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Abstract: This review considers the topological fermion condensation quantum phase transition
(FCQPT) that leads to flat bands and allows the elucidation of the special behavior of heavy-fermion
(HF) metals that is not exhibited by common metals described within the framework of the Landau
Fermi liquid (LFL) theory. We bring together theoretical consideration within the framework of the
fermion condensation theory based on the FCQPT with experimental data collected on HF metals.
We show that very different HF metals demonstrate universal behavior induced by the FCQPT and
demonstrate that Fermi systems near the FCQPT are controlled by the Fermi quasiparticles with the
effective mass M∗ strongly depending on temperature T, magnetic field B, pressure P, etc. Within
the framework of our analysis, the experimental data regarding the thermodynamic, transport and
relaxation properties of HF metal are naturally described. Based on the theory, we explain a number of
experimental data and show that the considered HF metals exhibit peculiar properties such as: (1) the
universal T/B scaling behavior; (2) the linear dependence of the resistivity on T, ρ(T) ∝ A1T (with
A1 is a temperature-independent coefficient), and the negative magnetoresistance; (3) asymmetrical
dependence of the tunneling differential conductivity (resistivity) on the bias voltage; (4) in the case
of a flat band, the superconducting critical temperature Tc ∝ g with g being the coupling constant,
while the M∗ becomes finite; (5) we show that the so called Planckian limit exhibited by HF metals
with ρ(T) ∝ T is defined by the presence of flat bands.

Keywords: topology; quantum phase transition; flat bands; fermion condensation; HF metals;
thermodynamic; transport properties

PACS: 64.70.Tg; 75.40.Gb; 78.20.-e; 71.10.Hf

1. Introduction

Strongly correlated Fermi systems such as heavy-fermion metals, graphene, and high-Tc
superconductors exhibit the non-Fermi-liquid (NFL) behavior. Theoretical predictions [1–4]
and experimental data collected on many of these systems show that at low temperatures a
portion of their excitation spectrum becomes approximately dispersionless, giving rise to
so-called flat bands and high-Tc superconductivity, see, e.g., [1,5–12]. The emergence of flat
bands at low T indicates that the system is close to a special quantum critical point, namely
a topological fermion condensation quantum phase transition (FCQPT), leading to the
formation of flat bands dubbed the fermion condensation (FC). The flat bands are formed by
the Landau interaction between quasiparticles, while a frustration and van-Hove singulari-
ties can facilitate the process. Flat bands have notable features, e.g., raising temperatures,
and the superconducting phase transition makes them upward tilted [3,4,13–17]. These
observations have been predicted [3,4,14,15,17] and are in accordance with experimental
data, see, e.g., [13,16,18]. Moreover, the FC theory allows one to qualitatively and quantita-
tively evaluate the NFL and Landau Fermi liquid (LFL) behaviors of strongly correlated
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Fermi systems, and explain the crossover from one another [1,2,4,15,19,20]. We note that
in our review we analyze strongly correlated Fermi systems formed by and located near
their topological FCQPT and consider experimental observations that are collected on such
systems. Consideration of systems located relatively far from their topological FCQPT is
possible within the framework of the FC theory as well, see, e.g., [15,19,20]. We review
and explain recent prominent experimental results that to our best knowledge have not
found alternative explanations and that strongly suggest that the topological FCQPT is a
generic feature of many strongly correlated Fermi systems, being the universal cause of
their non-Fermi-liquid behavior, and the fermion condensation theory is able to explain the
extraordinary behavior of strongly correlated Fermi systems.

In our review we consider exciting experimental facts such as:
(1) Recent experimental findings of linear dependence on temperature T of the resis-

tivity ρ(T) ∝ T, collected on high Tc superconductors (HTSC), graphene, heavy fermion
(HF) and common metals reveal that the scattering rate 1/τ of charge carriers reaches the
Planckian limit 1/(Tτ) = kB/h̄, with 1/τ being the scattering rate and kB and h̄ being
the Boltzmann and Plank constants, respectively [21–24]. Within the framework of the FC
theory, we show that the quasi-classical physics is still applicable for describing the linear T-
dependence of resistivity of strongly correlated metals at their quantum criticality since flat
bands, forming the quantum criticality, generate transverse zero-sound mode with the De-
bye temperature TD [25]. At T ≥ TD, the mechanism of the linear T-dependence is the same
in both ordinary metals and strongly correlated ones and is represented by the electron–
phonon scattering. Therefore, it is the electron–phonon scattering at T ≥ TD that leads
to the near material-independence of the lifetime τ that is expressed as 1/(τT) ∼ kB/h̄.
As a result, we describe and explain recent exciting experimental observations of univer-
sal scattering rate related to the linear T-dependent resistivity of a large number of both
strongly correlated Fermi systems and common metals [21–24]. We show that the observed
scattering rate is explained by the emergence of flat bands formed by the topological FQCPT
rather than by the so-called Planckian limit at which the assumed Planckian scattering
rate occurs [25,26]. The Planckian limit then has to occur in common metals. Moreover, in
magnetic fields, HF metals transit from the NFL to LFL behavior and ρ(T) ∝ T vanishes,
being replaced by the LFL behavior ρ(T) ∝ A2T2, with A2 as the temperature-independent
coefficient.

(2) Recent observations of the linear T-dependence, ρ(T) ∝ T, at low temperatures,
T → 0, relate the slope of the linear T-dependent resistivity ρ to the London penetration
depth λ0, indicating a universal scaling property

dρ

dT
∝ λ2

0 (1)

for a large number of strongly correlated high-temperature superconductors [27]. This
scaling relation spans several orders of magnitude in λ0, attesting to the robustness of the
empirical law (1) [28].

(3) We also analyze recent challenging experimental findings of tunneling differential
conductivity dI/dV = σd(V) as a function of the applied bias voltage V, collected under the
application of magnetic field B on the twisted graphene and the archetypical heavy-fermion
metals YbRh2Si2 and CeCoIn5 [5,29,30]. We explain the emergence of the asymmetrical
part ∆σd = σd(V) − σd(−V) and demonstrate that ∆σd vanishes in magnetic fields as
predicted [31].

(4) We consider the recent outstanding experimental observation of the density ns
of superconducting electrons that turns out to be much less than the total density nρ of
electrons at T → 0 [32] as predicted [33].

(5) We show that the transition temperature Tc is proportional to the superconducting
coupling constant g,

Tc ∝ g. (2)
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This fact, see Equation (2), leads to creating high-Tc superconductors [1,5–12]. This
observation is supported by special features of high-Tc superconductivity based on flat
bands, namely that Tc is proportional to the Fermi velocity VF ∝ 1/Ns(0) VF ∝ Tc, rather
than Ns(0) ∝ 1/VF ∝ Tc as stated in standard BCS-like theories [13,16] as predicted [17].

Our results are in good agreement with experimental data and demonstrate that the
topological FCQPT is an intrinsic feature of strongly correlated Fermi systems, and the FC
theory can be viewed as the universal agent explaining the physics of strongly correlated
Fermi systems.

2. Fermion Condensation

The theory of FC has been described several times, see, e.g., [4,15,19,20]; nonetheless,
for the readers’ convenience, we briefly present this methodology. The usual approach to
describe the ensembles of itinerant Fermi particles is the well-known Landau Fermi liquid
theory [34,35]. This theory represents the real properties of a solid with itinerant electrons
in terms of a Fermi gas of so-called quasiparticles with weak interaction. In this case, the
quasiparticles represent the excited states of a solid or liquid states and are responsible
for the low temperature thermodynamic, transport and relaxation properties of common
metals. These quasiparticle excitations are characterized by the effective mass M∗, that is
of the order of the bare mass of electron, M, and depends weakly on external parameters
such as temperature T, magnetic field B, external pressure P, etc. [34,35]. However, the
LFL theory cannot explain why the effective mass M∗ begins to depend strongly on the
stimuli above and, for example, can even be a divergent function of magnetic field B or
temperature T, see, e.g., [4,15,19,36]. Such a dependence is called the NFL behavior and
is connected to the growth of the effective mass that occurs when the system approaches
the topological fermion condensation quantum phase transition (FCQPT) leading to an
FC state with flat bands [1,4,15,19]. Beyond the FCQPT, the system develops a flat band,
formed by FC, and characterized by the topological charge that is different from both
the topological charges of the Landau Fermi liquid (LFL) and marginal Fermi liquid,
representing a new type of Fermi liquid [2,4,15,19,37]. Thus, the stability of FC is ensured
by its topological charge, and it can be destroyed only by the first order phase transition,
since the topological charge cannot acquire continuous values [2,15,19,37]. As a result of
these unique properties of the FC state, a new state of matter is generated, represented by
QSL, HF metals, quasicrystals, 2D liquids such as 3He and high-Tc superconductors, so
that 1D, 2D and 3D strongly correlated Fermi systems exhibit universal scaling behavior
irrespective of their microscopic structure [15,19,20,38,39].

