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Abstract: It is known that the Real Extended Bialas–Bzdak (ReBB) model describes the proton–
proton (pp) and proton–antiproton (pp̄) differential cross-section data in a statistically non-excludible
way, i.e., with a confidence level greater than or equal to 0.1% in the center of mass energy range
546 GeV ≤

√
s ≤ 8 TeV and in the squared four-momentum transfer range 0.37 GeV2 ≤ −t ≤ 1.2 GeV2.

Considering, instead of Gaussian, a more general Lévy α-stable shape for the parton distributions of
the constituent quark and diquark inside the proton and for the relative separation between them, a
generalized description of data is obtained, where the ReBB model corresponds to the α = 2 special
case. Extending the model to α < 2, we conjecture that the validity of the model can be extended
to a wider kinematic range, in particular, to lower values of the four-momentum transfer −t. We
present the formal Lévy α-stable generalization of the Bialas–Bzdak model and show that a simplified
version of this model can be successfully fitted, with α < 2, to the non-exponential, low−t differential
cross-section data of elastic proton–proton scattering at

√
s = 8 TeV.

Keywords: elastic scattering; proton-proton; scattering amplitude

1. Introduction

The Bialas–Bzdak (BB) model considers the proton as a bound state of a quark and a
diquark, p = (q, d) for short [1]. The diquark in the proton may also be considered to be a
weakly bound state of two constituent quarks, leading to the p = (q, (q, q)) variant of the
BB model; however, in Ref. [2], it was shown that the p = (q, (q, q)) variant of the BB model
gives two many diffractive minima, whereas, experimentally, only a single minimum is
observed in the differential cross-section of proton–proton (pp) collisions. Thus, in recent
studies, in Refs. [3,4], the p = (q, d) version of the model was utilized.

Originally, the BB model considers Gaussian shapes for the parton distributions of
constituent quarks and diquarks inside the proton and for the relative separation between
them. By these considerations based on R. J. Glauber’s multiple scattering theory [5,6],
the inelastic scattering cross-section of protons at a fixed

√
s energy and a fixed b impact

parameter value is constructed and denoted as σ̃in(s,~b).
The elastic scattering amplitude in the impact parameter representation is written in

terms of σ̃in(s,~b) as a solution of the unitarity equation. The imaginary part of the elastic
scattering amplitude is the dominant part, whereas the real part can be considered as a
smaller correction. Bialas and Bzdak in Ref. [1] neglected the real part of the amplitude and
used a fully imaginary amplitude,

t̃el(s,~b) = i
(

1−
√

1− σ̃in(s,~b)
)

, (1)

for the calculations of the scattering cross sections. However, in a model where the am-
plitude does not have a real part, the characteristic minimum–maximum region of the pp
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differential cross-section can not be described properly. In Ref. [7], the elastic scattering
amplitude was extended with a real part in a way that the unitarity constraint is fulfilled.
This amplitude reads as:

tel(s,~b) = i
(

1− ei α σ̃in(s,~b)
√

1− σ̃in(s,~b)
)

, (2)

where α is a free parameter to be fitted to the data. In the case of α = 0, Equation (2) reduces
to Equation (1), i.e., to a scattering amplitude that has a vanishing real part.

The model for the elastic proton–proton scattering amplitude, as defined by
Equation (2), with σ̃in(s,~b), as defined in Ref. [1], is called the Real Extended Bialas–Bzdak
(ReBB) model. In recent studies [3,4], it was shown that the ReBB model describes pp
and proton–antiproton (pp̄) differential cross-section data in the center of mass energy
range of 0.546 TeV ≤

√
s ≤ 8 TeV and in the squared four-momentum transfer range of

0.37 GeV2 ≤ −t ≤ 1.2 GeV2 in a statistically non-excludible manner, i.e., with a confidence
level greater than or equal to 0.1%.

