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Abstract: In this work, we investigate astrophysical systems in a Newtonian regime using anisotropic
matter. For this purpose, we considered that both radial and tangential pressures satisfy a generalized
Chaplygin-type equation of state. Using this model, we found the Lane–Emden equation for this
system and solved it numerically for several sets of parameters. Finally, we explored the mass
supported by this physical system and compared it with the Chandrasekhar mass.
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1. Introduction

The Newtonian theory of the stellar structure is typically used to describe stars with
low densities and weak gravitational fields [1–3]. Indeed, the application of Newtonian
gravity, even for compact, high-density objects such as white dwarfs and neutron stars, can
sometimes provide acceptable results that are comparable to those of relativistic models [4].
It is essential to point out that relativistic solutions (even including pressure) can be
mimicked by using neo-Newtonian hydrodynamics [5]. The latter theory was conceived
to extend the traditional Newtonian theory to include the usual relativistic effects while
keeping the simplicity of the well-known Newtonian framework. Thus, we have different
levels to face the problem of stellar distributions: (i) standard Newtonian theory, (ii) neo-
Newtonian theory and (iii) general relativity.

In all the above-mentioned cases, equations of state are useful tools for making
progress, allowing us to gain insights about certain properties of interior solutions [6].
In particular, the selection of a concrete equation of state of stellar interiors has a profound
impact on the inner properties of the star. The reason for this is that an equation of state
encodes the microscopic properties of stellar matter (for a given density ρ, temperature
T and composition Xi). Also, by taking advantage of the laws of thermodynamics and a
similar equation for the internal energy U(ρ, T, Xi), it is possible to derive from the equation
of state the thermodynamic properties required to describe the structure of a star (such as
the specific heats cV and cP [7]).

Special attention should be dedicated to a particular kind of equation: the polytropic
equation of state. The latter has played a crucial role (see [1–3,8,9] and the references
therein). A polytropic equation of state is simple, and it allows closing of the system to be
solved [9–18]. (Some generalizations were investigated in [12,13].) Furthermore, the Lane–
Emden equation that describes the system takes advantage of a polytropic equation of state
to provide the characteristics of the density profile [19–22].

Thus, in order to gain insights into the underlying physics behind compact stars,
it is always interesting to investigate how some non-trivial equations of state can alter
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the dynamics of the physical system [23]. While we restrict ourselves to the Newtonian
case in this work, it should be stated that for extremely compact objects, a relativistic
theory of gravitation (e.g., general relativity) must be applied, which demands its own
adapted approach. What is more, if a detailed relativist treatment is not included, then
neo-Newtonian theory could serve to make progress.

In most applications, it is quite common to assume that the fluid distribution satisfies
Pascal’s principle (equal principal stresses), meaning that the pressure is assumed to be
isotropic. Nowadays, however, we know that the isotropic pressure condition may be
too severe, and furthermore, the presence of local anisotropy may be caused by a wide
variety of physical phenomena that are expected to be found in compact objects [24],
such as (1) some velocity distribution in collisionless gas [25], (2) rotational effects [2,24],
(3) mixtures of two or more perfect fluids [26] and (4) the repulsive electrostatic force
in charged systems [27]. Hence, as previously mentioned, there exist various sources of
anisotropy, such as those arising from anisotropic velocity distributions [28]. However, it
should be noted that the effect of anisotropy may diminish in the non-relativistic limit, as is
the case when the pressure anisotropy is attributed to magnetic fields present at the cores
of compact stars [29].

Recently, some models of anisotropy have been proposed under the assumption
that the tangential pressure also obeys a polytropic-like equation of state [30–32]. These
models enable different cases to be particularized by adjusting the parameters. In this
work, we are interested in extending these polytropic models by considering a generalized
Chaplygin equation of state [33–35]. In this case, the radial and tangential pressures adopt
the following form:

p = Kργ − M
ρN , γ = 1 +

1
n

. (1)

In this equation, p and ρ denote the pressure and density, respectively. On the other hand, K
is the polytropic constant, M is the Chaplygin constant, γ is the polytropic exponent, n is the
polytropic index, and N is the Chaplygin index. Please notice that a generalized Chaplygin
equation of state could generate a Chaplygin dark star (in the scenario of unification of
dark energy and dark matter), and such a type of hypothetical object still needs more study.
Thus, as this kind of astrophysical phenomenon needs this particular type of equation of
state, we are forced to consider equations of state like Equation (1) to make progress. In
addition, the stability of compact objects relies on preventing the gravitational collapse of
their mass, which can be achieved through several conditions such as hydrostatic force
and Coulomb’s force from the electric charge. In this respect, the generalized Chaplygin
equation of state (EOS) can be a useful tool for incorporating new theories, such as the dark
fluid model and dark energy stars (as we previously said). These theories introduce an
additional repulsive force to the compact star model, which can enhance its stability [36]. It
is also crucial to note that there exist various constraints on the parameter space of the
equation of state (EoS), including those derived from a cosmological perspective using
astronomical data [37]. These constraints provide valuable insights and contribute to our
understanding of the EoS and its implications for cosmology.