The main feature of FC theory is the existence of one more instability channel (ad-
ditional to those of Pomeranchuk) that cannot be described within the framework of the
Landau theory of Fermi liquid [35]. Indeed, under some conditions, the effective mass M∗

of LFL quasiparticle diverges, see, e.g., [15,19]. As a result, to keep the finite and positive
effective mass at zero and finite temperatures, the Fermi surface changes its topology: the
Fermi surface transforms into a Fermi layer, as seen in Figure 1. This topological phase
transition generates the effective mass dependence on temperature, magnetic field, etc.
We assume, without loss of generality [15,19], that the Fermi liquid is homogeneous. That
is, in our model we account for the most important and common features only, neglect-
ing marginal effects related to the crystalline anisotropy of solids [15,19,20]. The Landau
equation for the quasiparticle effective mass M∗ reads [15,34,35]

1
M∗σ(B, T)

=
1
M

+ ∑
σ1

∫ pFp
p3

F
Fσ,σ1(pF, p)

× ∂nσ1(p, T, B)
∂p

dp
(2π)3 , (3)

where Fσ,σ1(pF, p) is the interaction function, introduced by Landau. The function Fσ,σ1(pF, p),
depending on momentum p, Fermi momentum pF and spin indices σ, σ1, has the form of
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spherical harmonics with coefficients taken from the best fit to experiment. The fermion
occupation number n in the Fermi–Dirac statistics reads

nσ(p, T) =
{

1 + exp
[
(εσ(p, T)− µσ)

T

]}−1

, (4)

where εσ(p, T) is the single-particle spectrum, and µσ is a spin-dependent chemical poten-
tial: µσ = µ± µBB where µB is the Bohr magneton. The magnetic field dependence occurs
due to the Zeeman splitting shifting the system from its topological FCQPT [15].

( a )

( b )

Figure 1. Diagram of flat bands near the FCQPT at zero temperature, T = 0. Panel (a) shows normal
Fermi sphere and corresponding quasiparticles spectrum ε(p) ' p2/(2M) and occupation number
n(p) being a step function. Panel (b) displays the system in the FC state after the topological FCQPT.
The Fermi sphere alters its topology, which is shown schematically as an emergence of a spherical
layer of the thickness p f − pi. In this case, the Fermi momentum pF is hidden inside the flat band,
defined by the condition ε(p) = µ (7). This condition defines the flat band, shown as a dispersionless
part of the spectrum ε(p) = µ, with µ being the chemical potential. The function n(p) decreases
gradually from n(pi) = 1 to n(p f ) = 0 without violating the Pauli exclusion principle.

The standard procedure for obtaining the single-particle spectrum εσ(p, T) in the
Landau theory is to vary the system energy E[nσ(p, T)] with regard to the occupation
number n

εσ(p, T) =
δE[n(p)]
δnσ(p)

. (5)

We note that the Landau interaction entering Equation (3) is not of a special form
since it is fixed by the simple condition that the system is in the FCQPT point [15,19]. The
explicit form of the variational Equation (5) reads

∂εσ(p, T)
∂p

=
p
M
−∑

σ1

∫
∂Fσ,σ1(p, p1)

∂p
nσ1(p1, T)

d3 p1

(2π)3 , (6)
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Later on for simplicity, we omit the spin indexes σ. In the FC phase (i.e., beyond the
FCQPT) at T = 0, Equation (5) takes the form [1]

ε(p, T = 0) = µ, pi ≤ p ≤ p f ; 0 ≤ n(p) ≤ 1. (7)

where pi, f stands for initial and final momenta (not to be confused with Fermi momentum
pF), where the flat band resides, see Figure 1. Condition (7) defines the flat band since
in this case the quasiparticles have no dispersion. By this virtue, quasiparticles have the
Fermi velocity VF = 0 and at T = 0 are condensed with the same energy ε(p, T = 0) = µ,
representing the superconducting state with the finite order parameter κ, while the super-
conducting gap ∆ = 0, see Section 7. As this resembles the case of Bose condensation, the
corresponding phenomenon is called fermion condensation, being separated from LFL by
the first order phase transition [1,2,37]. The system with FC acquires properties, being very
different from those of ordinary Fermi liquids, since the Fermi liquid with FC forms a new,
topologically-protected (and thus “extremely stable”) state of matter. This means that if FC
is formed in a substance, it will define its properties at T = 0 and at elevated temperatures
as well. Figure 1 visualizes (at T = 0) the consequences of the FCQPT on the Fermi surface,
spectrum and occupation number of a Fermi liquid. The transformation from panel (a)
(normal Fermi liquid) to panel (b) is represented by altering the Fermi surface topology so
that in the normal Fermi liquid the layer of finite length p f − pi appears instead of the Fermi
surface located at Fermi momentum p = pF. This immediately implies the emergence of
the flat part of the spectrum defined by Equation (7), where all the condensed fermions are
located. This, in turn, generates the gradual (instead of abrupt on the panel (a) decay of the
occupation numbers n(p) from n = 1 at p < pi to n = 0 at p > p f .

Equations (3) and (7) allow one to determine the energy spectrum εσ(p, T) and oc-
cupation numbers nσ(p, T) in a self-consistent way. These quantities, in turn, permit the
calculation of the effective mass, pF/M∗ = ∂ε(p)/∂p|p=pF = VF. We emphasize that both
magnetic field and temperature dependences of the effective mass M∗(B, T) in the FC phase
come from Equation (3) and from the T, B-dependence of εσ(p) and nσ(p). Calculated (by
Equations (3) and (7)) spectrum and occupation numbers [15] in the FC phase are reported
in Figure 2. At (almost) zero temperature, the flat portion of the spectrum is clearly seen
at pi < p < p f . This shape of the spectrum defines n(p) (Figure 2, panel (b)) in the form
of “two steps”, gradually decaying from one to zero. Simultaneously, at relatively high
temperatures (equal to T/EF = 0.01, which at EF ∼ 1eV implies T ' 100 K) this part
is rather strongly upward tilted. This shows that finite temperatures erode the FC state,
making the effective mass M∗ finite, while the system acquires features similar to ordinary
Fermi liquid [4,15].

To gain more insights into the physical properties of the FC state, it is helpful to explore
the system behavior at T → 0. It was shown earlier [1,15,19] that the ground state of a
system with FC is highly degenerate. In this case, the occupation numbers n0(p) of the
FC state quasiparticles (i.e., having dispersionless spectrum or belonging to the flat band)
change gradually from n = 1 to n = 0 at T = 0. This variation occurs at pi ≤ p ≤ p f . It is
clear that such a property of the occupation numbers drastically differs from the property
of the usual Fermi–Dirac function property at T = 0. Indeed, in that case, the Fermi–Dirac
function is represented by the step function between n = 1 and n = 0 at p = pF, where pF
stands for Fermi momentum, see Figure 1.

At T = 0, the infinite degeneracy of the ground state with FC leads to a T-independent
entropy term [4,15], remaining finite at T = 0 in violation of the Nernst theorem

S0 = −∑
p
[n0(p) ln n0(p) + (1− n0(p)) ln(1− n0(p))]. (8)
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Figure 2. Flat band induced by FC. The calculated single-particle spectrum (a) and the quasiparticle
occupation number (b) at small but finite temperatures versus the dimensionless momentum k = p/pF,
where pF is the Fermi momentum [15]. Temperature is measured in the units of EF . At T = 0.01EF

and T = 0.0001EF, the vertical lines show the position of the Fermi level EF at which n(k, T) = 0.5
(see the horizontal line in panel (b)). At T = 0.0001EF (blue curve), the single-particle spectrum
ε(k, T) is almost flat (marked “Flat band”) in the range k f − ki (with ki = pi/pF and k f = k f /pF

denoting, respectively, the initial and final momenta for FC realization, and k = p/pF). Thus, in
the range k f − ki the density of states N0 → ∞, and outside the range N0 is finite. The distribution
function n(k, T) becomes more asymmetric with respect to the Fermi level EF, generating the NFL
behavior, and C invariance is broken. To illuminate the asymmetry, the area occupied by holes in
panel (b) is labeled h (red) and that occupied by quasiparticles by p (maroon).