The free parameters of the ReBB model are the Gaussian radii of the quark, the
diquark, and the separation between them (correspondingly, Rq, Rd, and Rqd) and also,
the α parameter regulating the real part of the scattering amplitude. Two additional fit
parameters could be present: λ, the ratio of the quark and diquark masses, and Aqq, the
normalization parameter appearing in the inelastic quark–quark cross-section. However, it
was shown in Ref. [2] and later confirmed in Ref. [3] that Aqq can be fixed at a value of 1.0,
whereas λ can be fixed at a value of 1/2.

The energy dependence of the ReBB model parameters for pp and pp̄ scattering were
determined in Ref. [3]. It was found that the energy dependencies of the radius parameters
are the same for pp and pp̄ scattering, whereas the energy dependencies of the α parameter
for pp and pp̄ scattering are different, i.e., there are different αpp and αpp̄ parameters. The
energy dependencies of all the five parameters in the energy range of 0.546 ≤

√
s ≤ 8 TeV

are determined by linear logarithmic functions [3,4].
Considering, instead of Gaussian, a more general Lévy α-stable shape for the parton

distributions of the constituent quark and diquark inside the proton and for the relative
separation between them, an improved description to the data in a wider kinematic range
(
√

s < 0.546 TeV,
√

s > 8 TeV, −t < 0.37 GeV2, −t > 1.2 GeV2) is anticipated.
The 0.37 GeV2 ≤ −t ≤ 1.2 GeV2 interval at LHC energies includes the region of the

characteristic minimum–maximum structure of the pp elastic differential cross-section.
In the 0.01 GeV2 . −t . 0.15 GeV2 interval, another characteristic structure, a non-
exponential behavior is observed. A significant non-exponential behavior was measured
by TOTEM at CERN LHC at 8 and 13 TeV center of mass energies [8,9]. Similar behavior
was observed also at the CERN ISR accelerator in the 1970s [10], where measurements were
made in the 20 GeV .

√
s . 60 GeV energy region.

In Ref. [11], the model-independent Lévy imaging method is successfully employed
to describe the pp and pp̄ differential cross-section data both at the low and the high −t
region simultaneously. In Ref. [12], the model-independent Lévy imaging method was
employed to reconstruct the proton inelasticity profile function. This method established
a statistically significant proton hollowness effect [13–17], well beyond the 5σ discovery
limit at

√
s = 13 TeV. These results suggest that Lévy α-stable models are efficient tools

in describing pp and pp̄ differential cross-section data, and the ReBB model needs to be
Lévy α-stable generalized to have a stronger non-exponential feature at low −t and to
accommodate the new features of the differential cross-section data such the hollowness
effect at

√
s = 13 TeV or larger energies. In the present work, we complete the formal Lévy

α-stable generalization of the Bialas–Bzdak model.
This paper is organized as follows. In Section 2, we deduce the formal Lévy α-stable

generalization of the Bialas–Bzdak model and discuss the technical difficulties preventing
us to perform an efficient fitting procedure of the model parameters to the experimental
data with the full Lévy α-stable generalized Bialas-Bzdak model. In Section 3, we show
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successful fits to the low −t differential cross-section data at LHC energies with a simple
Lévy α-stable model deduced by approximations from the Lévy α-stable generalized Bialas–
Bzdak (LBB) model. In Section 4, the parameters of the LBB model is related to the t = 0
measurable quantities and to the parameters of the simple Lévy α-stable model. Finally, we
summarize and conclude in Section 5.

2. From Gaussian to Lévy α-Stable p = (q, d) BB Model

First, we recapitulate the BB model using normalized Gaussian distributions and
introduce some reinterpretations of some of its parts. Then, we change the normalized
Gaussian distributions to normalized Lévy α-stable distributions, resulting in the Lévy
α-stable generalized BB model.

