND CIT EIT

τ(ND) → ∞ τ(CIT) =
2

Kχ τ(EIT) = τ(CIT)(1− ε1)

ε1 =
(

1 + R
Kχ

)−1
> 0

ω(ND) =
√

K− 1 ω(CIT) = ω(ND)(1− ε2) ω(EIT) = ω(CIT)(1− ε2)

ε2 = 1−
√

4K− 4− K2χ2

2ω(ND)
> 0 ε2 =

(
1− K + 2

τ2
(CIT)

)
Rτ(CIT)ω

2
(CIT)

In the stable region, three modes are identified for the EIT case: two corresponding
to damped oscillations and a purely decaying one. The purely damped mode decays in a
very short time, while the oscillating ones decay in a time that is shown to be smaller than
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in the CIT case. Indeed, in the CIT framework, only two damped oscillating modes are
obtained whose frequencies can be lower or higher than in the EIT counterpart depending
on the value of the viscosity for each wavenumber. This behavior is illustrated in Figure 3
for both cases. In the non-dissipative case, only oscillating modes are obtained, which can
be thought of as having an infinite decay time (oscillation amplitude is constant), and thus
one can order the characteristic decay time of fluctuations in the stable scenario as specified
in Equation (41) and can be observed in Figure 3 and in Table 1.

The unstable case analyzed in this work corresponds to non-oscillating modes in both
CIT and EIT. As mentioned above, there is a regime for small values of R, in which the
instability in EIT corresponds to a growing amplitude of an oscillating solution. However,
in the low-density case here considered, the three formalisms predict real solutions to the
dispersion relation, whose inverse corresponds to a characteristic time. In this case, the CIT
theory predicts a slower growth than in both EIT and ND cases; thus, the non-dissipative
scenario corresponds to the fastest onset. This behavior can be observed in Figure 4.

The previous paragraph’s discussion suggests that bulk viscous dissipation favors
the pressure gradient in the case of gravitational instability by delaying the onset of a
collapse. Indeed, the non-dissipative case shows a speedy onset, while the time predicted
by both non-equilibrium theories is large. Moreover, including a relaxation time in the
constitutive equation for the dynamic pressure makes this delay less intense. In the stable
case, fluctuations also die off slower in the EIT case. The particulars of this scenario can be
more thoroughly explored by studying the properties of the Rayleigh–Brillouin spectrum.
Such a discussion will be addressed elsewhere.

The results here obtained, and summarized in the paragraphs above, shed light on how
the relaxation time parameter present in the EIT formalism (and absent in CIT) affects the
Jeans mechanism for structure formation. As mentioned in the Section 1, the applications
range from astrophysical systems (e.g., star formation) to cosmological problems (formation
of large-scale structures). As we have demonstrated, this parameter affects the efficiency
with which the bulk viscosity delays the decay or growth of density fluctuations. Note,
however, that a Newtonian treatment limits the scope and thus the applicability; for
example, at the cosmological level we are limited to certain epochs of the Universe, and
for astrophysical systems we are limited to only those whose gravitational fields are weak
with cold matter. We remark that our work can provide insights into the analysis of the
top-down fragmentation process, i.e., the simultaneous comparison of the evolution of
two structures: a collapsing cloud with a larger mass than the Jeans limit and an internal
cloud with a lower one [16]. It can also be used to compare Jeans’ masses for ideal and
non-ideal fluids appealing to the Jeans’ mass-temperature relation (MJ − T) for different
astrophysical configurations, for example, diffuse hydrogen clouds where the temperature
is approximate to the order of T∼50 K, giant molecular clouds—T∼10 K, cold neutral
media—10–100 K, warm neutral media—103–104 K, HII regions, etc., (see Ref. [21] and
references therein), with K denoting Kelvin.

An interesting question is how an expanding background might affect the conclusions
drawn within the EIT framework. This entails considering that the background is no longer
static, but an expanding Newtonian universe. As we noted earlier, this has been discussed
in the literature, where cold dark matter (CDM) is modeled as viscous (CDM), i.e., (vCDM),

considering the profile for the bulk viscosity as ζ = ζ0

(
ρ
ρ0

)s
, which is the same one used

by Carlevaro. This profile goes unnoticed when CIT is used and a static space is considered.
On the contrary, for an expanding (Newtonian) universe, it plays a role, since the first term
of the perturbation δp(v) does not vanish, and this directly affects the dispersion relation.
This problem is being currently addressed and will be reported elsewhere.
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Notes
1 Weinberg [3] assumes that the gas cloud is infinite, i.e., the universe is filled with a non-relativistic fluid. This in turn means that

the gravitational field strength at any point is not well-defined within the Newtonian theory of gravity. However, the hydrostatic
equilibrium equation is not satisfied in the case of finite mass, which, again, is an issue.