Thus, the infinite degeneracy of the FC ground state generated by flat bands, see
Refs. [19,20] for a comprehensive discussion. We note that for systems where the Nernst
theorem is violated due to the ground state degeneracy is a spin glass [40,41]. It is well
known that in normal Fermi liquid the function n(p) at finite temperatures loses its step-
like feature at p = pF, becoming continuous around this point. The same is valid for a
Fermi liquid with flat bands; this conclusion follows from Equation (4). This means that
at small but finite temperatures T 6= 0 the degeneracy of the above ground state is lifted,
consequently the single-particle energy ε(p, T 6= 0) acquires a small dispersion [4]

ε(p, T → 0) = T ln
1− n0(p)

n0(p)
. (9)

From Equation (9), we see that the dispersion is proportional to T since the occupation
numbers n0 approximately remain the same as at T = 0. This means that the entropy S
in this case still remains S(T) ≥ S0. This situation also jeopardizes the Nernst theorem.
To avoid this unphysical situation, the nearly flat bands representing the FC state should
acquire dispersion in a way that the excess entropy S0 should “dissolve” as T → 0. This
occurs by virtue of some additions to the FCQPT phase transition such as a ferromagnetic
and/or a superconductive one, etc. [4,15,19]. Thus, at low temperatures the FC state has to
be consumed by a number of phase transitions. This “consumption” can be viewed as a
complicated phase diagram of an HF metal at its quantum critical point. In fact, at T = 0
the FC state is represented by the superconducting state with the superconducting order
parameter κ =

√
n(p)(1− n(p)) that is finite in the region (pi − p f ) [15,33,42], for in the

region n(p) < 1, as shown in Figure 2. Nonetheless, the superconducting gap , ∆ = 0, can
be absent provided that the superconducting coupling constant g = 0. In case of finite
g, the gap exhibits very specific non-BCS behavior [43] ∆ ∝ g, see, e.g., [1,4,44,45] and
Section 7.
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3. Scaling of Physical Properties

Experimental manifestations of the FC phenomenon correspond to the universal
behavior of the physical properties of HF metals [15,19,20,46]. The physical properties of
HF metals are formed due to flat bands and are widespread compounds [6]. To reveal
the scaling, consider now the approximate solutions of Equation (3) [15,19,20]. At B = 0,
Equation (3) becomes strongly temperature dependent, which is a typical NFL feature and
can be solved analytically [15,19,20,46]:

M∗(T) ' aTT−2/3. (10)

At T = 0, the analytical solution is

M∗(B) ' aBB−2/3. (11)

Here, aT and aB are constants. Under the application of a magnetic field, the system
transits to the LFL state with the effective mass becoming almost temperature independent
and strongly dependent on B, as seen from Equation (11).

3.1. Internal Variables Revealing the Scaling Behavior

Equations (10) and (11) allow us to construct the approximate solution of Equation (3)
in the form M∗(B, T) = M∗(T/B). The introduction of “internal” scales simplifies the
problem of constructing the universal scaling of the effective mass M∗, since in that case
we eliminate the microscopic structure of the compound in question [15,19,20]. From the
Figure 3a, we see that the effective mass M∗(B, T) reaches a maximum M∗M at a certain
temperature TM ∝ B [15]. Accordingly, to measure the effective mass and temperature,
it is convenient to introduce the scales M∗M and TM. In this case, we have new variables
M∗N = M∗/M∗M that we call normalized effective mass and TN = T/TM that we call
normalized temperature. As a result, M∗N becomes a function of the only variable TN ∝ T/B,
as seen from Figure 3b.

0 , 1 1

0 , 4
0 , 6
0 , 8
1 , 0
1 , 2
1 , 4
1 , 6
1 , 8 ( a )

Y b R h 2 S i 2
  0 . 0 6  T
  0 . 1  T
  0 . 1 5  T
  0 . 2 5  T
  0 . 5  T
  1 . 0  T
  1 . 5  T

C el/T 
(J/

mo
l K

2 )

T  ( K )

M * M

T M

0 , 1 1 1 0
0 , 4

0 , 6

0 , 8

1 , 0 Y b R h 2 S i 2

M N

 0 . 1  T
 0 . 1 5  T
 0 . 2 5  T
 0 . 5  T
 1 . 0  T
 1 . 5  T
 T h e o r y

T N ~ T / B

L F L

( b )

Figure 3. Electronic specific heat of YbRh2Si2. Panel (a): Specific heat C/T, versus temperature T as
a function of magnetic field B [36] shown in the legend. Panel (b): The normalized effective mass
M∗N as a function of normalized temperature TN ∝ T/B. M∗N is extracted from the measurements
of the specific heat C/T on YbRh2Si2 in magnetic field B [36], see panel (a), listed in the legend.
Approximate constant effective mass M∗ at TN < 1 is typical for the normal Landau Fermi liquids,
and is shown by the arrow.
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In the vicinity of the FCQPT, the normalized effective mass M∗N(TN) can be well ap-
proximated by a certain universal function [15,19], interpolating the solutions of Equation (3)
between the LFL state, given by Equation (11), and the NFL one, given by Equation (10) [15]

M∗N(TN) ≈ c0
1 + c1T2

N

1 + c2T8/3
N

. (12)

Here, TN = T/TM, c0 = (1 + c2)/(1 + c1), where c1 and c2 are free parameters. Since
the magnetic field B enters Equation (3) as µBB/T, the maximum temperature TM ∼ µBB.
Consequently, from Equation (12),

TM ' a1µBB; TN =
T

TM
=

T
a1µBB

∝
T
B

, (13)

where a1 is a dimensionless parameter, and µB is the Bohr magneton. Equation (13)
shows that Equation (12) determines the effective mass as a function of the single variable
TN ∝ T/B. That is, the curves M∗N(T, B) merge into a single one M∗N(TN), TN = T/TM,
as shown in Figure 4. Since TM ∝ B, from Equation (13) we conclude that the curves
M∗N(T, B) coalesce into a single one M∗N(TN = T/B), TN = T/TM = T/B, demonstrating
the universal scaling in HF metals [15,19,20]. This universal scaling exhibited by MN is also
shown in Figure 4. We note that Equations (12) and (13) allow one to describe the universal
scaling behavior of HF metals, see, e.g., [15,19,20].

0 , 1 1 1 0
0 , 0

0 , 5

1 , 0

M*
N

T N  ~  ( T / B ) N

L F L
c r o s s o v e r

N F L

I n f l e c t i o n
  p o i n t

Figure 4. Scaling of the thermodynamic properties governed by the normalized effective mass M∗N in
the case of the application of a magnetic field TN ∝ T/B, as follows from Equation (13). The solid
curve depicts M∗N versus normalized temperature TN . It is clearly seen that at finite TN < 1, the
normal Fermi liquid properties take place. At TN ∼ 1, M?

N enters the crossover state, and at growing
temperatures it exhibits the NFL behavior.

One more important feature of the FC state is that apart from the fact that the Landau
quasiparticle effective mass starts to depend strongly on external stimuli such as T and B,
all relations, inherent in the LFL theory, formally remain the same. Namely, the famous
LFL relation [35],

M∗(B, T) ∝ χ(B, T) ∝
C(B, T)

T
∝ γ0. (14)

still holds. Here, γ0 is the Sommerfeld coefficient. Expression (14) has been related to the
FC case, where the specific heat C, magnetic susceptibility χ and effective mass M∗ depend
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on T and B. Taking Equation (14) into account, we obtain that the normalized values of
C/T and χ are of the form [15,19]

M∗N(B, T) = χN(B, T) =
(

C(B, T)
T

)
N

. (15)

From Equation (15) we see that the above thermodynamic properties have the same
scaling displayed in Figure 4. As a result, we shall see that the observed scaling allows us
to construct a general schematic phase diagram, see Section 3.3.

3.2. Magnetoresistance

In the LFL state, the resistivity ρ(T, B) ∝ A2(B)T2. In the case of common metals, it
is well known that ρ(T, B) increases with the increasing applied magnetic field B and is
described by the Kohler’s rule, see, e.g., [47]. In contrast, HF metals exhibit decreasing
resistivity in magnetic fields when the metal in question transits from the NFL behavior to
the LFL one, see, e.g., [48,49]. The A(B) coefficient, being proportional to the quasiparticle
Â—quasiparticle scattering cross section is found to be A ∝ (M∗(B))2, as follows from
Equation (11) [15,48]. Taking into account Equation (11), we obtain

A(B) ' A0 +
D

B− Bc0
, (16)

where A0 and D are fitting parameters. Figure 5 displays experimental data for A(B)
collected on two HF metals: YbRh2Si2 [48] and Tl2Ba2CuO6+x [49]. The solid curves
represent our calculations, and the inset demonstrates that the well-known Kadowaki–
Woods ratio [50] is conserved [48]. This experimental result is in good agreement with
Equations (15) and (16).