The inelastic scattering cross-section at a fixed~b impact parameter value is given as [1]:

σ̃in(~b) =
∫ +∞

−∞
...
∫ +∞

−∞
d2~sqd2~s ′qd2~sdd2~s ′dD(~sq,~sd)D(~s ′q,~s ′d)σ(~sq,~sd;~s ′q,~s ′d;~b), (3)

where D(~s ′q,~s ′d) is the quark–diquark distribution inside one of the colliding protons,

σ(~sq,~sd;~s ′q,~s ′d;~b) is the probability of inelastic collision, and the variables we integrate over
are the transverse positions of the quarks and diquarks inside the two colliding protons.
Note that the energy dependence of σ̃in(~b) is not written out here for clarity reasons;
however, through the

√
s dependence of the model parameters, Rq(s), Rd(s), and Rqd(s),

σ̃in(~b) has an
√

s dependence too.
The quark–diquark distribution is considered to be Gaussian:

D
(
~sq,~sd

)
=

1 + λ2

R2
qd π

e−(s
2
q+s2

d)/R2
qd δ2(~sd + λ~sq), (4)

where λ = mq/md, the ratio of the quark and diquark masses, and Rqd are free parameters
of the model. The two-dimensional Dirac δ function fixes the center-of-mass of the proton
and reduces the dimension of the integral in Equation (3) from 8 to 4. Accordingly, the
diquark positions can be expressed by that of the quarks:

~sd = −λ~sq, ~s ′d = −λ~s ′q . (5)

After integration over~sd, D(~sq,~sd) becomes a Gaussian in~sq; then, after the integration,
also over~sq, we obtain unity:

∫
d2~sdD(~sq,~sd) = G

(
~sq|Rqd/

√
2(1 + λ2)

)
, (6)∫

d2~sqd2~sdD(~sq,~sd) = 1, (7)

where:

G(~x|RG) =
1

(2π)2

∫
d2qei~qT~xe−

1
2 q2R2

G =
1

2πR2
G

e
− x2

2R2
G (8)

is the normalized bivariate Gaussian distribution.
We may reinterpret D(~sq,~sd) as the distribution of the relative separation between the

quark and the diquark in a single proton, namely:

D(~sq,~sd) = (1 + λ)2G
(
~sq −~sd|Rqd/

√
2
)

δ2(~sd + λ~sq) (9)
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which is correctly normalized as follows:∫
d2~sdD(~sq,~sd) = G

(
~sq|Rqd∗/

√
2
)

, (10)∫
d2~sqd2~sdD(~sq,~sd) = 1, (11)

where:

Rqd∗ =
Rqd

1 + λ
. (12)

Here, we have rescaled the parameter Rqd of the original Bialas–Bzdak model to the
parameter that characterizes the uncertainty of the location of a dressed quark inside
the proton. The advantage of this interpretation is that we prepare the ground for the
generalization to the case of Levy α-stable distributions and instead of taking the product
of two Gaussians, as in Equation (4), we had an equivalent rewrite where the relative
coordinate distribution of a quark and a diquark is Gaussian, with rescaled parameters.
This rewrite is very advantageous, as the product of two Levy distributions is not a Levy
distribution, with the exception of the αL = 2 Gaussian case. As such, to have only one
Gaussian in the relative coordinate avoids the problem of having products of Levy α-stable
distributions in the formulas.

The term σ(~sq,~sd;~s ′q,~s ′d;~b) is the probability of inelastic interactions at a fixed impact
parameter and transverse positions of all constituents and given by a Glauber expansion
as follows:

σ(~sq,~sd;~s ′q,~s ′d;~b) = 1−
[
1− σqq(~sq,~s ′q;~b)

][
1− σqd(~sq,~s ′d;~b)

]
× (13)

×
[
1− σdq(~s ′q,~sd;~b)

][
1− σdd(~sd,~s ′d;~b)

]
,

where:
σqq(~sq,~s ′q;~b) ≡ σqq(~b +~s ′q −~sq),

σqd(~sq,~s ′d;~b) ≡ σqd(~b +~s ′d −~sq),

σdq(~sd,~s ′q;~b) ≡ σdq(~b +~s ′q −~sd),

and:
σdd(~sd,~s ′d;~b) ≡ σdd(~b +~s ′d −~sd)

are the inelastic differential cross-sections of the binary collisions of the constituents. They
have Gaussian shapes:

σab(~x) = Aabe−~s
2/S2

ab (14)

with S2
ab = R2

a + R2
b and a, b ∈ {q, d}. Equation (14) can be rewritten in terms of normalized

bivariate Gaussian distribution:

σab(~s) = AabπS2
abG
(
~s|Sab/

√
2
)

. (15)

We can reinterpret the inelastic constituent–constituent collisions by assuming that the
constituent quark and the constituent diquark have Gaussian parton distributions, charac-
terized by G(~sq|Rq/

√
2) and G(~sd|Rd/

√
2). Then, the probability of inelastic collisions at a

given impact parameter b is proportional to their convolution:

σab(~s) = AabπS2
ab

∫
d2saG(~sa|Ra/

√
2)G(~s−~sa|Rb/

√
2) (16)

≡ AabπS2
abG
(
~s|Sab/

√
2
)

.
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The inelastic quark–quark, quark–diquark, and diquark–diquark cross-sections are
obtained by integration:

σab,inel =

+∞∫
−∞

+∞∫
−∞

σab(~s)d2s = AabπS2
ab . (17)

The number of the free parameters of the model can be reduced by demanding that
the ratios of the cross-sections are:

σqq,inel : σqd,inel : σdd,inel = 1 : 2 : 4 , (18)

expressing the idea that the constituent diquark contains twice as many partons than the
constituent quark and also that the colliding constituents do not “shadow” each other.

Then, the probabilities of inelastic constituent–constituent collisions can be written in
the following form:

σqq(~sq,~s ′q;~b) = 2πAqqR2
qG(~b +~s ′q −~sq|Rq), (19)

σqd(~sq,~s ′d;~b) = 4πAqqR2
qG

(
~b +~s ′d −~sq

∣∣∣∣∣
√

R2
q + R2

d
2

)
, (20)

σdq(~s ′q,~sd;~b) = 4πAqqR2
qG

(
~b +~s ′q −~sd

∣∣∣∣∣
√

R2
q + R2

d
2

)
, (21)

σdd(~sd,~s ′d;~b) = 8πAqqR2
qG(~b +~s ′d −~sd|Rd). (22)

Substituting these into Equation (13), then substituting σ(~sq,~sd;~s ′q,~s ′d;~b) into Equation (3),

we get a sum of eleven integral terms (with proper sign) for σ̃in(~b):

σ̃in(~b) = σ̃
qq
in (

~b) + 2σ̃
qd
in (

~b) + σ̃dd
in (~b)− [2σ̃

qq,qd
in (~b) + σ̃

qd,dq
in (~b) + σ̃

qq,dd
in (~b)+ (23)

+ 2σ̃
qd,dd
in (~b)] + [σ̃

qq,qd,dq
in (~b) + 2σ̃

qq,qd,dd
in (~b) + σ̃

dd,qd,dq
in (~b)]− σ̃

qq,qd,dq,dd
in (~b).

Let us have a look for the most general fourth-order term, σ̃
qq,qd,dq,dd
in (~b). After making

use of the presence of the Dirac δ function in Equation (9), we have to calculate a four-
dimensional integral of products of normalized bivariate Gaussian distributions:

σ̃
qq,qd,dq,dd
in (~b) =

∫
d2sqd2s′qG(~sq|Rqd∗/

√
2)G(~s ′q |Rqd∗/

√
2)× (24)

× σqq(~sq,~s ′q ;~b)σqd(~sq,−λ~s ′q ;~b)σdq(~s ′q ,−λ~sq;~b)σdd(−λ~sq,−λ~s ′q ;~b).

Such an integral results in an expression having a Gaussian shape. The lower-order
terms can be obtained from Equation (24) by excluding the proper σab term/terms from
the integrand. Thus, after computing the integrals in all order, we get the sum of eleven
different Gaussian-shaped terms, i.e., the BB model as introduced in Ref. [1].

