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Abstract: We investigate the class of helical hypersurfaces parametrized by x = x(u, v, w), character-
ized by a light-like axis in Minkowski spacetime L4. We determine the matrices that represent the fun-
damental forms, Gauss map, and shape operator of x. Furthermore, employing the Cayley–Hamilton
theorem, we compute the curvatures associated with x. We explore the conditions under which the
curvatures of x possess the property of being umbilical. Moreover, we provide the Laplace–Beltrami
operator for the family of helical hypersurfaces with a light-like axis in L4.
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1. Introduction

Mathematicians, physicists, and other researchers have dedicated significant efforts to
the study of hypersurfaces over the years. Let us briefly touch upon some of the studies
that have been conducted.

Obata [1] established certain conditions under which a Riemannian manifold can be
isometrically equivalent to a sphere. Takahashi [2] demonstrated that a connected Eu-
clidean submanifold is of 1-type if and only if it is either minimal in Em or minimal in a
hypersphere within Em. He focused on minimal surfaces and determined that spheres are
the only surfaces satisfying the condition ∆x = λx, where ∆ describes the Laplace–Beltrami
operator, λ ∈ R \ {0}, and x realizes a minimal immersion in a sphere, the radius of which
is entirely determined by λ. Chern et al. [3] investigated minimal submanifolds of a sphere
with a second fundamental form of constant length. Cheng and Yau [4] explored hypersur-
faces with constant scalar curvature, while Lawson [5] delved into the study of minimal
submanifolds and provided a comprehensive definition of the Laplace–Beltrami operator.

Chen [6–9] provided a comprehensive study of finite-type submanifolds that can
be immersed into Em (or Em

ν ) using a finite set of eigenfunctions of their Laplacian. The
works of [7,10,11] explored certain aspects of 2-type closed submanifolds with spherical
geometry. Garay [12] focused on extending Takahashi’s theorem in the context of Em.
Additionally, Chen and Piccinni [13] researched submanifolds in Em that possess a finite-
type Gauss map. In the realm of space forms, Chen et al. [14] dedicated four decades to
the study of 1-type submanifolds and the 1-type Gauss map. These investigations have
contributed significantly to our understanding of the properties and characteristics of
these submanifolds.

In the three-dimensional Euclidean space E3, a significant result, known as Bour’s
theorem [15], emerges when considering the properties of ruled surfaces, specifically
helicoidal or helical surfaces. Do Carmo and Dajczer [16] utilized Bour’s theorem to
establish the existence of a two-parameter family of helical surfaces that are isometric to
a given helical surface. Ferrandez et al. [17] proved that surfaces satisfying ∆H = AH
are either minimal, open portions of a sphere, or open portions of a right circular cylinder,
where H denotes the mean curvature vector field in an (n + 1)-dimensional real space,
A ∈ Mat(3, 3). Choi and Kim [18] carried out a classification of minimal helicoids based
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on the pointwise 1-type Gauss map of the first kind. Garay [19] studied a specific class
of revolution surfaces that exhibit finite-type characteristics. Dillen et al. [20] discovered
that the only surfaces satisfying ∆r = Ar + B (where A ∈ Mat(3, 3) and B ∈ Mat(3, 1))
are minimal surfaces, spheres, and circular cylinders. Stamatakis and Zoubi [21] focused
on revolution surfaces satisfying ∆IIIx = Ax. Senoussi and Bekkar [22] investigated
finite-type helical surfaces M2 with respect to the fundamental forms I, II, and III, where
the position vector field r(u, v) satisfies the condition ∆Jr = Ar (with J = I, II, III, and
A ∈ Mat(3, 3)). Kim et al. [23] introduced the Cheng–Yau operator and studied the
Gauss map of revolution surfaces. These various studies have contributed to a deeper
understanding of the properties and classifications of surfaces in the three-dimensional
Euclidean space.

Within a three-dimensional Minkowski space L3 := E3
1, several researchers have

delved into the properties of helical surfaces with various axis types, such as space-like,
time-like, and light-like. Beneki et al. [24] explored helical surfaces in the Minkowski space,
while Güler and Turgut Vanlı [25] investigated Bour’s theorem within this context.

Mira and Pastor [26] focused on helical maximal surfaces in the three-dimensional
Minkowski space, while Kim and Yoon [27–29] examined both ruled and rotational surfaces
within the pseudo-Euclidean space. It is also worth mentioning references [25,30,31] in
this field. These collective studies contribute to our understanding of the properties and
characteristics of helical surfaces within the Minkowski geometry framework.

In the realm of the four-dimensional Euclidean space E4, various researchers have
explored different aspects of hypersurfaces and surfaces. Moore [32,33] provided a general
treatment of rotational surfaces. Hasanis and Vlachos [34] focused on hypersurfaces
with a harmonic mean curvature vector field. Cheng and Wan [35] obtained complete
hypersurfaces with a constant mean curvature (CMC). Arslan et al. [36] introduced the
Vranceanu surface, which exhibits a pointwise 1-type Gauss map. They also introduced
generalized rotational surfaces [37]. Magid et al. [38] investigated affine umbilical surfaces
within a four-dimensional space. Scharlach [39] studied the affine geometry of surfaces and
hypersurfaces in a four-dimensional space.