0 1 0 2 0 3 0 4 0 5 0
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 T l 2 B a 2 C u O ( 6 + x )

A (
µΩ

cm
/K2 )

B ( T )
Figure 5. The charge transport coefficient A(B) as a function of magnetic field B obtained in mea-
surements on YbRh2Si2 [48] and Tl2Ba2CuO6+x [49]. The different field scales are clearly indicated.
The solid curves represent our calculations based on Equation (16) [15]. The inset (adapted from [51])
shows that A(B) ∝ χ(B)2 ∝ γ2

0 ∝ (C/T)2.

To further elucidate the scaling of A(B), we rewrite Equation (16) in the re-scaled
variables A/A0 and B/Bc0. Such a recasting immediately reveals the scaling nature of the
behavior of these two substances. Both of them are driven to common QCP related to the
FCQPT and induced by the application of a magnetic field. As a result, Equation (16) takes
the form

A(B)
A0

' 1 +
DN

B/Bc0 − 1
, (17)

where DN = D/(A0Bc0) is a constant. From Equation (17), it is seen that upon applying the
scaling to both coefficients A(B) for Tl2Ba2CuO6+x and A(B) for YbRh2Si2, they are reduced
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to a function depending on the single variable B/Bc0, thus demonstrating the universal
behavior. To support Equation (17), we plot both dependencies in the reduced variables
A/A0 and B/Bc0 in Figure 6; the universal scaling nature of the coefficients A(B) of these
two substances is immediately revealed. We note that the negative magnetoresistance of
both Tl2Ba2CuO6+x and YbRh2Si2 results from diminishing A(B) under the application of
a magnetic field as follows from Equation (11).

0 2 4 6 8 1 0 1 2 1 4
0
4
8

1 2
1 6
2 0
2 4
2 8
3 2
3 6

 Y b R h 2 S i 2
 T l 2 B a 2 C u O ( 6 + x )A(B

)/A
0

B / B c 0

ρ~ A ( B ) T 2

Figure 6. Normalized coefficient A(B)/A0 ' 1 + DN/(y− 1) given by Equation (17) as a function of
a normalized magnetic field y = B/Bc0 shown by squares for YbRh2Si2 and by circles for high-Tc

Tl2Ba2CuO6+x. DN is the only fitting parameter.

The scaling behavior of the longitudinal magnetoresistance (LMR) collected on
YbRh2Si2 [48] confirms our above conclusions. This scaling behavior is displayed in
Figure 7. Clearly, our calculations are in good agreement with the experimental data. Thus,
the fermion condensation theory explains both the negative magnetoresistance and the
crossover from the NFL behavior to the LFL one under the application of magnetic fields.

0 , 0 1 0 , 1 1 1 0
0 , 0

0 , 5

1 , 0

1 , 5

ρ N

 0 . 3  K  
 0 . 2  K  
 0 . 1  K  
 T h e o r y

B N

Y b R h 2 S i 2

i n f l e c t i o n  p o i n t

L F L

N F L

Figure 7. Magnetic field dependence of the longitudinal normalized magnetoresistance LMR versus
a normalized magnetic field. The LMR ρN was extracted from the LMR of YbRh2Si2 at different
temperatures [48] listed in the legend. The solid line represents our calculations [15]. The arrows
show the NFL behavior at B� T, the inflection point and the LFL behavior at B� T.

3.3. Schematic Phase Diagram

Based on Equation (12) and Figures 3 and 4, we can construct the schematic T − B
phase diagram of HF metals [52], reported in Figure 8. We assume here that at T = 0
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and B = Bc0 the system is approximately located at the FCQPT. In the case of Bc0 = 0,
the system is located at the FCQPT without tuning. At fixed temperatures, the system is
driven by the magnetic field B along the horizontal arrow (from the NFL to the LFL parts
of the phase diagram). In turn, at fixed B and increasing T, the system moves from the
LFL to the NFL regime along the vertical arrow. The hatched area indicating the crossover
between the LFL and the NFL phases separates the NFL state from the slightly polarized
paramagnetic LFL state. The crossover temperature TM(B) is given by Equation (13).

N F L

 L F L

N F L

 

M a g n e t i c  f i e l d  B

Te
mp

era
tur

e T

F C Q P T
B = B c 0

T c r o s s ( B  ~  T )
ρ(Τ) ~ T

ρ( T ) ~ T 2

c r o s s o v e r

Figure 8. Schematic T − B phase diagram of a strongly correlated Fermi system. The vertical
and horizontal arrows crossing the transition region marked by the thick lines depict the LFL–
NFL and NFL–LFL transitions at fixed B and T, respectively. At B < Bc0, the system is in its
possible antiferromagnetic (AF) state, with Bc0 shown by the arrow as denoting a critical magnetic
field destroying the AF state. Both the hatched areas shown by the arrow and by the solid curve
Tcross(B ∼ T) represent the crossover separating the domain of NFL behavior from the LFL domain.
A part of the crossover is hidden in the possible AF state.

4. The Linear T-Dependent Resistivity and the Planckian Limit

For very different metals such as HF metals, high Tc superconductors and common
metals, ρ(T) ∝ T, the linear dependence of resistivity on temperature and the universality
of their fundamental physical properties have been explained within the framework of the
FC theory [15,19,25]. On one hand, at low T, the linear T-resistivity

ρ(T) = ρ0 + A1T, (18)

is experimentally observed in many strongly correlated compounds such as high-temperature
superconductors and heavy-fermion metals located near their quantum critical points and
therefore exhibiting quantum criticality and a new state of matter, see, e.g., [21,32]. Here,
ρ0 is the residual resistivity and A is a T-independent coefficient. Explanations based
on quantum criticality for the T-linear resistivity have been given in the literature, see,
e.g., [53–59] and Refs. therein. At room temperatures the T-linear resistivity is exhibited by
conventional metals such as Al, Ag or Cu. In the case of a simple metal, the resistivity reads
e2nρ = pF/(τvF) [60], where e is the electronic charge, τ is the lifetime, n is the carrier
concentration and pF and vF are the Fermi momentum and the Fermi velocity, respectively.
Writing the lifetime τ (or inverse scattering rate) of quasiparticles in the form [58,61]

h̄
τ
' a1 +

kBT
a2

, (19)

we obtain [25]

a2
e2nh̄
pFkB

∂ρ

∂T
=

1
vF

, (20)



Atoms 2022, 10, 67 12 of 27

where h̄ is Planck’s constant, kB is Boltzmanns constant, and a1 and a2 are T-independent
parameters. Challenging problems for a theory dealing with strongly correlated Fermi
systems are:

(1) Experimental data corroborate Equation (20) in the case of both strongly correlated
metals and ordinary ones, provided that these demonstrate the linear T-dependence of
their resistivity [21], see Figure 9;

(2) Under the application of a magnetic field, HF metals and high-Tc superconductors
exhibit the LFL behavior, see Figure 8, and the Planckian limit dissolves in magnetic fields.
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Figure 9. Scattering rates of different strongly correlated metals such as HF metals, high-Tc supercon-
ductors, organic metals and conventional metals [21]. All these metals exhibit ρ(T) ∝ T, and their
Fermi velocities VF vary by two orders of magnitude. The parameter a2 ' 1 gives the best fit shown
by the solid green line, see Equation (20). The region occupied by the common metals is displayed by
the two blue arrows, and the two maroon arrows show the region of strongly correlated metals.

Moreover, the analysis of data in the literature for various compounds and ordi-
nary metals with the linear dependence of ρ(T) shows that the coefficient a2 is always
0.7 ≤ a2 ≤ 2.7, notwithstanding the large differences in the absolute values of ρ, T
and Fermi velocities vF, varying by two orders of magnitude [21]. As a result, from
Equation (19), the T-linear scattering rate is of the universal form, 1/(τT) ∼ kB/h̄, re-
gardless of different systems displaying the T-linear dependence [19,21,25]. Indeed, this
dependence is demonstrated by ordinary metals at temperatures higher than the Debye
temperature, T ≥ TD, with an electron–phonon mechanism and by strongly correlated
metals that are assumed to be fundamentally different from the ordinary ones since the
linear T-dependence of their resistivity at temperatures of a few Kelvin is assumed to
originate from excitations of electronic origin rather than from phonons [21]. We note that
in some cuprates, the scattering rate has a momentum and doping x dependence omitted
in Equation (20) [62–64]. Nonetheless, the fundamental picture outlined by Equation (20)
is strongly supported by measurements of the resistivity on Sr3Ru2O7 for a wide range
of temperatures: At T ≥ 100 K, the resistivity again becomes linearly T-dependent at all
applied magnetic fields, as it does at low temperatures and at the critical field Bc ' 7.9 T but
with the coefficient A lower than that seen at low temperatures [21,25]. The same strongly
correlated compound exhibits the similar behavior of the resistivity at both quantum critical
regime and high temperatures. These facts allow us to expect that the same physics governs
the Planckian limit in the case of strongly correlated and ordinary metals. As we will see,
the physics here is explained within the fermion condensation theory, and is related to flat
bands, the existence of which has been predicted many years ago [1,2,4,15,26,37].