A theory of Newtonian polytropes for anisotropic matter was fully developed in [38].
(For the relativistic version, see [39].) Here, we will closely follow the approach outlined
in [40], assuming this time that both pressures (radial and tangential) satisfy an extended
Chaplygin equation of state. Furthermore, it should be noted that our work is distinct from
previously published research on the generalized polytropic equation of state. To date, no
study has been conducted on the double anisotropic case, making our findings particularly
novel. By doing so, the resulting Lane–Emden equation can be integrated, and the models
would depend on the specific parameters involved. It is essential to point out that such
equations of state have been significantly investigated, on the one hand, in the cosmological
context [41,42] and, on the other hand, in the physics of relativistic compact stars [43,44].
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This work is organized as follows. In Section 2, we outline the general method for
treating Newtonian generalized Chaplygin models for anisotropic matter. In order to
integrate the resulting Lane–Emden equation, we need an additional ansatz. We assume
that both the radial and tangential pressures obey a generalized Chaplygin equation of
state like Equation (1). This is carried out in Section 3. Next, in Section 4, the Lane–Emden
equation is integrated numerically for specific values of the parameters. Finally, a discussion
of the results is presented in the last section.

2. Anisotropic Generalized Chaplygin

In this section, we will briefly introduce the main ingredients needed to deal with
anisotropic matter, taking advantage of a concrete type of equation of state. This idea
is inspired by a previous work [38] and extended for a generalized Chaplygin equation
of state. First, it should be mentioned that polytropes (self-gravitating gaseous spheres
that are used as a first approximation to face more realistic stellar models) help us obtain
insights into the physics of a star, although in most cases, it is possible via numerical
integration. Polytropes offer a more tractable way to estimate various internal quantities
of the star. A quite natural extension of the polytropic equation of state is the well-known
Chaplygin equation. The latter can be understood as a polytropic equation of state plus an
additional term inversely proportional to density. This expression has two free parameters,
which make such an equation versatile. In particular, an extended Chaplygin fluid offers a
way to apply this type of model to a broader class of physical systems. In the presence of
anisotropic matter, and when its contribution is only diagonal, we can write the hydrostatic
equilibrium equation in terms of spherical coordinates as follows:

dPr

dr
= −ρ

dφ

dr
+

2
r

∆ , (2)

where φ is the gravitational potential and ∆ ≡ P⊥ − Pr is the anisotropy factor. The last
equation is the Newtonian version of the well-known Tolman–Opphenheimer–Volkoff
equation in the presence of anisotropic matter. Notice that the reason for only two different
principal stresses (i.e., Pθ = Pϕ = P⊥ and Pr 6= P⊥) is a consequence of spherical symme-
try. Allow us to provide further elaboration on the anisotropic hydrostatic equilibrium
equation. Generally, there are several approaches to deducing Equation (2), including (1)
a geometrical procedure, (2) an analytical procedure and (3) a limit of general relativity.
The geometric derivation assumes a thin mass element in a star with a thickness dr and
surface dA at a radius r from the center and applies the principle of hydrostatic equilibrium
while considering three contributions: (1) dFg, which represents the force due to gravity,
(2) dFPr , denoting the force due to radial pressure, and (3) dFP⊥ , representing the force due
to tangential pressure. Moreover, the tangential contribution can be further divided into
orthogonal components, with the radial component being the pertinent one. To sum up
these three contributions, we arrive at the following expression:

4πr2dr(dθ)2Pr + 2πr2dr(dθ)2 dPr

dr
− 4πr2dr(dθ)2P⊥ = −ρ

Gm(r)
r2 2πr2dr(dθ)2. (3)

By simplifying and rewriting the last equation, we obtain Equation (2). The analytical
derivation simply involves the direct application of the fundamental equation of hydrostat-
ics. Similar to what occurs in elastostatics for solids, we can utilize the following equation
in hydrostatics:

~∇ ·←→T = −~f , (4)

where
←→
T is the fluid’s stress tensor and ~f is the external force density. While assuming a

diagonal anisotropic stress tensor and radial dependence only, we have
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←→
T = diag

(
Pr, P⊥, P⊥

)
. (5)

With the latter in mind, we can evaluate Equation (4) to obtain

dTrr

dr
+

1
r

(
2Trr − Tθθ − Tφφ

)
= − f . (6)

To complete this second (alternative) derivation, we need to remember that Trr ≡ Pr,
Tθθ ≡ P⊥ = Tφφ and f (the radial part) is given by

f = −ρ
Gm(r)

r2 , (7)

to finally recover Equation (2). The last possibility takes advantage of Einstein’s field equa-
tions. After calculating the corresponding Tolman–Oppenheimer–Volkoff (TOV) equation,
we arrive at the simplified equation (with G = 1):

dPr

dr
= −(ρ + Pr)

(
m(r) + 4πr3Pr

r(r− 2m)

)
+

2
r

(
P⊥ − Pr

)
, (8)

where it is necessary to assume the following:

m(r)
r

<< 1, (9)

4πr3Pr << m(r), (10)

Pr << ρ. (11)

Finally, including the last assumptions, we obtain the standard equation:

dPr

dr
= −ρ

m(r)
r2 +

2
r

(
P⊥ − Pr

)
. (12)

All these alternative approaches can be consulted in [24,45–47]. The behavior of the gravi-
tational potential φ is determined via the Poisson equation

1
r2

d
dr

(
r2 dφ

dr

)
= 4πGρ , (13)

with G being Newton’s constant. For the radial pressure, we will assume a general-
ized version of the Chaplygin equation of state (Equation (1)). In terms of the standard
parametrization ρ = ρcωnr , we could write without loss of generality

Pr = Pr0

[
ω1+nr − Mr

ωNr

]
. (14)

In this case, Pr0 is a constant related to the pressure at the center of matter distribution,
nr is the index of the radial polytrope, Nr is the Chaplygin index, andMr is the radial
Chaplygin constant. An essential consequence of Equation (14) is that, in general, ω 6= 0 at
the surface Σ of the spherical configuration. In particular, we find that

[Pr]Σ = 0 −→ ωΣ = (Mr)
1/1+nr+Nr . (15)

This condition reduces to the well-known polytropic condition ωΣ = 0 whenMr = 0.
By using the derivative of Equation (14) in Equation (2) and substituting in the Poisson

equation (Equation (13)), we find the Lane–Emden equation for the generalized Chaply-
gin system:
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αω′′ + βω′ + γ = −ωnr (16)

where the primes denote differentiation with respect to the coordinate z and the coefficients
α ≡ α(ω, z), β ≡ β(ω, z) and γ ≡ γ(ω, z) are given by

α = 1 +
NrMr

(1 + nr)ω1+nr+Nr
, (17)

β =
2
z
+

NrMr

(1 + nr)ω1+nr+Nr

[
2
z
− 1 + nr + Nr

ω
ω′
]

, (18)

γ = − 2
Pr0(1 + nr)zωnr

(
∆′ +

∆
z
− nr

ω′

ω
∆
)

. (19)

Here, we have used the following redefinition:

z = Ar , (20)

A2 =
Pr0(1 + nr)

4πGρ2
c

. (21)

Note that whenMr → 0, we recover the simplest case previously obtained in [40]. Also
note that at the center of the system, we have ω(0) = 1. The isotropic limit ∆ → 0
produces the well-known Lane–Emden equation [3,38]. Equation (16) is a second-order
differential equation, and therefore we must give two conditions in order to determine the
complete solution.

In order to make progress on the condition on the first derivative of ω, we will take
advantage of the hydrostatic equilibrium and the Poisson equation. The equation of
hydrostatic equilibrium was previously introduced in Equation (2). What is more, if we
replace the definitions in that equation, we have

Pr0

[
(1 + nr)ω

nr +
NrMr

ω1+Nr

]
= −ρc ωnr

dφ

dr
+

2
r

∆ . (22)

After that, we utilize the first integral of the Poisson equation, namely

dφ

dr
=

4πGρc

r2

∫ r

0
r̃2ωnr dr̃ . (23)

By placing Equation (23) into Equation (22) and taking into account the rescaling given by
Equations (20) and (21), we obtain

ω′ =

[
−(1 + nr)