Arslan et al. [40] delved into the study of Weyl pseudosymmetric hypersurfaces.
Arslan et al. [41] focused on meridian surfaces in a four-dimensional space with a pointwise
1-type Gauss map. Yoon [42] explored rotation surfaces with a finite-type Gauss map in
a four-dimensional space. Güler et al. [43] investigated helical hypersurfaces, while
Güler et al. [44] focused on the Gauss map and the third Laplace–Beltrami operator of
rotational hypersurfaces.

Within Minkowski’s four-dimensional space L4, several investigations have con-
tributed to our understanding of different types of surfaces and hypersurfaces. Ganchev
and Milousheva [45] explored the analogs of the surfaces discussed in [32,33]. Arvanitoye-
orgos et al. [46] identified conditions under which a mean curvature vector field of a three-
dimensional hypersurface M3

1 satisfies the equation ∆H = αH (with α being a constant),
resulting in a constant mean curvature (CMC) for M3

1. Arslan and Milousheva [47] focused
on meridian surfaces of elliptic and hyperbolic types with a pointwise 1-type Gauss map.
Güler [48] introduced helical hypersurfaces within Minkowski’s four-dimensional space.

In a different line of research, Iliadis [49] investigated the fuzzy algebraic modeling of
paradoxes in spatiotemporal time series within cosmic-scale kinematics. Leuenberger [50]
examined the emergence of Minkowski spacetime through simple deterministic graph
rewriting. Güler [51] introduced generalized helical hypersurfaces with a time-like axis in
Minkowski spacetime.

In Minkowski space with the metric signature (+,+,+,−), let us consider the behav-
ior of helical hypersurfaces with the specified space-like and time-like axes.

If the axis of a helical hypersurface in Minkowski space has the vector (1, 0, 0, 0), it
represents a space-like direction. In this case, the hypersurface will exhibit a rotational
behavior around the axis. As we move along the axis, the hypersurface will undergo
a rotation, forming a helical shape. The precise mathematical expression of the helical
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hypersurface having a space-like axis will dictate the specific characteristics of the helix,
such as its curvature, spiral rate, and any additional variations or distortions.

If the axis of a helical hypersurface in Minkowski space has the vector (0, 0, 0, 1), it
represents a time-like direction. In this case, the hypersurface will exhibit temporal behavior
along the axis. As we move along the axis, the hypersurface will undergo temporal changes,
potentially resulting in oscillatory or pulsating patterns. The mathematical form of the
helical hypersurface having a time-like axis will determine the specific nature of these
temporal changes and any associated deformations or twists.

It is important to note that the behaviors of helical hypersurfaces in Minkowski space
are influenced by various factors, including the specific mathematical equations defining
the hypersurface, the curvature, and any additional constraints or forces acting upon it.
The author of references [48,51] provided a comprehensive explanation, which included the
relevant equations and mathematical derivations to fully describe the behaviors of helical
hypersurfaces with space-like or time-like axes in Minkowski space with metric signature
(+,+,+,−).

The aim of this study is to comprehensively investigate a specific class of helical
hypersurfaces parametrized by x = x(u, v, w), possessing a distinctive light-like axis in
Minkowski spacetime L4. Our objectives are as follows.

We aim to determine the matrices representing the fundamental forms of the heli-
cal hypersurfaces described by x. By analyzing these forms, we will gain insights into
the intrinsic properties and geometric characteristics of hypersurfaces. We will explore
the Gauss map associated with the parameterization x and calculate the corresponding
shape operator. Understanding the Gauss map and shape operator will provide valuable
information about the curvature and shape of the helical hypersurfaces. Utilizing the
Cayley–Hamilton theorem, we will compute the curvatures associated with the helical
hypersurfaces. By investigating these curvatures, we aim to identify any unique features
or properties exhibited by the hypersurfaces. Specifically, we will focus on identifying
conditions under which the curvatures display the property of being umbilical. We will
provide an in-depth analysis of the Laplace–Beltrami operator for the family of helical
hypersurfaces with a light-like axis in L4. This operator will allow us to study the behaviors
of various differential operators on these hypersurfaces, contributing to a comprehensive
understanding of their mathematical properties.

By achieving these objectives, we aim to advance our knowledge of helical hypersur-
faces with a light-like axis in Minkowski spacetime, unravel their intrinsic characteristics,
and explore their unique geometric and mathematical properties.

Our main focus is on a specific family of helical hypersurfaces denoted by x = x(u, v, w),
which is formed by rotating the light-like axis (0, 0, 1, 1) in Minkowski’s four-dimensional
space L4.

In Section 2, we delve into the properties of L4, providing formulations for the components
of the fundamental forms, Gauss map, and shape operator applicable to any hypersurface.

Section 3 is dedicated to describing the family of helical hypersurfaces within L4. By
utilizing the Cayley–Hamilton theorem, we derive the curvatures of these hypersurfaces
and compute the curvatures specifically for the helical hypersurfaces with a light-like axis.
Additionally, we establish various relationships among the curvatures Kj=0,...,3 of x.

Moving on to Section 4, we demonstrate the relationship ∆x = Lx, where L represents
a 4× 4 matrix.

Finally, in Section 5, we present the conclusions drawn from our comprehensive
investigation.