As seen from Figure 9, the scaling relation spans two orders of magnitude in VF,
attesting to the robustness of the observed empirical law [21]. This behavior is explained
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within the framework of the FC theory since in both cases of common metals and strongly
correlated ones, the scattering rate is defined by phonons [25]. In the case of common
metals at T > TD, it is well known fact that phonons make a main contribution to the linear
dependence of the resistivity, see, e.g., [60]. It has been shown that quasi-classical physics
describes the T-linear dependence of the resistivity of strongly correlated metals at T > TD,
since flat bands, forming the quantum criticality, generate transverse zero-sound mode with
the Debye temperature TD located within the quantum criticality area [25,57,58]. Therefore,
the linear T- dependence is formed by electron–phonon scattering in both ordinary metals
and strongly correlated ones. As a result, it is electron–phonon scattering that leads to the
near material independence of the lifetime τ that is expressed as

1
τT
∼ kB

h̄
. (21)

We note that there can be another mechanism supporting the linear T-dependence
even at T < TD that fails to warrant a constant τ regardless of the presence of the linear
T-dependence of resistivity [25,58]. The mechanism comes from flat bands that are formed
by the FC state and contribute to both the linear dependence of the resistivity and to
the residual resistivity ρ0, see Equation (18). Notably, these observations are in good
agreement with the experimental data [25,58]. The important point here is that under the
application of a magnetic field, the system in question transits from its NFL behavior to an
LFL one, and both the flat bands and the FC state are destroyed [15,19], see the T− B phase
diagram depicted in Figure 8. Therefore, with resistivity ρ(T) ∝ T2, magnetoresistance
becomes negative, while the residual resistivity ρ0 jumps down by a step [19,24,25,58].
Such a behavior is in accordance with experimental data, see, e.g., the case of the HF metal
CeCoIn5 [65] that also demonstrates the universal scattering rate at its NFL region, see
Figure 9.

5. Asymmetrical Conductivity (Resistivity) of Strongly Correlated Conductors

Direct experimental studies of quantum phase transitions in HTSC and HF metals are
of great importance for understanding the underlying physical mechanisms responsible for
their anomalous properties. However, such studies of HF metals and HTSC are difficult
because the corresponding critical points are usually concealed by their proximity to other
phase transitions, commonly antiferromagnetic (AF) and/or superconducting (SC).

Furthermore, extraordinary properties of tunneling conductivity in the presence of
a magnetic field were recently observed in a graphene preparation having a flat band [5],
as well as in HTSCs and the HF metal YbRh2Si2 [29,30]. Measuring and analyzing these
properties will shed light on the nature of the quantum phase transitions occurring in
these substances. Very recently, the scattering rate has been measured in graphene, and it
is located near the universal value [23] given by Equation (21), being in accordance with
data shown in Figure 9. All these experimental observations qualify graphene as a very
interesting material for revealing the physics of strongly correlated Fermi systems.

Most of the experiments on HF metals and HTSCs explore their thermodynamic prop-
erties. However, it is equally important to determine other properties of these strongly
correlated systems, notably quasiparticle occupation numbers n(p, T) as a function of
momentum p and temperature T. These quantities are not linked directly to the density
of states (DOS) Ns(ε = 0) determined by the quasiparticle energy ε or to the behav-
ior of the effective mass M∗. Scanning tunneling microscopy [66–68] and point contact
spectroscopy [28,69,70], being sensitive to both the density of states and quasiparticle occu-
pation numbers, are ideal tools for exploring the effects of C and T symmetry violation.
When C and T symmetries are not conserved, the differential tunneling conductivity and
dynamic conductance are no longer symmetric functions of the applied voltage V.

Indeed, if under the application of bias voltage V, the current of electrons with the
charge −e, traveling from HF to a common (i.e., “non-HF”) metal changes the sign of a
charge carrier to +e, then current character and direction alter. Namely, now the carriers
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are holes with the charge +e traveling from the common to the HF metal. Turning this
around, one can obtain the same current of electrons provided that V is changed to −V.
The resulting asymmetric differential conductivity ∆σd(V) = σd(V)− σd(−V) becomes
nonzero, as seen from Figure 10. On the other hand, if time t is changed to −t (but charge
is kept intact), the current changes its direction only. The same result can be achieved
by V → −V, and we conclude that T symmetry is broken, provided that ∆σd(V) 6=
0. Thus, the presence of ∆σd(V) 6= 0 signals violation of both C and T symmetries.
Simultaneously, the change of both e → −e and t → −t returns the system to its initial
state so that CT symmetry is conserved bearing in mind that the same consideration
is true when analyzing ρd(V). Note that the parity symmetry P is conserved, and the
well-known CPT symmetry is not broken in the considered case. However, the time-
reversal invariance and particle-hole symmetry remain intact in normal Fermi systems;
the differential tunneling conductivity and dynamic conductance are symmetric functions
of V. Therefore, conductivity asymmetry is not observed in conventional metals at low
temperatures [28].

To determine the tunneling conductivity, we first calculate the tunneling current I(V)
through the contact point between the two metals. This is performed using the method
of Harrison [66–68], based on the observation that I(V) is proportional to the particle
transition probability introduced by Bardeen [43]. Bardeen considered the probability P12
of a particle (say an electron) making a transition from a State 1 on one side of the tunneling
layer to a State 2 on the other side. Probability behaves as P12 ∼ |t12|2N2(0)n1(1− n2)
where N2(0) (at ε = 0) is the density of states in State 2, n1,2 is the the electron occupation
numbers in these states and t12 is the transition matrix element. The total tunneling current
I is then proportional to the difference between the currents from one to two and that from
two to one, and is as follows.

I ∼ P12 − P21 ∼ |t12|2N1(0)N2(0)×[
n1(1− n2)− n2(1− n1)

]
=

|t12|2N1(0)N2(0)(n1 − n2). (22)

Harrison applied the WKB approximation to calculate the matrix element [66–68],
t12 = t(N1(0)N2(0))−1/2, where t denotes the resulting transition amplitude. Multiplica-
tion of expression (22) by two to account for the electron spin and integration over the
energy ε leads to the expression for total (or net) tunneling current [66–68]:

I(V) = 2|t|2
∫
[nF(ε− µ−V)− nF(ε− µ)]dε. (23)

Here nF(ε) is the electron occupation number for a metal in the absence of a FC, and
we have adopted atomic units e = m = h̄ = 1, where e and m are the electron charge
and mass, respectively. Since temperature is low, nF(ε) can be approximated by the step
function θ(ε− µ), where µ is the chemical potential.

From Equation (23), it follows that quasiparticles with single-particle energies ε in
the range µ ≤ ε ≤ µ + V contribute to the current, I(V) = c1V and σd(V) ≡ dI/dV = c1,
with c1 = const. Thus, wthin the framework of LFL theory, the differential tunneling
conductivity σd(V), being a constant, is a symmetric function of the voltage V, i.e., σd(V) =
σd(−V). In fact, the symmetry of σd(V) holds provided C and T symmetries are observed,
as is customary for LFL theory. Therefore, σd(V) is symmetric, and this is common in the
case of contact of two ordinary metals (without FC), regardless of whether they are in a
normal or superconducting state. Note that a more rigorous consideration of the densities of
states N1 and N2 entering Equation (22) for ε ' µ requires their inclusion in the integrand of
Equation (23) [71–73]. For example, see Equation (7) of Ref. [73], where this refinement has
been carried out for the system of a magnetic adatom and scanning tunneling microscope tip.
However, this complication does not break the C symmetry in the LFL case. Nonetheless, it
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will be seen below that if the system hosts FC, the presence of the density-of-states factors
in the integrand of Equation (23) initiates the asymmetry of the tunneling spectra, since the
density of states strongly depends on ε ' µ, see Figure 2. Indeed, the situation becomes
quite different in the case of a strongly correlated Fermi system in the vicinity of the FCQPT
that causes a flat band [1,2] and violates the C symmetry [15,19,74]. We note that as we have
seen above, the violation of the C symmetry entails the violation of the T symmetry. Panel
(a) of Figure 2 illustrates the resulting low-temperature single-particle energy spectrum
ε(k, T). Panel (b), which displays the momentum dependence of the occupation numbers
n(k, T) in such a system, shows that the flat band induced by the FCQPT, as we have seen
above, in fact, violates T symmetry as well. The broken C symmetry is reflected in the
asymmetry of the regions occupied by particles (labeled p) and holes (labeled h) [15]. We
note that the system in its superconducting state and located near the FCQPT exhibits
asymmetrical tunneling conductivity, since the C symmetry remains broken in both the
superconducting and the normal states. This observation conforms with the experimental
facts [15,70], as seen from Figure 8.