ωnr

z2

∫ z
0 x2ωnr dx + 2

Pr0 z ∆
]

[
(1 + nr)ωnr + NrMr

ω1+Nr

] . (24)

The above expression is reduced to those obtained in [30] under the limit Nr → 0. It should
be noticed that when z = 0, we obtain

1

(1 + nr)ωnr + NrMr
ω1+Nr

→ 1
(1 + nr) + NrMr

, (25)

where we have used the condition ω(0) = 1. Note that in the numerator of Equation (24),
we have an indetermination when z → 0. By using the L’Hopital rule on the first term,
we obtain

ωnr

z2

∫ z

0
z2ωnr dz x→0−−→ 1

2
z ω2nr = 0 . (26)

Finally, we have
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ω′(0) =
(

1
(1 + nr) + NrMr

)
2

Pr0
lim
z→0

∆
z

. (27)

In addition, supplementary information is required to integrate the Lane–Emden equation
(Equation (16)) and obtain specific solutions. Thus, to close the system, we impose a
condition on the tangential anisotropy. In the next sections, we will introduce the general
form of the anisotropy factor ∆ for the double Chaplygin generalized model. At the same
time, we can complete the analysis of the appropriate condition for ω′ at the origin.

3. The Generalized Double Chaplygin Model

From now on, we will consider that the two existent pressures (radial and tangential)
are parameterized by a generalized Chaplygin equation of state:

Pr = Pr0

[
ω1+nr − Mr

ωNr

]
, (28)

P⊥ = P⊥0

[
ωnr ωθ − M⊥

ωN⊥

]
. (29)

At this point, it is important to emphasize that, as is often the case in related scenarios
involving anisotropic stars, we require auxiliary information to obtain concrete models.
In this instance, an auxiliary assumption can be made for the transverse pressure similar
to that in the radial case. This approach is particularly applicable to weakly anisotropic
distributions (i.e., small ∆). Under this assumption, we can connect our solution smoothly
by varying the parameters (including the isotropic pressure case) in a natural way. While
a generalized Chaplygin equation of state has been used previously in the context of
relativistic stars [48–52], the generalized double Chaplygin equation of state is a novel and
unexplored approach that deserves considerable attention. Using these expressions, we
can write the anisotropy factor (∆ = P⊥ − Pr) as follows:

∆ = P⊥0

[
ωnr ωθ − M⊥

ωN⊥

]
− Pr0

[
ω1+nr − Mr

ωNr

]
. (30)

Knowing that at the center of the matter distribution, we have ∆(0) = 0, we find the
following constraint between parameters:

P⊥0
Pr0

=
1−Mr

1−M⊥
. (31)

With this condition, the anisotropy factor is expressed as follows:

∆ = Pr0

[(
1−Mr

1−M⊥

)(
ωnr ωθ − M⊥

ωN⊥

)
−
(

ω1+nr − Mr

ωNr

)]
. (32)

Note that in order to obtain the isotropic case, we must consider the following three
limits:

θ → 1 , (33)

M⊥ → Mr , (34)

N⊥ → Nr . (35)

In the next section, we will introduce the corresponding Lane–Emden equation in
terms of the generalized Chaplygin equation of state.
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4. Solving the Anisotropic Lane–Emden Equation

As was pointed out before, we are investigating the Lane–Emden equation for particu-
lar cases of the anisotropy factor ∆. Thus, we consider three well-defined cases which are
limit cases of the general expression in Equation (32).

4.1. Case 1

First, we study the case whereM⊥ =Mr and N⊥ = Nr to obtain the corresponding
anisotropic factor as follows:

∆ = Pr0 ωnr (ωθ −ω). (36)

Although a complete analytical solution is not possible to achieve, we can accomplish
this numerically. However, we still can verify the behavior of ω′(0). Using Equation (24),
we obtain

ω′(0) =
2(θ − 1)

1 + nr + NrMr
ω′(0) . (37)

If θ = 1 is satisfied, then we recover the known isotropic case. Neglecting this case,
we see that the condition is fulfilled when ω′(0) = 0.

4.2. Case 2

In this case, we make the following choices for the parameters: θ = 1 and N⊥ = Nr.
Thus, by simplifying the anisotropic term, we obtain

∆ = Pr0

(
ωnr+1 − 1

ωNr

)(
M⊥ −Mr

1−M⊥

)
. (38)

Similar to the previous case, we perform the analysis of ω′ at the origin. Thus, it can
be proven that

ω′(0) =
2(1 + nr + Nr)

1 + nr + NrMr

(
M⊥ −Mr

1−M⊥

)
ω′(0) , (39)

which is also satisfied generically if ω′(0) = 0.