Now, we perform the Lévy α-stable generalization of the BB model.
Let us introduce the normalized bivariate symmetric Lévy α-stable distribution,

L(~x|αL, RL) =
1

(2π)2

∫
d2qei~qT~xe−|q

2R2
L|

αL/2
, (25)
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which, for αL = 2, gives exactly the bivariate Gaussian distribution:

L(~x|αL = 2, RL = RG/
√

2) ≡ G(~x|RG). (26)

Note that the Lévy index of stability αL, that controls the power-law tails of the inelastic
cross-sections, is a different parameter from the α parameter of the ReBB model, that
controls the opacity or the real part of the scattering amplitude. Due to historic reasons,
both were denoted by α originally, but in this work, we add a subscripted L to distinguish
the Lévy parameter αL from the opacity parameter α.

Since we work with here with symmetric Lévy α-stable distribution, the skewness
parameter βL = 0 of the Lévy stable source distributions is implicit and are assumed to
have zero values. The shift parameter δL of the Lévy stable source distribution is explicitely
written out when considering the impact parameter picture, while the overall shift of the
impact parameter cancels from the final results hence it is assumed to have a vanishing
value.

We then consider that the relative separation between the quark and the diquark in a
single proton follows Lévy α-stable distribution:

D(~sq,~sd) = (1 + λ)2L
(
~sq −~sd|αL, RL = Rqd/2

)
δ2(~sd + λ~sq) (27)

with: ∫
d2~sdD(~sq,~sd) = L

(
~sq|αL, Rqd∗/2

)
, (28)∫

d2~sqd2~sdD(~sq,~sd) = 1, (29)

similarly to the original case with Gaussian distributions.
As the next step in the generalization, we consider, instead of Gaussian, Lévy α-stable

parton distributions for the constituent quark and the constituent diquark: L(~sq|αL, Rq/2)
and L(~sd|αL, Rd/2). Then, as in the Gaussian case above, the probability of inelastic
collisions at a given impact parameter b is proportional to their convolution:

σab(~s) = AabπS2
ab

∫
d2saL(~sa|αL, Ra/2)L(~s−~sa|αL, Rb/2) (30)

= AabπS2
abL(~s|αL, Sab/2),

where now:
Sab =

(
RαL

a + RαL
b
)1/αL , (31)

i.e., in this case, after making use of the convolution theorem, the radii add up not
quadratically, but at the power of αL.

Then:

σqq(~sq,~s ′q;~b) = πAqq
(
2RαL

q
)2/αL L

(
~b +~s ′q −~sq|αL,

(
2RαL

q
)1/αL /2

)
, (32)

σqd(~sq,~s ′d;~b) = 2πAqq
(
2RαL

q
)2/αL L

(
~b +~s ′d −~sq

∣∣∣∣∣αL,
(

RαL
q + RαL

d
)1/αL /2

)
, (33)

σdq(~s ′q,~sd;~b) = 2πAqq
(
2RαL

q
)2/αL L

(
~b +~s ′q −~sd

∣∣∣∣∣αL,
(

RαL
q + RαL

d
)1/αL /2

)
, (34)

and
σdd(~sd,~s ′d;~b) = 4πAqq

(
2RαL

q
)2/αL L

(
~b +~s ′d −~sd)|αL,

(
2RαL

d
)1/αL /2

)
. (35)
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Equation (3) with Equation (13), Equation (27), and Equations (32)–(35) define the
Lévy αL-stable generalized Bialas–Bzdak (LBB) model for σ̃in(b). Now, in Equation (23),
instead of a sum of integrals of products of normalized Gaussian distributions, there are a
sum of integrals of products of normalized Lévy αL-stable distributions. Though integrals
of products of Gaussian distributions can be calculated, the calculation of integrals of
products of Lévy αL-stable distributions is an issue. Integrals of products of Lévy αL-stable
distributions can be easily calculated if the integral can be written in a convolution form.
This is the case for the first three terms in Equation (23). The results can be written in terms
of Lévy αL-stable distributions:

σ̃
qq
in (

~b) = πAqq

(
2RαL

q

)2/αL
× (36)

×
∫

d2sqd2s′qL(~sq|αL, Rqd∗/2)L(~s ′q |Rqd∗/2)L
(
~b +~s ′q −~sq|

(
2RαL

q

)1/αL
/2
)