2. Preliminaries

In this section, we provide basic facts and definitions and describe notations used in
this paper.
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Let Lm denote the semi-Euclidean (i.e., Minkowski) m-space with the semi-Euclidean

metric tensor given by g̃ = 〈 , 〉Lm =
m−1
∑

i=1
dx2

i − dx2
m, where (x1, x2, . . . , xm) is an element of

length (or Lorentz metric) and xi are the pseudo-Euclidean coordinates of type (m− 1, 1).
We consider an m-dimensional semi-Riemannian submanifold M of a space Lm. We denote
the Levi–Civita connections [52] of the manifold M̃, and its submanifold M of Lm by ∇̃, ∇,
respectively. We use letters X, Y, Z, W (resp., ξ, η) to denote vector fields that are tangent
(resp., normal) to M. The Gauss and Weingarten formulas are given, respectively, by

∇̃XY = ∇XY + h(X, Y),

∇̃Xξ = −Aξ(X) + DXξ,

where h, D, and A are the second fundamental form, the normal connection, and the shape
operator of M, respectively.

For each ξ ∈ T⊥p M, the shape operator Aξ is a symmetric endomorphism of the
tangent space Tp M at p ∈ M. The shape operator and the second fundamental form are
related by

〈h(X, Y), ξ〉 =
〈

Aξ X, Y
〉
.

The Gauss and Codazzi equations are given, respectively, by

〈R(X, Y, )Z, W〉 = 〈h(Y, Z), h(X, W)〉 − 〈h(X, Z), h(Y, W)〉,
(∇̄Xh)(Y, Z) = (∇̄Yh)(X, Z),

where R, RD are the curvature tensors associated with connections ∇ and D, respectively,
and ∇̄h is defined by

(∇̄Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).

Now, let M be an oriented hypersurface in the Minkowski space Ln+1, S be the shape
operator, and x be a position vector of it. We consider a local orthonormal frame field
{e1, e2, . . . , en}, consisting of principal directions of M, corresponding to the principal
curvature ki for i = 1, 2, . . . , n. Let the dual basis of this frame field be {θ1, θ2, . . . , θn}. Then,
the first structural equation of the Cartan is given by

dθi =
n

∑
i=1

θj ∧ωij, i, j = 1, 2, . . . , n,

where ωij denotes the connection forms corresponding to the chosen frame field. We denote
the Levi–Civita connection of M of Ln+1 by ∇. Then, from the Codazzi equation, we have

ei(k j) = ωij(ej)(ki − k j),

ωij(el)(ki − k j) = ωil(ej)(ki − kl)

for distinct i, j, l = 1, 2, . . . , n.
We put sj = σj(k1, k2, . . . , kn), where σj is the j-th elementary symmetric function

given by
σj(a1, a2, . . . , an) = ∑

1≤i1<i2<...<ij≤n
ai1 ai2 . . . aij .

We use the following notation

rj
i = σj(k1, k2, . . . , ki−1, ki+1, ki+2, . . . , kn).

By the definition, we have r0
i = 1 and sn+1 = sn+2 = · · · = 0. We call the function sk

as the k-th mean curvature of M. We would like to note that functions H = 1
n s1 and K = sn
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are called the mean curvature and the Gauss–Kronecker curvature of M, respectively. In
particular, M is said to be j-minimal if sj ≡ 0 on M. See also [53,54].

In Ln+1, to find the curvature formulas Ki, where i = 0, 1, . . . , n, firstly, we use the
characteristic polynomial PS(ζ) = 0:

n

∑
k=0

(−1)kskζn−k = det(S− ζIn) = 0,

where In denotes the identity matrix of order n. Then, we obtain the curvature formulas
(n

i )Ki = si. That is, (n
0)K0 = s0 = 1 (by definition), (n

1)K1 = s1, . . . , (n
n)Kn = sn.

The k-th fundamental form of the manifold M can be described by I
(
Sk−1(X), Y

)
=〈

Sk−1(X), Y
〉

. Therefore, we have the following Equation.

n

∑
i=0

(−1)i
(

n
i

)
Ki I

(
Sn−i(X), Y

)
= 0.

For a more in-depth understanding, we recommend referring to Kühnel [54] for
additional details and comprehensive information on the subject matter.

Let x = x(u, v, w) be an immersion from M ⊂ E3 to L4 = (R4
1, 〈., .〉L4). A space-time

M is isometric to Minkowski’s four-dimensional space, which is a connected time-oriented
four-dimensional Lorentz manifold. See O’Neill’s work [55] for details.

Definition 1. In L4, a Lorentzian inner product of two vectors is defined by〈−→a ,
−→
b
〉
L4

= a1b1 + a2b2 + a3b3 − a4b4,

where −→a = (a1, a2, a3, a4),
−→
b = (b1, b2, b3, b4).

For the sake of brevity, we will just use 〈., .〉 instead of 〈., .〉L4 .

Definition 2. In L4, a Lorentzian triple vector product is determined by

−→a ×−→b ×−→c = det


e1 e2 e3 −e4
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4


with the vectors denoted by −→a = (a1, a2, a3, a4),

−→
b = (b1, b2, b3, b4),

−→c = (c1, c2, c3, c4), and
ei=1,2,3,4 determine the generators of E4, “det” describes the determinant of the matrix.