4.3. Case 3

Finally, by assumingM⊥ =Mr and θ = 1, we obtain a more complicated delta factor.
To be concrete, ∆ takes the form

∆ = Pr0Mr

[
1

ωNr
− 1

ωN⊥

]
. (40)

In this final case, we observe that the condition ω′(0) = 0 is also maintained via the
following equation:

ω′(0) =
2(Nr − N⊥)

1 + nr + NrMr
ω′(0) . (41)

It is important to note at this point that regardless of the case studied, taking the
respective isotropic limit does not recover the known Lane–Emden equation because the
equation of state for the radial pressures (Equation (14)) does not correspond to that of an
ordinary polytrope. Thus, it is already possible to extend the modeled phenomenology by
considering systems where ∆ = 0.

At this point, it is important to make some comments. In the subsequent discussion, we
will examine one example for each case, amounting to a total of three examples. Our objec-
tive is to compare the anisotropic factor with other solutions in order to determine whether
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the solutions can accurately represent a well-defined anisotropic star. Consequently, we
observe the following:

• Case 1: The anisotropic factor, denoted by ∆, exhibited a negative value for the specific
set of parameters utilized in the top-left panel of Figure 1. This behavior aligns with
other solutions found in the context of compact stars and is logical considering that
the second term in the anisotropic formula becomes more significant than the first
term. For further insights and related references, refer to [52] and the cited sources
therein.

• Case 2: On this occasion, the anisotropic factor ∆ showed a positive value for the
set of parameters utilized in the middle-left panel of Figure 1. Similar results were
obtained in previous studies, which can be found in [50] for reference. In our current
solution, the anisotropic factor increased forM⊥ = 5.0 andM⊥ = 2.0. However,
whenM⊥ = 0.5, we observed that the isotropic case was recovered. This behavior
is due to the fact that, according to Equation (38), whenM⊥ =Mr, the anisotropic
factor ∆ becomes precisely zero.

• Case 3: In this scenario, the anisotropic factor can either be positive or negative, de-
pending on the specific numerical values considered. To be precise, when N⊥ = 4.0
and N⊥ = 3.0, the anisotropic factor decreases and becomes more negative. Con-
versely, when N⊥ = 1.5, the anisotropic factor takes on positive, well-defined values.
This behavior can be attributed to the competition between the two terms involved
in the definition of ∆. Thus, when the first term is greater than the second term, ∆
becomes greater than zero.
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Figure 1. Effective density versus radial coordinate. Each row corresponds to cases 1, 2 and 3.
The isotropic Lane–Emden equation is shown with a solid line. For case 1 (a–c), θ = 1 (small dashed
line), θ = 1.5 (medium dashed line), and θ = 2 (large dashed line). For case 2 (d–f),M⊥ = 0.5 (small
dashed line), M⊥ = 2 (medium dashed line), andM⊥ = 5 (large dashed line). For case 3 (g–i),
N⊥ = 1.5 (small dashed line), N⊥ = 3 (medium dashed line), and N⊥ = 4 (large dashed line).
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Figure 2. Anisotropic factor ∆ against the coordinate z. The numerical values used to produce
the figures are the following. (left panel) We assumed the set {ρc = 1, Pr0 = 1, nr = 1, Nr = 1,
Mr = 0.5}. (middle panel) We assumed the set {ρc = 1, Pr0 = 1, nr = 1, Nr = 3,Mr = 0.5, θ = 1}.
(Right panel) We assumed the set {ρc = 1, Pr0 = 1, nr = 3, Nr = 2,Mr = 0.5}.

In summary, by studying the anisotropy factor (see Figure 2) and comparing our results
with other work, we can confirm that our model could be used to describe anisotropic stars,
given the similarity of our results. A more in-depth and robust analysis will be carried out
when the relativistic solution is studied.