We see from Figure 2 that at low temperatures the electronic liquid of the system
has two components. One is an exotic component comprised of heavy electrons occu-
pying momentum range pi < p < p f surrounding the Fermi volume near the Fermi
surface p = pF. This component is characterized by the superconducting order parameter
κ(p) =

√
n(p)(1− n(p)). The other component is made up of normal electrons occupying

the momentum range 0 ≤ p ≤ pi [15,33]. In particular, the density of paired charge carriers
that form the superfluid density is no longer equal to the total particle density nel repre-
sented by paired and unpaired charge carriers. This violation of Leggett’s theorem is to be
expected since both C and T invariants are violated in the NFL state of some HF metals
and compounds [15,19,31,74].

We are proposing that for the strongly correlated many-fermion systems in question,
the approximate equality ns ' nel that would normally be expected for a real system
approximating BCS behavior must be replaced by the inequality ns = nFC � nel, where
nFC is the density of particles in the FC state [42]. This implies that the main contribution to
ns comes from the FC state. Indeed, the wave function Ξ describing the state of the Cooper
pairs as a whole concentrates its associated probability density in the momentum domain
of the flat band such that |Ξ|2 ∝ ns, with |Ξ|2 ' 0 outside this range. Being defined by the
properties of FC, ns can be very small. Nor does it depend on nel , so it can be expected that
ns � nel [33,42].

It is worth noting that the first studies of the overdoped copper oxides suggested that
ns � nel , but this was attributed to pair-breaking and disorder [75–77], while recent studies
with the measurements on ultra-clean samples of La2−xSrxCuO4 authenticate the result
that ns � nel [32]. It is also relevant that the observed high values of Tc together with the
linear dependence of ρs0 ∝ Tc [32] of the resistivity are not easily reconciled with the pair-
breaking mechanism proposed for dirty superconductors, see, e.g., [53] and Section 7. One
cannot expect that such a mechanism would be consistent with high values of Tc and the
increase of Tc with doping x. It is worth noting that experimental observation shows that
A1(x)/Tc(x) ' const [32,78]. This observation supports the theory of the FC condensation
that demonstrates the same result A1(xc − x)/Tc(xc − x) = const [79,80]. Here, xc is the
doping concentration at which the superconductivity sets in, and (xc − x) ∝ ns [42]. As a
result, these evidences support the fermion condensation theory, suggesting the topological
FCQPT as the underlying physical mechanism of both the unusual properties of overdoped
copper oxides and the asymmetry of tunneling conductivity [1,2,15,19,81].

In case of a strongly correlated Fermi system with FC, the tunneling current be-
comes [15,31,82,83]

I(V) = 2|t|2
∫
[n(ε− µ−V, T)− nF(ε− µ, T)]dε. (24)
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Here one of the distribution functions of ordinary metal nF on the right-hand side
of Equation (23) is replaced by n(ε, T), shown in Figure 2b. As a result, the asymmetric
part of the differential conductivity ∆σd(V) = σd(V)− σd(−V) becomes finite, and we
obtain [15,19,31,70,82]

∆σd(V) ' c
(

V
2T

) p f − pi

pF
, (25)

where p f and pi define the location of FC, see Figure 2, pF is the Fermi momentum and c is
a constant of order unity.

It is worth noting that Equation (25) is also valid even if the density of states N1 and
N2 are taken into account, since all this does is change c. Note that the conductivity ∆σd(V)
remains asymmetric in the superconducting phase of both HTSC and HF metals as well. In
such cases, it is again the occupation number n(p) that is responsible for the asymmetric
part of ∆σd(V), since this function is not appreciably disturbed by the superconductive
pairing. This is because usually, in forming the function n(p), the Landau interaction
contribution is stronger than that of the superconductive pairing [15]. As a result, ∆σd(V)
remains approximately the same below the superconducting Tc [15,31]. It is seen from
Equation (25) and Figure 10 that with rising temperatures, the asymmetry diminishes and
finally vanishes at T ≥ 40 K. Such a behavior has been observed in measurements on the
HF metal CeCoIn5 [84,85], displayed in Figure 10.
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Figure 10. Conductivity spectra σd(V) = dI/dV measured on the HF metal CeCoIn5 with point
contacts (Au/CeCoIn5) over a wide temperature range [84]. Curves σd(V) are shifted vertically
by 0.05 for clarity and normalized by the conductance at −2 mV. The asymmetry develops at
T ' 40 K, becoming stronger at decreasing temperature and persisting below T < Tc ' 2.3 K in the
superconducting state [84].

Under the application of a magnetic field B at sufficiently low temperatures kBT . µBB,
where kB and µB are the Boltzmann constant and the Bohr magneton, the strongly correlated
Fermi system transits from the NFL to the LFL regime [15,86]. As we have seen above,
the asymmetry of the tunneling conductivity vanishes in the LFL state [15,31,70,82]. It is
seen from Figure 11, that ∆σd(V), displayed in Figure 10 and extracted from experimental
data [85], vanishes in the normal state at sufficiently high magnetic fields applied along
the easy axis and low temperatures kBT << µB(B− Bc) with the critical field Bc ' 5 T
in agreement with the prediction, see, e.g., [15,31,87]. Under this condition, the system
transits from the NFL to the LFL behavior, with the resistance ρ becoming a quadratic
function of temperature, ρ(T) ∝ T2 [15]. The examples of suppression of the asymmetric
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parts of differential conductivity and resistance under the application of a magnetic field
are shown in Figure 11, Figure 12 and Figure 13, respectively.
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Figure 11. Asymmetric part ∆σd(V) of the tunneling differential conductivity measured on CeCoIn5

and extracted from the experimental data [85]. The asymmetric part vanishes at B = 14 T and
T = 1.75 K, with Bc0 ' 5 T.
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Figure 12. Asymmetric parts ∆σd(V) of the tunneling differential conductivity measured on YbRh2Si2
and extracted from the data shown in Figure 14.
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Figure 13. Magnetic field (legend) dependence of the asymmetric part As(I) = dV/dI(I) −
dV/dI(−I) versus the current I, extracted from the data of Figure 15 for graphene.
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Figure 14 shows the differential conductivity σd observed in measurements on
YbRh2Si2 [29,30]. It is seen that asymmetry diminishes with increasing magnetic field
B, as the minima of the curves shift to the point V = 0, see also Figure 12 for details. The
magnetic field is applied along the hard magnetization direction, B ‖ c, with Bc ' 0.7 T [30],
where Bc is the critical field suppressing the AF order [51]. The asymmetric part of the
tunneling differential conductivity, ∆σd(V), extracted from the measurements shown in
Figure 14, is displayed in Figure 12. It is seen that ∆σd(V) decreases as B increases. We
predict that application of the magnetic field in the easy magnetization plane, B⊥c with
Bc ' 0.06 T, leads to a stronger suppression of the asymmetric part of the conductivity,
observing that in this case the magnetic field effectively suppresses the antiferromagnetic
order and the NFL behavior. Indeed, the experimental data show that low-temperature
electrical resistivity ρ(T) of the HF metal YbRh2Si2, measured at T ' 20 mK, under the
application of the magnetic field B ≥ 75 mT along an easy magnetization plane, exhibits the
LFL behavior ρ(T) ∝ T2, while at B ' 60 mT it demonstrates the NFL behavior, ρ(T) ∝ T.
At the same time, under the application of a magnetic field B along the hard magnetization
direction, resistivity shows the LFL behavior at much higher B ≥ 0.8 T [51]. The same
transition from the NFL behavior to the LFL one is observed in measurements of the ther-
modynamic, transport and relaxation properties, see, e.g., [15,19,51]. We surmise that the
asymmetric part ∆σd(V) vanishes as soon as YbRh2Si2 enters its AF state, exhibiting the
LFL behavior ρ(T) ∝ T2 at B = 0 and T < 70 mK.
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Figure 14. Differential conductivity σd(V) = dI/dV measured on YbRh2Si2 under the application of
a magnetic field (legend) along the hard magnetization direction [30].

Measuring the differential resistance ρd(V) = dV/dI as a function of current I, one
finds that the its symmetry properties are the same as those of σd(V). Namely, under the
application of a magnetic field, the asymmetry of the differential resistance vanishes as
the system transits into the LFL state. The differential resistance ρd(V) of graphene as a
function of a direct current I for different magnetic fields B is reported in Figure 15 [5]. The
asymmetric part of the differential resistance As(I) = ρd(V)− ρd(−V) diminishes with an
increasing magnetic field, vanishing near B ' 140 mT. Such a behavior corroborates our
conclusion, since the strongly correlated graphene sample has a perfect flat band, implying
that the FC effects should be clearly manifested in this material [5].