2 By Newtonian cosmology, we refer to the articles of Milne [7], Milne and McCrea [8], and subsequent work
3 We would like to comment that Eckart and Landau–Lifshitz’s formalisms are relativistic theories for non-perfect fluids, whose

structure is similar to the non-relativistic case. Indeed, they can be thought of as the relativistic equivalent to the Navier–Stokes
formalism and have been shown to lead to unphysical behavior in some scenarios (see the discussion in Section 3).

4 More precisely, from the kinetic point of view, a small deviation from the Maxwellian distribution function is considered, i.e.,
the first (some authors call it second) order approximation and the Chapman–Enskog method is applied; as a result, no bulk
viscous term appears in the pressure tensor, only the (thermodynamic) pressure and shear. See the appendix in [21] and chapter 3
of [25]. On the contrary, the bulk viscosity at the macroscopic level is included in the viscous stress tensor. The same happens
in the relativistic domain for non-perfect fluids, where an effective pressure is assumed to be P = p + Π, with Π the dynamic
pressure or bulk pressure, and P defined as P = 1

3 ∆αβTαβ, indices α, β running as {0, 1, 2, 3} and ∆ being the projection tensor.

In equilibrium, Π vanishes, leaving only P
∣∣∣
E
= p(ρ, n), but doing this leads to the question of how we distinguish one from

the other.
5 For the sake of clarity, let us note the following: We are considering a static space, i.e., a space that does not evolve in time (it

does not expand or contract), while we say that the cloud is static because the medium’s velocity is zero. On the other hand, the
cloud is uniform. In other words, the mass density within the cloud is homogeneous or constant (independent of space and
time). A point worth noting is that considering a finite cloud requires specific boundary conditions, while an infinite one does
not. Moreover, problems with the gravitational field are present in both scenarios, and are already mentioned in the Note 1.

6 It is worth mentioning that the theories summarized in [29] are entirely phenomenological, regardless of whether they are
microscopically supported by statistical mechanics or kinetic theory. Indeed, in this article, we have used classical irreversible
thermodynamics and extended irreversible thermodynamics, which have a well-established microscopic basis in both rela-
tivistic and non-relativistic scenarios. For instance, CIT is obtained from the Chapman–Enskog expansion of the Boltzmann
equation, while EIT is associated with the Grad’s moments method. For a detailed description of these kinetic formalisms, see
Refs. [25,31,32]. In addition, it should be mentioned that Jeans’ instability has been studied from a kinetic theory approach in
Ref. [33].

7 We want to emphasize that our treatment is entirely Newtonian. However, since we keep mentioning non-equilibrium relativistic
thermodynamics, we wish to clarify its meaning. First, the relativistic extension of CIT are the so-called first-order theories,
namely Eckart, Landau–Lifshitz (LL) and Hiscock–Lindblom (HL), while the relativistic extensions of EIT are the Müller-Israel-
Stewart (MIS) [31] and the Liu-Müller-Ruggeri (LMR) [34] theories. In Ref. [35] the authors demonstrate that first-order theories
are unstable in a general (non-comoving) frame, i.e., velocity perturbations diverge, while Ref. [36] establishes that (MIS) is a
causal and stable theory. This makes (MIS) a consistent theory, adequate for describing non-equilibrium relativistic processes.
However, a weakness of (MIS) is whether the equations form a symmetric-hyperbolic system. Several efforts were heading in this
direction, for instance, in Liu-Müller-Ruggeri [34], the divergent type theory [37], and more recently in the BDNK theory [38,39].
A feature of these theories is that they all point to a close relationship between (thermodynamic) stability and causality, which is
also carefully explored in Refs. [40,41]. However, obtaining a symmetric-hyperbolic system of equations is not unique to the
relativistic case. Moreover, the Newtonian approach follows this direction, and in fact, Müller and co-workers have pushed this
idea ahead, developing their (rational) extended irreversible thermodynamics [26].

8 The notation used here to denote the stress, viscous stress and shear tensors follows Landau–Lifshitz (see Equation (15.2),
Chapter II: Viscous fluids, in Ref. [42]), with a different sign convention. The motivation for this choice also comes from
Marsden [43], where the (Cauchy) stress tensor is denoted by σab. This lack of standard notation is a source of confusion even
among the community. This is also true in the relativistic case, e.g., Israel in Ref. [44] uses σ and σαβ with α, β ∈ {0, 1, 2, 3} to
denote the bulk and shear stresses, respectively, while in [31] Π and παβ are used. On the other hand, Hiscock and Lindblom
used τ and ταβ in [36], respectively.
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9 For a full discussion and details, see, for instance, [26,29,30].
10 The authors themselves explain the term rational in the preface [26].
11 In this article, we omit any discussion of the problems associated with the foundations of the theories used here for analysis. A

critical and very readable treatment can be found in the book by Jou and collaborators [29]; see also [26].
12 Note that the constitutive equations in EIT are much richer than those shown here (see, e.g., Equations (2.70)–(2.72) in [29] and

also Equation (2.13) in [26]), but neglecting the heat flux reduces the system, resulting in constitutive equations for viscous stress
and viscous pressure such as in the Maxwell–Cattaneo system.
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