5. Chandrasekhar Mass

As a consequence of what has been developed so far, it is interesting to evaluate
how the generalized Chaplygin equation of state and the proposed anisotropy modify the
Chandrasekhar mass. The total mass of the corresponding distribution is given by the
well-known expression

M = 4π
∫ R

0
r2ρ dr = 4πρc

R3

(z0)3

∫ z0

0
z2ωnr dz , (42)

where the value z0 satisfies the boundary pressure condition in Equation (15). Using the
expression in Equation (16), and after a lengthy but straightforward calculation, we arrive
at the following simplified form:

z2ωnr =
d
dz

[
− (z2αω′) +

2
Pr0(1 + nr)

z
ωnr

∆

]
, (43)

with α given by Equation (17). Note that for ∆ = 0, an expression formally equal to the
usual case is obtained, but this time, α 6= 1 must be considered, which makes the mass
expression receive contributions due to the generalized equation of state.
By substituting the expression in Equation (43) into Equation (42), we can find an equation
for the total mass relative to the Chandrasekhar mass. This is

M
MCh

=
( zch

z0

)3
[−(z2

0α0ω′0) +
2

Pr0(1 + nr)

z0

ωnr
0

∆0

−z2
chω′ch

]
,

(44)

where all quantities fi are evaluated at the corresponding outer radius zi where pressure
vanishes (i.e., fi = f (zi)). It is remarkable that the expression in Equation (42) has an exact
analytical expression that can be evaluated and contrasted with the well-known expression
for the Chandrasekhar mass.

6. Concluding Remarks

In this work, we described a complete family of Chaplygin-type equations of state
for anisotropic matter. We assumed that both the radial and tangential pressures had an
equation of state as described previously. This has the advantage that, at least for small
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deviations from the isotropic case, the model is well justified. This differs from the type of
anisotropy model discussed in [38].

We derived the Lane–Emden equations that defined the model. The different pa-
rameters allowed us to particularize some cases that we found to be relevant. We then
applied a numerical treatment to solve the equations arising in each case, calculated the
total mass and compared it with the Chandrasekhar mass. It is clearly shown that the
Chandrasekhar mass limit changed with the introduced anisotropy. These models can be
further developed and used to study the influence of local anisotropy on such important
problems as the Chandrasekhar mass limit, particularly in relation to the possible origin of
super-Chandrasekhar white dwarfs. We find it relevant to further explore these models
and to try to determine whether the super-Chandrasekhar white dwarfs inferred from the
data gathered [53–57] are the result of models, as considered in this work. This interesting
question deserves more attention in future work.

Looking at the plots in Figure 1, we can appreciate how different sets of parameters
affected the solution. In particular, we see that it is possible to have both expansion and
contraction with respect to the isotropic solution, depending on the case considered. Cases
2 and 3 seemed to cause stronger deviations even with small changes in the parameters.
When comparing how the mass is modified by including the generalized equation of state
with respect to the Chandrasekhar mass, it can be seen that, in general, more mass can be
captured. This effect was increased by including the effects of anisotropy, as can be seen
from the graphs in Figure 3. These effects can be used to model some phenomenological
aspects of compact objects and even galactic scales.
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Figure 3. Total mass relative to Chandrasekhar mass. The top row corresponds to two isotropic cases:
(left panel) whenMr varies and (right panel) when Nr varies. The bottom row corresponds to two
of the anisotropic cases. The left panel is for anisotropic case 1, and the right panel is for anisotropic
case 3.
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At this point, it is necessary to mention the following. While it is usual to compare
the numerical solution with observational data, such a comparison is not convenient in
this case. There are observational constraints in the context of stars, mainly in the case of
relativistic compact stars. Such restrictions (mass and radius) are commonly compared
with the mass-radius profile of a concrete problem, imposing limitations on the mass and
radius of a star. Given that these constraints are well established in the full relativistic
case, and as we were only considering the Newtonian case here, we decided to conduct a
complete analysis, including the relativistic case, non-relativistic case and a comparison
with another compact star in future work. Having said that, there are studies that compare
both relativistic and non-relativistic solutions [58,59]. Some of these studies have shown
that the mass-radius profile in the Newtonian case predicts a more massive and larger star.
This is consistent with the conventional approach of ignoring pressure in the Newtonian
case. Lastly, it is crucial to highlight, in accordance with a recent paper [60], that although
we did not place constraints on a Newtonian dark star, the relativistic scenario may offer
some insights into how anisotropy influences the evolution of such stars. As emphasized
in [60], if a star becomes increasingly anisotropic, then it permits a substantial augmentation
in the maximum mass, thereby providing a more favorable explanation for the observed
compact objects in nature.

Finally, it should be emphasized that this work was developed in the context of
Newtonian gravity using spherical symmetry. It is possible that this symmetry can be
broken by the same kind of physical factors that create the anisotropy in the system.
In this case, the method described here should be applied with some caution and only
as an approximation.
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