Definition 3. For a hypersurface x in Minkowski’s four-dimensional space L4, the fundamental
forms are described by

I =
(
gij
)

3×3, II =
(
hij
)

3×3, III =
(
tij
)

3×3, (1)

where
(
gij
)
,
(
hij
)
,
(
tij
)

denote the symmetric first, second, and third fundamental form matrices,
respectively. Here, the components of the matrices are given by
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g11 = 〈xu, xu〉, g12 = 〈xu, xv〉 = g21, g13 = 〈xu, xw〉 = g31,

g22 = 〈xv, xv〉, g23 = 〈xv, xw〉 = g32, g33 = 〈xw, xw〉,

h11 = 〈xuu,G〉, h12 = 〈xuv,G〉 = h21, h13 = 〈xuw,G〉 = h31,

h22 = 〈xvv,G〉, h23 = 〈xvw,G〉 = h32, h33 = 〈xww,G〉,

t11 = 〈Gu,Gu〉, t12 = 〈Gu,Gv〉 = t21, t13 = 〈Gu,Gw〉 = t31,

t22 = 〈Gv,Gv〉, t23 = 〈Gv,Gw〉 = t32, t33 = 〈Gw,Gw〉,

xu = ∂x
∂u , xuv = ∂2x

∂u∂v , Gu = ∂G
∂u , etc., and

G =
xu × xv × xw

‖xu × xv × xw‖
(2)

determines the Gauss map of x.

For a more detailed exploration within the Euclidean framework, we recommend
consulting references [43,44].

Definition 4. In Minkowski spacetime L4, a hypersurface x is characterized by the following relations:

S = I−1 · II = II−1 · III = III−1 · IV,

where S represents the shape operator, and I, II, III, and IV =
(
fij
)

3×3 describe the fundamental
forms of the hypersurface x. Thus, the shape operator matrix of the hypersurface x is given by

S =
1
g

 s11 s12 s13
s21 s22 s23
s31 s32 s33

, (3)

where

s11 =
(
g22g33−g2

23

)
h11 + (g13g23−g12g33)h12 + (g12g23−g13g22)h13,

s12 =
(
g22g33−g2

23

)
h12 + (g13g23−g12g33)h22 + (g12g23−g13g22)h23,

s13 =
(
g22g33−g2

23

)
h13 + (g13g23−g12g33)h23 + (g12g23−g13g22)h33,

s21 = (g13g23−g12g33)h11 +
(
g11g33−g2

13

)
h12 + (g12g13−g11g23)h13,

s22 = (g13g23−g12g33)h12 +
(
g11g33−g2

13

)
h22 + (g12g13−g11g23)h23,

s23 = (g13g23−g12g33)h13 +
(
g11g33−g2

13

)
h23 + (g12g13−g11g23)h33,

s31 = (g12g23−g13g22)h11 + (g12g13−g11g23)h12 +
(
g11g22−g2

12

)
h13,

s32 = (g12g23−g13g22)h12 + (g12g13−g11g23)h22 +
(
g11g22−g2

12

)
h23,

s33 = (g12g23−g13g22)h13 + (g12g13−g11g23)h23 +
(
g11g22−g2

12

)
h33,

and
g = det

(
gij
)
= −g11g

2
23 + 2g12g13g23 − g2

12g33 − g2
13g22 + g11g22g33,

also the symbol “·” denotes the operation of matrix multiplication.
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Definition 5. In Minkowski’s four-dimensional space L4, the polynomial PS(ζ) = det(S −
ζI3) = 0 is used to determine the characteristic polynomial P of the shape operator S, where I3
denotes the identity matrix. The curvature formulas are given by (3

i)Ki = si, where K1 and K3
represent the mean curvature and Gauss–Kronecker curvature, respectively.

Definition 6. When Kj=1,2,3 = 0 on a hypersurface x, x is called j-minimal.

For a comprehensive understanding of the topic, consult references [43,44,54].
Hence, we can derive the following expressions for the curvatures, which de-

pend on the coefficients of the fundamental forms
(
gij
)

and
(
hij
)
, in Minkowski’s four-

dimensional space.

Theorem 1. The expressions for the curvatures of a hypersurface in L4 are given, respectively, by,
K0 = 1 (by definition),

K1 =


(g11h22 + g22h11 − 2g12h12)g33 + (g11g22 − g2

12)h33
−2(g13h13g22 − g23h13g12 − g13h23g12

+g11g23h23 − g13g23h12)− g2
23h11 − g2

13h22


3
[
(g11g22 − g2

12)g33 − g11g
2
23 + 2g12g13g23 − g22g

2
13
] , (4)

K2 =


(g11h22 + g22h11 − 2g12h12)h33 +

(
h11h22 − g2

12
)
g33

−2(g13h13h22 − g23h13h12 − g13h23h12
+g23h23h11 − h13h23g12)− g11h

2
23 − g22h

2
13


3
[
(g11g22 − g2

12)g33 − g11g
2
23 + 2g12g13g23 − g22g

2
13
] , (5)

K3 =

(
h11h22 − h2

12
)
h33 − h11h

2
23 + 2h12h13h23 − h22h

2
13

(g11g22 − g2
12)g33 − g11g

2
23 + 2g12g13g23 − g22g

2
13

. (6)

Proof. Utilizing Definitions 3–5, and performing direct computations, we can determine
the characteristic polynomial. The components of this polynomial yield the curvatures.
Additionally, we obtain the following expressions

3K1 = tr(S) =
3

∑
i=1

sii,

K3 = det(S) = det II
det I =

det III
det II =

det IV
det III ,

where “tr” denotes the trace of the matrix.