Thus, in accordance with prediction [15,31,70,82], the asymmetric part tends to zero
at tiny magnetic fields of 140 mT, as seen from Figure 13. Note that suppression of the
asymmetric part under the application of a magnetic field has been observed in the HF metal
YbCu5−xAlx [81]. The asymmetry persists in the superconducting state of graphene [5]
and is suppressed at B ' 80 mT. Disappearance of the asymmetric part of the differential
conductivity in Figure 13 indicates that as the magnetic field increases, graphene transits
from the NFL to the LFL state. We remark that the disappearance of the asymmetric
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part of the differential conductivity was predicted many years before the experimental
observations [31,70,82]. It is worth noting that the decrease of the asymmetric part under the
application of a magnetic field is an important feature, since the presence of the asymmetric
part can be observed by a simple device, e.g., by a diode, since the asymmetric part does
not vanish in a magnetic field. Moreover, at B = 0, the asymmetric part observed in HF
metals and HTSC can be explained in many ways, see, e.g., [88].
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Figure 15. Differential resistance dV/dI of graphene versus current I at different magnetic fields B
shown in the legend [5]. Weak asymmetry is observed at small magnetic fields.

To support the statement that the NFL behavior of graphene vanishes in magnetic
fields, we surmise that the resistance ρ(T) should exhibit linear dependence ρ(T) ∝ A1T in
the normal state at zero magnetic field, as is generally the case in other strongly correlated
Fermi systems. Indeed, at elevated magnetic fields and low temperatures kBT << µBB, the
system transits from the NFL behavior to the LFL behavior, causing the resistance to become
a quadratic function of temperature ρ(T) ∝ T2 that confirms the LFL behavior [15,19,58].

6. Heavy-Fermion Metals and High-Temperature Superconductors: Scaling Relations

It has been shown that the behavior ρ(T) ∝ T as T → 0 is an intrinsic property of
cuprates associated with a universal scattering rate as well as the property of HF met-
als [21,22,24], see Section 4. It is stated that the behavior ρ(T) ∝ T is achieved when the
scattering rate hits the Planckian limit, given by Equation (21), irrespective of the origin of
the scattering process [22,24]. However, it is hardly possible that the linear T-dependence of
resistivity of common metals is formed by the Planckian limit, as observed in Ref. [21], see
Figure 9 and explanation in Ref. [25]. Moreover, HF metals and high-Tc superconductors
demonstrate scaling behavior under the application of a magnetic field, pressure, etc., see
Figure 3a,b. In magnetic fields, these compounds are shifted from the NFL to the LFL
behavior, see, e.g., [15,24]. All these extraordinary features are explained within the frame-
work of the FC theory [1,15,19]. As a result, we can safely suggest that the main reason for
the behavior given by Equation (21) is defined by phonons, taking place at T ≥ TD in both
strongly correlated Fermi systems and common metals [25].

Another experimental result [27] providing insight into the NFL behavior of strongly
correlated Fermi systems is the universal scaling, which can also be explained using the flat
band concept. The authors of Ref. [27] measured the temperature dependence dρ/dT of the
resistivity ρ for a large number of HTSC substances for T > Tc. Among these were LSCO
and the well-known HF compound CeCoIn5; see Table I of Ref. [27]. They discovered quite
remarkable behavior: for all substances considered, dρ/dT shows a linear dependence on
the London penetration depth λ2

0. All of the superconductors considered belong to the
London type for which λ0 >> ξ0, where ξ0 is the zero-temperature coherence length, see,
e.g., [42].
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It has been shown that the scaling relation [27]

dρ

dT
∝

kB
h̄

λ2
0 (26)

remains valid over several orders of magnitude of λ0, signifying its robustness. At the
phase transition point T = Tc, the relation (26) yields the well-known Holmes law [27], see
also [89] for its theoretical derivation:

σTc ∝ λ−2
0 , (27)

in which σ = ρ−1 is the normal state dc conductivity. It has been shown by Kogan [89] that
Holms law applies even for the oversimplified model of an isotropic BCS superconductor.
Within the same model of a simple metal, one can express the resistivity ρ in terms of
microscopic substance parameters [60]: e2nρ ' pF/(τvF), where τ is the quasiparticle
lifetime, n is the carrier density, and vF is the Fermi velocity. Taking into account that
pF/vF = M∗, we arrive at the equation [28]

ρ =
M∗

ne2τ
. (28)

Note that Equation (28) formally agrees with the well-known Drude formula. It has
been shown in Ref. [42] that good agreement with experimental results [32] is achieved
when the effective mass and the superfluid density are attributed to the carriers in the FC
state only, i.e., M∗ ≡ MFC and n ≡ nFC. Keeping this in mind and utilizing the relation
1/τ = kBT/h̄ [19,25,87], we obtain

ρ =
MFC

e2nFC

kBT
h̄
≡ 4πλ2

0
kBT

h̄
, (29)

i.e., dρ/dT is indeed given by the expression (26). Equation (29) demonstrates that fermion
condensation can explain all the above experimentally observed universal scaling relations.
It is important to note that the FC approach presented here is not sensitive to and transcends
the microscopic, non-universal features of the substances under study. This is attributed to
the fact that the FC state is protected by its topological structure and therefore represents
a new class of Fermi liquids [2,19]. In particular, consideration of the specific crystalline
structure of a compound, its anisotropy, its defect composition, etc., do not change our
predictions qualitatively. This strongly suggests that the FC approach provides a viable
theoretical framework for explaining universal scaling relations similar to those discovered
in experiments [27,32]. In other words, condensation of the charge carrier quasiparticles in
the considered strongly correlated HTSCs, engendered by a quantum phase transition, is
indeed the primary physical mechanism responsible for their observable universal scaling
properties. This mechanism can be extended to a broad set of substances with very different
microscopic characteristics, as discussed in detail in Refs. [15,19,20].

7. Influence of Superconducting State on Flat Bands

We continue to study Fermi systems with FC at T = 0, employing weak BCS-like
interaction with the coupling constant g [43]. We analyze the behavior of both the super-
conducting gap ∆ and the superconducting order parameter κ(p) as g → 0. In case of
BCS-like theories, one obtains the well-know result. Both κ → 0 and ∆→ 0, while the FC
theory yields ∆ ∝ g [1,4,45,90,91]. To study the latter case, we start from the usual pair of
equations for the Green’s functions F+(p, ω) and G(p, ω) [60]

F+ =
−gΞ∗

(ω− E(p) + i0)(ω + E(p)− i0)
, (30)



Atoms 2022, 10, 67 21 of 27

G =
u2(p)

ω− E(p) + i0
+

v2(p)
ω + E(p)− i0

, (31)

where E2(p) = ξ2(p) + ∆2, where ξ(p) = ε(p)− µ. Here, ε(p) is the single particle energy,
and µ is the chemical potential. The gap ∆ and the function Ξ are given by

∆ = g|Ξ|, iΞ =
∫ ∫ ∞

−∞
F+(p, ω)

dωdp
(2π)4 . (32)

Denoting v2(p) = (1− ξ(p)/E(p))/2, v2(p) + u2(p) = 1, simple algebra yields

ξ(p) = ∆
1− 2v2(p)

2κ(p)
. (33)

Here κ(p) = u(p)v(p) is the superconducting order parameter. It follows from
Equation (33) that ξ → 0 when ∆→ 0, provided that κ(p) 6= 0 in some region pi < p < p f ;
thus, the band becomes flat in the region, since ε(p) = µ [15,17]. Note that in this case the
BCS-like theory gives the standard result implying that both ∆ = 0 and κ = 0 since it is
assumed that ξ(p) is fixed. Then, we derive from Equations (32) and (33) that

iΞ =
∫ ∞

−∞
F+(p, ω)

dωdp
(2π)4 = i

∫
κ(p)

dp
(2π)3 . (34)

From Equations (32)–(34), we readily see that as g → 0 the superconducting gap
∆ → 0, while the density ns of the superconducting electrons defined by Ξ = ns is finite,
and the dispersion ε(p) becomes flat, ξ = 0. While κ(p) is finite in the region pi ≤ p ≤ p f ,
making Ξ finite. As a result, in systems with FC, the gap ∆ vanishes when g→ 0, but both
the order parameter κ(p) and ns are finite. When the coupling constant g increases, the gap
∆ is given by Equation (2), and the superconducting temperature Tc ∝ gΞ = gns [1,15]. As
a result, one obtains the possibility to construct the room-Tc superconductors [5–12]. At the
same time ns � nρ, where nρ is the density of electrons [33,42]. Thus, in case of overdoped
superconductors ns � nρ rather than ns = nρ, as should be in BSC like theories [32,33,42].
Employing Equations (32) and (33), we deduce from Equations (30) and (31) that