= πAqq

(
2RαL

q

)2/αL
L
(
~b
∣∣∣αL,

(
2RαL

qd∗ + 2RαL
q

)1/αL
/2
)

,

σ̃
qd
in (

~b) = 2πAqq

(
2RαL

q

)2/αL
× (37)

×
∫

d2sqd2s′qL(~sq|Rqd∗/2)L(~s ′q |Rqd∗/2)L

(
~b− λ~s ′q −~sq

∣∣∣∣∣αL,
(

RαL
q + RαL

d

)1/αL
/2

)

= 2πAqq

(
2RαL

q

)2/αL
L
(
~b
∣∣∣αL,

(
(1 + λαL )RαL

qd∗ + RαL
q + RαL

d

)1/αL
/2
)

,

σ̃dd
in (~b) = 4πAqq

(
2RαL

q

)2/αL
× (38)

×
∫

d2sqd2s′qL(~sq|Rqd∗/2)L(~s ′q |Rqd∗/2)L
(
~b + λ(~sq −~s ′q )|αL,

(
2RαL

d
)1/αL /2

)
= 4πAqq

(
2RαL

q

)2/αL
L
(
~b
∣∣∣αL,

(
2λαL RαL

qd∗ + 2RαL
d

)1/αL
/2
)

.

The results of the remaining eight integrals, corresponding to higher-order terms in
the BB model, are yet to be determined in terms of analytic formulas.

Whereas univariate and multivariate Gaussian distributions have closed forms in
terms of elementary functions, univariate and multivariate Lévy αL-stable distributions
have forms in terms of special functions. This makes it hard to perform a numerical fitting
procedure of the model parameters to the experimental data. To complete this work in the
future, a relatively high computing capacity or improved analytic insight will be needed.
In this work, we have chosen another approach, limiting the domain of the applicability
of the calculations in the squared four-momentum transfer −t. This allows for certain
simplifications and results in an increased analytic insight to certain properties of the
LBB model.

A possible alternative to the Lévy α-stable generalization of the BB model could be its
Tsallis or q-exponential generalization, since data from high-energy collisions have shown
such distribution. The presence of the Tsallis distribution was explained in Ref. [18] using
the fractal approach to the non-perturbative QCD, and also, the q index was expressed
in terms of the number of colors and the number of flavors. The validity of the derived
relation was reinforced later in Ref. [19]. These results suggest that the investigation of the
Tsallis generalization of the BB model is worthwhile. This will be done in a future study. In
this manuscript, we investigate the Lévy α-stable generalization of the BB model.

3. A Simple Lévy α-Stable Model

Now, we check if the Lévy α-stable generalization of the BB model has an enhanced
potential, as compared to the ReBB model, or not. The mathematical and computing difficul-
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ties discussed in the previous section can be bypassed by introducing new approximations
that are valid at low −t, in the domain where the original ReBB model had difficulties to
describe the strongly non-exponential features of the experimental data of elastic proton-
proton scattering at the TeV energy scale. Our aim is, thus, to deduce a model for the
differential cross-section which is valid at the low-|t| region.

Since the elastic scattering amplitude is predominantly imaginary in this kinematic
region, we approximate it by an imaginary part, as given by Equation (1). Low-|t| scattering
corresponds to high-b scattering and, at high b values σ̃in(s, b), is small. Thus, the leading
order term in the Taylor expansion of Equation (1), i.e.,

t̃el(s,~b) =
i
2

σ̃in(s,~b), (39)

should be a reasonable approximation at low −t values in the α = 0 (vanishing real
part) case.