3. Family of Helical Hypersurfaces with a Light-like Axis in L4

For further insights and results on rotational hypersurfaces in Riemannian spaces,
readers are encouraged to refer to the work of Do Carmo and Dajczer [56].

Moving forward, we will now introduce the concept of helical hypersurfaces.

Definition 7. Let I be an open interval in R, and consider a curve γ : I −→ Π in a plane.
Additionally, let ` be a line in the same plane. We define a rotational hypersurface as the result of
rotating the generating curve γ around the line `. During this rotation, the parallel lines orthogonal
to ` are simultaneously replaced, with the speed of rotation matching the speed of replacement. The
resulting hypersurface, known as the helical hypersurface with axis `, exhibits pitches a and b, where
a, b ∈ R \ {0}.

For more detailed information, readers can refer to the work by Kühnel [54].
In the following, we present a description of the family of helical hypersurfaces with a

light-like axis in L4 .
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The rotation matrixR = R(v, w) obtained by the light-like rotating axis ` = (0, 0, 1, 1)
in L4 is described by

R(v, w) =


1 0 −v v
0 1 −w w
v w 1− 1

2
(
v2 + w2) 1

2
(
v2 + w2)

v w − 1
2
(
v2 + w2) 1 + 1

2
(
v2 + w2)

,

where v, w ∈ R, and R supplies detR = 1,R·` = `,RT ·ε·R = R·ε·RT = ε,
ε = diag(1, 1, 1,−1). The generating curve is determined by

γ(u) = (0, 0, g(u), f (u)). (7)

Here, f , g denote the differentiable functions. In L4, the helical hypersurface
x = x(u, v, w) determined by ` is described by x(u, v, w) = R(v, w)·γ(u)T + (av + bw)`T ,
where u ∈ I, v, w ∈ [0, 2π) pitches a, b ∈ R \ {0}. The parameterization of the helical
hypersurfaces family M with a light-like axis is determined by

x(u, v, w) =


( f − g)v
( f − g)w

g + 1
2 (v

2 + w2)( f − g) + av + bw
f + 1

2 (v
2 + w2)( f − g) + av + bw

 =


x1
x2
x3
x4

, (8)

where f = f (u), g = g(u), u, a, b ∈ R \ {0} and v, w ∈ R.
The readers can refer to Figures 1 and 2 for illustrative depictions of the projections of

the helical hypersurface family x on three-dimensional spaces. It should be noted that these
projections were obtained by considering a light-like axis, which is precisely defined by
Equation (8).

By differentiating Equation (8) with respect to u, v, and w, we compute the first
fundamental form matrix

(
gij
)
=

 g′2 − f ′2 a(g′ − f ′) b(g′ − f ′)
a(g′ − f ′) (g− f )2 0
b(g′ − f ′) 0 (g− f )2

. (9)

We obtain g = det
(
gij
)

= ( f − g)2W , where W = ( f − g)2(g′2 − f ′2
)
− c2( f ′ − g′)2,

c2 = a2 + b2, f ′ = d f
du , g′ = dg

du .

Definition 8. For any curve γ(u) or hypersurface x = x(u, v, w) in Minkowski’s four-dimensional
space, the following holds, where γ′ = dγ

du ,

i. When 〈γ′, γ′〉 > 0 or γ′ = 0 (resp., g > 0), the curve γ (resp. the hypersurface x) is called
space-like.

ii. When 〈γ′, γ′〉 < 0 (resp., g < 0), the curve γ (resp., the hypersurface x) is called time-like.

iii. When 〈γ′, γ′〉 = 0 and γ′ 6= 0 (resp., g = 0). the curve γ (resp., the hypersurface x) is called
light-like.

For a comprehensive discussion on the topic, refer to the work by O’Neill [55].

Corollary 1. Consider the profile curve γ(u) = (0, 0, g(u), f (u)) of the family of helical hy-
persurfaces with a light-like axis, given by Equation (8). If γ(u) is a unit speed curve, i.e.,
〈γ′, γ′〉 = g′2 − f ′2 = 1, where prime denotes the derivative with respect to u, then γ(u) is a
space-like curve. Moreover, the following relationship holds

g = ( f − g)2
(
( f − g)2 − c2( f ′ − g′

)2
)

, c2 = a2 + b2.
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Figure 1. Projections of Equation (8), f (u) = sin u, g(u) = cos u, w = π/4, a, b = 1, into (Left) x1x2x3-
space, (Right) x1x2x4-space.

Figure 2. Projections of Equation (8), f (u) = sin u, g(u) = cos u, w = π/4, a, b = 1, into the
(Left) x1x3x4-space, (Right) x2x3x4-space.