F+ = − κ(p)
ω− E(p) + i0

+
κ(p)

ω + E(p)− i0
(35)

G =
u2(p)

ω− E(p) + i0
+

v2(p)
ω + E(p)− i0

. (36)

In the region occupied by FC, the coefficients v2(p), u2(p) = 1− v2(p), v(p)u(p) =
κ(p) 6= 0 are given by ε(p) = µ, while E(p)→ 0 [1,4,15]. From Equations (35) and (36), it
is seen that when g→ 0, the equations for F+(p, ω) and G(p, ω) are transformed in the FC
region to [90]

F+(p, ω) = −κ(p)
[

1
ω + i0

− 1
ω− i0

]
(37)

G(p, ω) =
u2(p)
ω + i0

+
v2(p)
ω− i0

. (38)

Integrating G(p, ω) over ω, one obtains v2(p) = n(p). From Equation (32), it follows
that ∆ is a linear function of g [1,33,45,91]. Since the transition temperature Tc ∼ ∆ ∝ g→ 0,
κ(p) vanishes at T → 0 via the first order phase transition [2,15]. Thus, on one hand, the
FC state with its flat band represents a special solution of the BSC equations. On the other
hand, representing a contrast to BSC-like theories, Equation (33) gives the dependence of
the spectrum ξ on ∆ ∝ g, thus, leading to VF ∝ Tc [13,15–17].
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Now we use Equation (33) to calculate the effective mass M∗ by differentiating both
sides of this equation with respect to the momentum p at p = pF [15,17] and obtain

M∗ ' pF
p f − pi

2∆
. (39)

From Equation (39), we obtain that VF ∝ Tc ∝ ∆ and conclude

VF '
2∆

p f − pi
∝ Tc. (40)

From Equations (33) and (40), we see that as Tc ∝ ∆ → 0, the Fermi velocity VF → 0
and the band becomes exactly flat [13,17]. When Tc ' g∆ becomes finite at g increasing,
the plateau starts to slightly tilt and is rounded at its end points, as seen from Figure 16.
At increasing ∆ ∝ Tc, both M∗ and the density of states Ns(0) are diminished, causing
increasing VF. As seen from Figure 16, the plateau of the flat band of the superconducting
system with FC is slightly upward tilted, and M∗ is diminished. It follows from Equation (9)
that at T > Tc the slope of the flat band is proportional to T, and this dependence can
be measured by using ARPES. It is also seen from Figure 2 that both the particle - hole
symmetry C and the time invariance T are violated generating the asymmetrical differential
tunneling conductivity at the NFL behavior, and the NFL behavior is suppressed under the
application of a magnetic field that drives the system to its Landau Fermi liquid state, see
Section 5.
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Figure 16. Flat band versus superconducting (SC) state. At T = 0, the flat single particle spectrum
with VF = 0 is depicted by the solid curve. The transformed flat band by SC with finite VF is
displayed by the red dashed line, see Equation (40). This change is shown by the arrow and by
the blue solid and red dashed lines. The dashed area shows the flat band deformation by the SC
state. Inset: the occupation numbers n(k) at T = 0 as a function of the dimensionless momentum
k = p/pF. FC location is displayed by the arrow, with labels pi/pF and p f /pF revealing the area
where 0 < n(p) < 1, see Equation (7).

Measurements of VF as a function of Tc [16] are depicted in Figure 17. The inset in
Figure 17 shows experimental data collected on the high-Tc superconductor Bi2Sr2CaCu2O8+x
in measurements using scanning tunneling microscopy and spectroscopy; here, x is oxygen
doping concentration [92]. The integrated local density of states is shown in arbitrary units
(au). The straight line depicts the local density of states that is inversely proportional to ∆.
Note that the tunneling current is proportional to the integrated local density of states [92].
From the inset, it is clear that the data taken at the position with the highest integrated
local density of states has the smallest gap value ∆ [92]. These observations are in good
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agreement with Equations (39) and (40). Thus, our theoretical prediction [15,17] agrees
very well with the experimental results [16,92,93]. We note that VF → 0 as Tc → 0, as seen
from Figure 17. This result shows that the flat band is disturbed by the finite value of ∆,
and possesses a finite slope that makes VF ∝ Tc, as seen from Figure 16. Indeed, from
Figure 17, the experimental critical temperatures Tc do not correspond to the minima of the
Fermi velocity VF as they would in any theory wherein pairing is mediated by phonons
(bosons) that are insensitive to VF as they would in any theory wherein pairing is mediated
by phonons, or any other bosons, that are insensitive to VF [16].

Thus, such a behavior is in stark contrast to that expected within the framework of
the common BSC-like theories that do not assume that the single particle spectra strongly
depends on Tc [15,16,43]. This extraordinary behavior is explained within the framework
of the FC theory based on the topological FCQPT, forming flat bands [15,17,19,20].
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Figure 17. Experimental results (shown by the squares) for the average Fermi velocity VF versus the
critical temperature Tc for graphene (MATBG) [16]. The downward arrows depict that VF ≤ V0, with
V0 the maximal value shown by the red square. Theory is displayed by the solid straight line. Inset
is adapted from [92] and shows experimental dependence of the superconducting gap ∆ versus the
integrated local density of states collected on the high-Tc superconductor Bi2Sr2CaCu2O8+x. Here x is
oxygen doping concentration. The darker color represents more data points with the same integrated
local density of states and the same size gap ∆ [92]. The straight blue line shows average value ∆
versus the integrated local density of states.

8. Discussion and Conclusions

The central message of the present review article is that if the electronic spectrum
of a substance happens to feature a dispersionless part, or flat bands, it is invariably this
aspect that is responsible for the measured properties that depart radically from those of
the familiar condensed-matter systems described by the Landau Fermi liquid theory. This
is the case regardless of the diverse microscopic details characterizing these substances,
such as crystal symmetry and structure defects. The explanation of this finding rests on the
fact that the fermion condensation most readily occurs in substances hosting flat bands,
see, e.g., [1,5–12]. Experimental manifestations of the fermion condensation phenomena
are varied, implying that different experimental techniques are most suitable for detecting
and analyzing them.

To support the above statements, we have also considered recent challenging experi-
mental observations within the framework of the fermion condensation theory. In summary,
we have:

Explained the universal T/B scaling behavior of the thermodynamic and transport
properties, including the negative magnetoresistance of the HF metals;

Analyzed the recent challenging experimental facts regarding the tunneling differential
conductivity dI/dV = σd(V) as a function of the applied bias voltage V collected under
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the application of a magnetic field B on the twisted graphene and the archetypical heavy-
fermion metals YbRh2Si2 and CeCoIn5 [5,29,30];

Explained the emergence of the asymmetrical part ∆σd = σd(V)− σd(−V) as well as
that ∆σd vanishes in magnetic fields as was predicted [31];

We further examined the linear dependence on temperature of the resistivity ρ(T) ∝
A1T, demonstrated that A1(xc − x)/Tc(xc − x) = const and explained the data collected
on high Tc superconductors, graphene, heavy fermion (HF) and common metals, revealing
that the scattering rate 1/τ of charge carriers reaches the Planckian limit;

Elucidated empirical observations of scaling properties [27] within the fermion con-
densation theory;

Investigated the recent extraordinary experimental observations of the density of
superconducting electrons that turns out to be much less than the total density of electrons
at T → 0;

Shown that the transition temperature Tc is proportional to the Fermi velocity VF,
VF ∝ Tc, rather than Ns(0) ∝ 1/VF ∝ Tc;

Demonstrated that flat bands make Tc ∝ g, with g being the coupling constant. It is of
crucial importance to note that the flat band superconductivity has already been observed
in twisted bilayer graphene, where due to the flat band, the transition temperature Tc
highly exceeds the limit dictated by the conventional BCS theory [5–12]. Thus, the basic
task now is to attract more experimental groups to search for the room-Tc superconductivity
in graphite and other perspective materials.

Indeed, the physics here has been explained within the fermion condensation theory [33]
and related to flat bands whose existence was predicted many years ago [1,2,4,15,26,33,37] and
paved the way for high-Tc superconductors [5–12]. In conclusion, this is a review of the
recent outstanding experimental results that strongly suggest that the topological FCQPT
is an intrinsic feature of many strongly correlated Fermi systems and can be viewed as
the universal agent defining their non-Fermi liquid behavior. In addition, the fermion
condensation theory is able to explain challenging features exhibited by strongly correlated
Fermi systems.
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