As discussed in Section 3, low-|t| scattering corresponds to high-b scattering and, at
high b values σ̃in(s, b), is small. Thus, the leading order term in the Taylor expansion of
Equation (2), i.e.,

t̃el(s,~b) =
(

α +
i
2

)
σ̃in(s,~b), (40)

should be a reasonable approximation at low −t values if the opacity parameter α is small.
In Section 2, we discussed that in the Lévy α-stable generalized case of the BB model,

the leading order terms in σ̃in(s, b) are Lévy-α-stable-shaped terms. Motivated by this
fact in our simplified model, we approximate σ̃in(s, b) with a single Lévy-αstable-shaped
term, i.e.,

σ̃in(s,~b) = c̃(s)L(~b|αL(s), r(s)) (41)

where c̃(s) is in general a complex-valued and s dependent function, while αL(s), and
r(s) are adjustable parameters determined at a given

√
s energy,

Then, by Equation (39), we have:

t̃el(s,~b) = ic(s)L(~b|αL(s), r(s)), (42)

where c(s) = c̃(s)/2 is a rescaled and complex valued parameter. Now, we transform the
impact parameter amplitude into momentum space:

t(s, t) =
∫

d2bei~∆T~b t̃(s,~b) = ic(s)e−|tr
2(s)|αL(s)/2

, (43)

where |~∆| '
√
−t. The resulting differential cross-section is:

dσ

dt
(s, t) =

1
4π
|t(s, t)|2 = a(s)e−|tb(s)|

αL(s)/2
, (44)

where a(s) = |c(s)|2
4π and b(s) = 22/αL(s)r2(s). Thus, finally, this simple model for the

differential cross-sections has three adjustable parameters, αL, a, and b, to be determined at
a given energy.

The result of a fit to the TOTEM pp elastic differential cross-section data at
√

s = 8 TeV
by the model defined by Equation (44) is shown in Figure 1. One can see that the non-
exponential model with αL = 1.953 ± 0.004 represents the low-|t| differential cross-section
data with a confidence level of 55%.

Figure 2 shows the ratio, (dσ/dt− re f )/re f , with re f = Ae−Bt, used by the TOTEM
collaboration [8] to make the relatively small, but significant, low-|t| non-exponential
behavior visible. One can clearly see that our model successfully describes the low-|t| data.
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defined by Equation (44).
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4. The t = 0 Measurable Quantities and the BB Model Parameters

In this section, we relate the t = 0 measurable quantities and the LBB parameters.
First, we work with the original BB model with Gaussian distributions and then derive the
formulas for the Levy α-stable generalized case. We note again that to avoid confusion
with the α parameter of the ReBB model regulating the real part of the amplitude and that
of the Lévy α-stable distribution, the latter we have denoted in this manuscript as αL. For
the αL = 2 limiting case, the relations obtained in the original BB model are recovered.

Now, we consider only the leading order terms in σ̃in(s, b), i.e., σ̃
qq
in (

~b), σ̃
qd
in (

~b), and
σ̃dd

in (~b), which give the dominant contribution at t = 0. We get the amplitude in momentum
space by Fourier transformation as in Equation (43). As discussed in the Introduction, the
parameter Aqq can be fixed at a value of 1.0, whereas λ can be fixed at a value of 1/2. We
use these specific values below.

With Gaussian distributions in the BB model, in the low-|t| approximation, σtot is
related to the square of the quark radius Rq,

σtot = 2Imt(s, t = 0) = 18πR2
q, (45)

whereas the ratio of the real to the imaginary part of the forward scattering amplitude is
related to the α parameter of the ReBB model,

ρ0 =
Ret(s, t = 0)
Imt(s, t = 0)

= 2α. (46)

Note that this result for ρ0 holds also in the Levy α-stable generalized case.
The low-|t| pp differential cross-section is in the form [8]:

dσ

dt
=

1
4π
|t(s, t)|2 = ae−b1t+b2t2

(47)

where:
a =

dσ

dt

∣∣∣
t=0

(48)

is the optical point,

b1 =

(
d
dt

ln
dσ

dt

)∣∣∣∣∣
t=0

(49)

is the slope parameter, and

b2 =
1
2

(
d

dt2 ln
dσ

dt

)∣∣∣∣∣
t=0

(50)

is the curvature parameter. These measurable quantities can be expressed in terms of the
ReBB model parameters:

a =
81
4

πRq4
(

1 + 4α2
)

, (51)

b1 =
2
9

R2
qd +

2
3

R2
d +

1
3

R2
q, (52)

and
b2 =

1
324

(
R2

qd − 3R2
d + 3R2

q

)2
. (53)