Corollary 2. Consider the profile curve γ(u) = (0, 0, g(u), f (u)) of the family of helical hypersur-
faces with a light-like axis given by Equation (8). Assume that γ(u) is a unit speed curve, where
f (u) 6= g(u). Then, the following statements hold

a. If ( f − g)2 > c2( f ′ − g′)2, then g > 0; therefore, Equation (8) represents a space-like hyper-
surface.

b. If ( f − g)2 < c2( f ′ − g′)2, then g < 0; therefore, Equation (8) represents a time-like hypersurface.
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c. If ( f − g)2 = c2( f ′ − g′)2, then g = 0; therefore, Equation (8) represents a light-like hypersur-
face. In this case, g(u) = c1e±u/c + f (u), where c1 ∈ R.

The Gauss map of the hypersurface defined by Equation (8) is characterized by the
following expression

G =
1
W1/2


−(Av + a)C
−(Aw + b)C

A f ′ −
(

1
2 c2 A + av + bw

)
C

Ag′ −
(

1
2 c2 A + av + bw

)
C

, (10)

where W = −A2D − c2C2, A = f − g, C = f ′ − g′, D = f ′2 − g′2, c2 = a2 + b2. By
taking the second derivatives with respect to u, v, and w of the hypersurface defined by
Equation (8), we calculate the second fundamental form matrix

(
hij
)
=

1
W1/2

 AB −aC2 −bC2

−aC2 A2C 0
−bC2 0 A2C

,

where B = f ′g′′ − g′ f ′′, f ′′ = d2 f
du2 , g′′ = d2g

du2 , and h = det
(
hij
)
=W−3/2 A2C2(A3B− c2C3).

Hence, utilizing Equation (3), we can express the shape operator matrix of the hypersurface
determined by Equation (8):

S =
1
W3/2

 A3D− c2C3 0 0
aC(AB + CD) CW 0
bC(AB + CD) 0 CW

.

Finally, we unveil the curvatures of the family of helical hypersurfaces with a light-like
axis determined by Equation (8); we present the following results

Theorem 2. In L4, the family of helical hypersurfaces with a light-like axis given by Equation (8)
has the following curvatures, respectively:

K0 = 1 by definition,

3K1 =
( f − g)3( f ′g′′ − f ′′g′) + ( f ′ − g′)

(
2W − c2( f ′ − g′)2

)
(
( f − g)2(g′2 − f ′2)− c2( f ′ − g′)2

)3/2 ,

3K2 =
( f ′ − g′)

[
2( f − g)3( f ′g′′ − f ′′g′) + ( f ′ − g′)

(
W − 2c2( f ′ − g′)2

)]
(
( f − g)2(g′2 − f ′2)− c2( f ′ − g′)2

)2 ,

K3 =
( f ′ − g′)2

[
( f − g)3( f ′g′′ − f ′′g′)− c2( f ′ − g′)3

]
(
( f − g)2(g′2 − f ′2)− c2( f ′ − g′)2

)5/2 ,

where c2 = a2 + b2.

Proof. Using the Cayley–Hamilton theorem, we determine the characteristic polynomial
PS(ζ) = 0 of the matrix S associated with the family of helical hypersurfaces with a
light-like axis given by Equation (8). The characteristic polynomial can be expressed as

K0ζ3 − 3K1ζ2 + 3K2ζ −K3 = 0.
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For the sake of brevity, we denote the variables as follows: A = f − g, B = f ′g′′− g′ f ′′,
C = f ′ − g′, D = f ′2 − g′2, and c2 = a2 + b2. Using these notations, we simplify the
following Equations.

Corollary 3. The curvatures of the family of helical hypersurfaces with a light-like axis, as defined
in Equation (8), are connected by the following relationships(

3K1

A3B + 2A2CD− c2C3

)20
=

(
3K2

2A3CB + A2C2D− 3c2C4

)15
=

(
K3

A3C2B− c2C5

)12
.

Corollary 4. The family of helical hypersurfaces given by Equation (8) is considered one-minimal
if and only if the following Equation holds

A2(AB− 2CD)− 3c2C3 = 0. (11)

Problem 1. We find solutions g = g(u) to the aforementioned differential Equation (11) for the
family of helical hypersurfaces with a light-like axis defined by Equation (8).

Corollary 5. The family of helical hypersurfaces described by Equation (8) is considered two-
minimal if and only if the following Equation comes out

A2C(2AB− CD)− 3c2C4 = 0. (12)

Problem 2. We discovered the solutions g = g(u) for the differential Equation (12) within the
context of the family of helical hypersurfaces characterized by a light-like axis, as described by
Equation (8).

Corollary 6. The family of helical hypersurfaces determined by Equation (8) is three-minimal if
and only if the following Equation occurs

A3BC2 − c2C5 = 0. (13)

The solutions g = g(u) to the differential Equation (13) for the family of helical
hypersurfaces with a light-like axis given by Equation (8) are determined by

g(u) =

(
6c2d1 − 1

)
f (u)±

√
( f (u)− d2)

2 − 6c4d1 + d2

6c2d1
,

g(u) = f (u) + d3,

where d1 6= 0, c2 = a2 + b2, di ∈ R.

Corollary 7. When g = η = const. by Theorem 2, we have the following curvatures

K1 = − 2( f − η)2 + 3c2

3
(

c2 + ( f − η)2
)3/2 ,

K2 = − ( f − η)2 + 3c2

3
(

c2 + ( f − η)2
)2 ,

K3 = − c2(
c2 + ( f − η)2

)5/2 ,
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where c2 + ( f − η)2 6= 0. Here,

K1 = 0 ⇔ f = η ± 1
2

c
√
−6,

K2 = 0 ⇔ f = η ± c
√
−3,

K3 = 0 ⇔ c = 0.