Now, we turn to the LBB model. Using the Levy α-stable generalized forms of the
leading order terms in σ̃in(s, b), i.e., Equations (36)–(38), the total cross-section is:

σtot = 9π
(
2RαL

q
)2/αL . (54)
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Furthermore, we consider now that the differential cross-section has the form as
written in Equation (44). Now, the optical point is:

a =
81
16

π(2RqαL)4/αL
(

1 + 4α2
)

, (55)

whereas the slope parameter is:

b =
1
36

(
4
3

)2/αL(
(2 + 2αL)RαL

qd + 3αL
(
2RαL

d + RαL
q
))2/αL

. (56)

One can easily check that for αL = 2, Equation (54) reduces to Equation (45),
Equation (55) to Equation (51), and Equation (56) to Equation (52). Since the function
in Equation (44) is not an analytic function of t at t = 0, Equation (56) was obtained by a
Taylor expansion in tαL/2 around zero and by keeping only the leading order term.

As discussed in Section 3, the Levy scale parameter r in our simple Lévy α-stable
model is related to the slope parameter. The relation can be rewritten as r =

√
b/21/αL .

Then, this r parameter can be expressed in terms of the LBB model parameters:

r =
1
6

(
2
3

)1/αL(
(2 + 2αL)RαL

qd + 3αL
(
2RαL

d + RαL
q
))1/αL

. (57)

Thus, we have shown that the parameters of our simple Lévy α-stable model, namely,
a and b (or equivalently, r), can be approximately expressed in terms of those of the
LBB model.

In Ref. [20], the three-dimensional radius of the proton is defined and its relation to
the slope parameter is derived. In our work, we related the Levy scale parameter r in our
simple Lévy α-stable model to the elastic slope parameter and expressed it in terms of the
radii of the constituents of the proton (Rq and Rd) and their typical separation (Rqd).

Finally, we note that there are five measurable parameters at the forward region: the
total cross-section, the ratio of the real to the imaginary part of the forward scattering
amplitude, the optical point, the slope parameter, and the curvature parameter. The ReBB
model has four free parameters, whereas the LBB model has five. This naturally suggests
that the LBB can give a better description to the data than the ReBB model.

5. Summary

The ReBB model turned out to be an efficient tool in describing pp and pp̄ differential
cross-section data, but in a limited

√
s and −t range. The validity range of the ReBB

model in
√

s does not include 13 TeV, possibly due to the significant hollowness effect
observed at that energy. The validity range of the ReBB model in−t includes the minimum–
maximum structure of the differential cross-section, but does not include the significant
non-exponential behavior at low −t values. To overcome these shortcomings of the ReBB
model, in this paper, we introduce the Lévy α-stable generalized Real Extended Bialas–
Bzdak (LBB) model. The fitting of the parameters of the LBB model to the experimental
data, however, requires the solution of difficult and complex technical (mathematical and
computational) problems. However, in the low four-momentum transfer region, based
on our novel approximations and the idea of the Levy-α-stable-shaped inelastic scattering
probability suggested by the LBB model, we deduced and fitted a highly simplified Levy
α-stable model of the pp differential cross section to the measured data at

√
s = 8 TeV. The

results show that our simple model represents the low-|t| experimental data in a statistically
acceptable manner. This is a promising prospect for the future utility of the Lévy α-stable
generalized Real Extended Bialas–Bzdak (LBB) model.

We have shown also that the parameters of our simple Lévy α-stable model, namely,
a and b (or equivalently, r), can be approximately expressed in terms of those of the
LBB model, which is based on R. J. Glauber’s multiple diffractive scattering theory. We
emphasize that there are five measurable parameters at the forward region, whereas the
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ReBB model has only four free parameters. Since the LBB model has five free parameters, it
is natural to expect that it can give a better description to the data than the ReBB model.

In the next steps of our research, we are planning to extend the fits with our simple
model for all the energies where low-|t| experimental data exist, and after solving the
technical issues, to fit the full LBB model to all the existing experimental pp and pp̄
differential cross-section data.
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