Corollary 8. While g = η = const, a = b = 0, we find

K1 = − 2
3( f − η)

,

K2 = − 1

3( f − η)2 ,

K3 = 0,

where f 6= η, i.e., the family of helical hypersurfaces given by Equation (8) is a 3-minimal rotational
hypersurface.

Therefore, we present the following.

Theorem 3. A hypersurface x = x(u, v, w) in Minkowski’s four-dimensional space L4 has

K0IV− 3K1III+ 3K2II−K3I = O3, (14)

where I,II,III,IV describe the fundamental form matrices of x, and O3 determines the zero matrix
with order 3.

Proof. By utilizing the Cayley–Hamilton theorem, we are able to establish the Equation
PS(ζ) = 0:

K0ζ3 − 3K1ζ2 + 3K2ζ −K3 = 0.

Additionally, we calculate the fundamental form matrices of the hypersurface x as follows:

III = 1
W2

 (
A4B2 − c2C3(2AB + CD)

)
−aC3W −bC3W

−aC3W A2C2W 0
−bC3W 0 A2C2W


and

IV =
1
W7/2

 A7B3 + c4C6(3AB + 2CD) + c2 A2C3(−3A2B2 + C2D2) −aC4W2 −bC4W2

−aC4W2 A2C3W2 0
−bC4W2 0 A2C3W2

,

where W = −A2D − c2C2, A = f − g, B = f ′g′′ − g′ f ′′, C = f ′ − g′, D = f ′2 − g′2,
c2 = a2 + b2. Then, we establish the relation stated in the theorem.

Next, we introduce the concept of an umbilical hypersurface in Minkowski’s four-
dimensional space. The relationship between the curvatures and the principal curvatures
of any hypersurface in L4 is given by the following equations

K0 = 1,

3K1 = k1 + k2 + k3,

3K2 = k1k2 + k1k3 + k2k3,

K3 = k1k2k3.

Therefore, the following relationship holds.
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Definition 9. The hypersurface M3 immersed in L4 is called umbilical if all its points are umbilical,
which means that k1 = k2 = k3 or, equivalently, (K1)

3 = K3 with K1K2 = K3, (K1)
2 = K2.

An umbilical point holds great geometric importance and is intricately linked to the
concept of the line of curvature. It serves as a singularity or pivotal point where a line of
curvature reaches its end. The presence of such umbilical points can be attributed, in part,
to the availability of a dependable criterion that applies to smooth hypersurfaces defined
by either parametric or implicit formulations.

Consequently, we serve the following problem.

Problem 3. We find solutions g = g(u) to the following system of differential Equations for the
family of helical hypersurfaces with a light-like axis defined by Equation (8):

A4(AB + CD)2
(

A3B− 8A2CD− 9c2C3
)

= 0,

9
(

A2D + c2C2
)(
−A3B + c2C3

)
C2 = 0, (15)

A4(AB + CD)2 = 0,

where A = f − g, B = f ′g′′ − g′ f ′′, C = f ′ − g′, D = f ′2 − g′2, c2 = a2 + b2.

In the context of the system of Equations described by (15), the solutions g = g(u)
correspond to the umbilic points of the hypersurface defined by Equation (8).

4. Family of Helical Hypersurfaces with a Light-like Axis Having ∆x = Lx

In this section, we present the formulation of the Laplace–Beltrami operator for a
smooth function defined on L4; subsequently, we compute this operator specifically for the
family of helical hypersurfaces determined by Equation (8).

Definition 10. The Laplace–Beltrami operator of a smooth function φ = φ(x1, x2, x3, x4) defined
on a subset D ⊂ R4, where φ is of class C4, is defined in terms of the first fundamental form,
as follows:

∆φ =
1√
g

4

∑
i,j=1

∂

∂xi

(√
ggij ∂φ

∂xj

)
. (16)

Here,
(
gij) = (gkl)

−1 and g = det
(
gij
)
.

The inverse of the matrix given by Equation (9) is described by

(
gij
)
=

1
W


( f − g)2 a( f ′ − g′) b( f ′ − g′)

a( f ′ − g′) − b2( f ′−g′)2+( f−g)2( f ′2−g′2)
( f−g)2

ab( f ′−g′)2

( f−g)2

b( f ′ − g′) ab( f ′−g′)2

( f−g)2 − a2( f ′−g′)2+( f−g)2( f ′2−g′2)
( f−g)2

,

whereW = ( f − g)2(g′2 − f ′2
)
− c2( f ′ − g′)2, c2 = a2 + b2.

By applying Equation (16) with the aforementioned matrix (gij) obtained from
Equation (8), we derive the following results.

Theorem 4. The Laplace–Beltrami operator of the family of helical hypersurfaces with a light-like
axis determined by Equation (8) is given by

∆x = 4K1G,

where K1 represents the mean curvature and G denotes the Gauss map of x.
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Proof. By performing a direct computation of Equation (16), we obtain the expression for
∆x.

Theorem 5. Consider immersion x M3 ⊂ E3 −→ L4 given by Equation (8). We have ∆x = Lx,
where L represents a 4× 4 matrix, if and only if x has K1 = 0, i.e., it has zero mean curvature.

Proof. We investigate the equation

4K1G = Lx,

and, subsequently, we deduce the following

l11( f − g)v + l12( f − g)w + l13

(
g + c2

2 ( f − g) + (av + bw)
)
+ l14

(
f + c2

2 ( f − g) + av + bw
)

= Ψ(( f − g)v + a)(g′ − f ′),

l21( f − g)v + l22( f − g)w + l23

(
g + c2

2 ( f − g) + (av + bw)
)
+ l24

(
f + c2

2 ( f − g) + av + bw
)

= Ψ(( f − g)w + b)(g′ − f ′),

l31( f − g)v + l32( f − g)w + l33

(
g + c2

2 ( f − g) + (av + bw)
)
+ l34

(
f + c2

2 ( f − g) + av + bw
)

= Ψ
[(

1
2 c2( f − g) + av + bw

)
(g′ − f ′) + ( f − g) f ′

]
,

l41( f − g)v + l42( f − g)w + l43

(
g + c2

2 ( f − g) + (av + bw)
)
+ l44

(
f + c2

2 ( f − g) + av + bw
)

= Ψ
[(

1
2 c2( f − g) + av + bw

)
(g′ − f ′) + ( f − g)g′

]
,

where L =
(
lij
)

4×4, Ψ = Ψ(u) = 4K1W−1/2. By taking the derivative of the above ordinary
differential Equations with respect to v, we find that li2 = 0 for i = 1, 2, 3, 4. Then, we
obtain the following expressions:

l11( f − g) + (l13 + l14)a−Ψ( f − g)(g′ − f ′) = 0,
l21( f − g) + (l23 + l24)a = 0,
l31( f − g) + (l33 + l34)a + aΨ( f ′ − g′) = 0,
l41( f − g) + (l43 + l44)a + aΨ( f ′ − g′) = 0.

Considering that functions f and g are linearly independent with respect to v, f and g
are linearly independent with respect to v; and taking the derivatives of the above ordinary
differential equations with respect to v, we find that all components of L are equal to zero.

Consequently, under the condition Ψ = 4K1W−1/2, it can be deduced that K1 = 0. As
a result, the entity denoted by x signifies a collection of one-minimal helical hypersurfaces
characterized by a light-like axis.

5. Conclusions

Our investigation focused on the analysis of a specific class of helical hypersurfaces
parametrized by x = x(u, v, w), which possess a distinctive property of a light-like axis
within Minkowski spacetime L4. Throughout our study, we successfully determined crucial
mathematical entities that characterized these helical hypersurfaces, including the matrices
representing their fundamental forms, Gauss map, and shape operator. By leveraging
the Cayley–Hamilton theorem, we were able to compute the curvatures associated with x,
shedding light on their geometric properties.

In particular, we delved into the conditions that led to the curvatures of x exhibiting
the desirable umbilical property. Additionally, we provided a comprehensive description
of the Laplace–Beltrami operator specifically tailored for the family of helical hypersurfaces
with a light-like axis in L4. Our findings contribute to a deeper understanding of these
intriguing hypersurfaces and pave the way for further investigations in this field of study.



Universe 2023, 9, 341 15 of 16

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Obata, M. Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 1962, 14, 333–340.

[CrossRef]
2. Takahashi, T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Jpn. 1966, 18, 380–385. [CrossRef]
3. Chern, S.S.; Do Carmo, M.P.; Kobayashi, S. Minimal Submanifolds of a Sphere with Second Fundamental Form of Constant Length,

Functional Analysis and Related Fields; Springer: Berlin, Germany, 1970.
4. Cheng, S.Y.; Yau, S.T. Hypersurfaces with constant scalar curvature. Math. Ann. 1977, 225, 195–204. [CrossRef]
5. Lawson, H.B. Lectures on Minimal Submanifolds, 2nd ed.; Mathematics Lecture Series 9; Publish or Perish, Inc.: Wilmington, DE,

USA, 1980.
6. Chen, B.Y. On submanifolds of finite type. Soochow J. Math. 1983, 9 65–81.
7. Chen, B.Y. Total Mean Curvature and Submanifolds of Finite Type; World Scientific: Singapore, 1984.
8. Chen, B.Y. Finite Type Submanifolds and Generalizations; University of Rome: Rome, Italy, 1985.
9. Chen, B.Y. Finite type submanifolds in pseudo-Euclidean spaces and applications. Kodai Math. J. 1985, 8, 358–374. [CrossRef]
10. Barros, M.; Chen, B.Y. Stationary 2-type surfaces in a hypersphere. J. Math. Soc. Jpn. 1987, 39, 627–648. [CrossRef]
11. Barros, M.; Garay, O.J. 2-type surfaces in S3. Geom. Dedicata 1987, 24, 329–336. [CrossRef]
12. Garay, O.J. An extension of Takahashi’s theorem. Geom. Dedicata 1990, 34, 105–112. [CrossRef]
13. Chen, B.Y.; Piccinni, P. Submanifolds with finite type Gauss map. Bull. Aust. Math. Soc. 1987, 35, 161–186. [CrossRef]
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