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Abstract: We considered the resonance scattering of ultrashort laser pulses (USLP) on the bound
electrons of hydrogen-like ions in a dense plasma. A process description was proposed in terms of
full scattering probability during the time of pulse action. Dense plasma’s effect was demonstrated at
the resonance scattering cross-section spectrum, and the probability dependence on USLP carrier
frequency and duration was obtained for the cases of isolated ions and ions in a dense plasma.
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1. Introduction

Plasma physics operates according to the statistical properties of systems consisting of
many charged particles, where Coulomb forces on collective effects play a significant role [1].
With increasing electron density, plasma acquires the properties of condensed matter, and
the neglection of short-distance forces becomes incorrect. Thus, the subject of consideration
is a strongly correlated Coulomb system in which quantum statistics, as well as dynamic
effects, should be taken into account [2,3]. Hence, building a proper theoretical model
describing dense plasma processes can address problems related to nuclear, atomic, and
molecular physics. The solution to this issue demands lots of experimental data. One of the
most efficient methods for studying classic plasma parameters is laser diagnostics. For high-
density matter sensing with the appropriate spatial and time resolution, ultrashort x-ray
pulse generation is essential [4]. USLP’s duration is too small to consider it monochromatic.
Generally, the probabilistic models of laser–matter interaction operate according to the
notion of probability per unit of time with monochromatic and stationary photon flux [5].
Thus, these models should be reconsidered.

Works describing ultrashort-pulse interactions with atomic systems in terms of prob-
ability and full probability during the pulse action exist. For example, in [6], the authors
dealt with quasi-stationary non-monochromatic radiation that made it possible to introduce
probability per unit of time and consider constant energy flux. Thus, the description of the
interaction in terms of the scattering of the cross-section normalized on the spectral width
of the non-monochromatic radiation is valid. However, such an approach does not consider
pulse duration. Our model considers non-stationary radiation flux and allows researching
the dependencies of photoprocessing characteristics on the pulse duration. The authors
of [7–9] studied the interaction of subcycle pulses with quantum systems at durations
much less than the characteristic time of electron oscillations. Photoprocesses’ probability
dependence on pulse duration was described in detail. Another work dealing with sudden
perturbation approximation proposed a description of a wide class of photoprocesses in
the field of USLP [10,11]. Nevertheless, the approach presented in [7–9] is applicable only
for subcycle pulses as well as sudden perturbation approximation, upon which the work
carried out in [10,11] rely, and is valid for USLP durations much lower than the inner
atomic process time. The model we suggest has no restriction in terms of the cycle number
or duration of USLP and could be universalized in various systems.
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The general formulas of ultrashort laser pulse (USLP) scattering on atoms were ob-
tained in [12]. A later work [13] was devoted to the consideration of femtosecond pulse
resonance scattering on atoms in plasma. In the present paper, we presented a model of
ultrashort laser pulse (USLP) resonance scattering on bound electrons in dense plasma,
which was formulated in terms of the full probability during the time of pulse action. We
assessed the full probability dependence on USLP carrier frequency and duration. Special
attention was paid to the particularities of dependencies defined by high plasma density.

2. General Formulas

To calculate the full probability of photoprocessing in the field of USLP during pulse
action, we used the following Formula [12]:

Wsc =
c

4π

∫ +∞

0

|E(ω,ωc, τ)|2

}ω σsc(ω)dω. (1)

where c—speed of light in vacuum and h̄—Planck constant. We consider the Gauss shape
of USLP electric field strength Fourier transform E(ω,ωc,τ):

E(ω,ωc, τ) =

√
π

2
E0τ exp(− (ω−ωc)

2τ2

2
). (2)

where E0—electric field amplitude, and ωc, τ—carrier frequency and duration of USLP,
respectively.

Equation (1) enables a connection between the full probability and scattering cross-
section σsc. In the framework of dipole approximation, the scattering cross-section could
be expressed through dynamic polarizability β [5]:

σsc(ω) =
8π
3

(ω
c

)4
|β(ω)|2. (3)

The scope of the present work determining the scattering of bound electrons. The
Feynman diagram, illustrating this process, is presented in Figure 1 [14].
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resonance virtual states |j> contribute to the Green function of a bound electron. 

In the present paper, we considered resonance transitions from the ground state 1s 
to np-shells in hydrogen-like ions, taking into account their fine structure. 

Figure 1. Feynman diagram of scattering of bound electrons.

An absorbing photon with a four-wavevector (ω,k) electron is transmitted from the
state |i> into the virtual state |j>, after which it returns to the initial state |i>, reradiating
the absorbed photon with four-wavevector (ω′,k′). In the case of resonance scattering, only
resonance virtual states |j> contribute to the Green function of a bound electron.

In the present paper, we considered resonance transitions from the ground state 1s to
np-shells in hydrogen-like ions, taking into account their fine structure.
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The dependence of dynamic polarizability on the frequency of transition 1s→ np with
the allowance of fine-structure splitting could be described by the following formula [13]:

β(ω) =
e2

me

 fnp1/21s

ω2
np1/21s −ω2 − 2iωAn1

+
fnp3/21s

ω2
np3/21s −ω2 − 2iωAn1

. (4)

where e—electron charge and me—electron mass. The spectral line of an atom is determined
by three parameters: oscillator strength fij, transition frequency ωij, and Einstein coefficient
of spontaneous transition Aij.

As ions are involved in thermal motion, spectral lines are subjected to Doppler broad-
ening. To consider this fact, we average |β(ω)|2 over the ion velocity projections υx on the
direction of the wave vector of the incident photon following the Maxwell distribution [13]:

〈|β(ω)|2〉D =
√

mi
2πTi

e4

m2
e

∫ ∞
−∞

∣∣∣∣∣∣∣
fnp1/21s(

ωnp1/21s
1−vx/c

)2
−ω2−2iωAn1

+

fnp3/21s(
ωnp3/21s

1−vx/c

)2
−ω2−2iωAn1

∣∣∣∣∣∣∣
2

exp
(
−miν

2
x

2Ti

)
dνx.

(5)

where Ti—ion temperature in eV. In the present work, we consider equilibrium plasma
(Te = Ti).

The final formula for the scattering cross-section on bound electrons for ions involved
in chaotic thermal motion is as follows:

σ
(be)
sc =

8π
3
(
ω

c
)

4
〈|β(ω)|2〉D. (6)

Thus, the knowledge of atomic transition parameters and USLP parameters along with
Formulas (1), (2), (5), and (6) provide descriptions of USLP scattering on bound electrons in
terms of the full probability during pulse action.

In the case of isolated hydrogen-like ions, line parameters could be calculated by
simple analytical Expressions (7)–(9).

A rigorous formula for oscillator strength is as follows [14]:

fnpj1s = n5 28(n− 1)(2n−4)

3(n + 1)(2n+4)

gj

∑j gj
. (7)

where gj is the statistical weight of the state with the full electron momentum equal to j.
The strict quantum mechanical description of motion in the centrally symmetric field

gives the formula for transition frequency [14]:

ωnpj1s =
mec2

}



1 +
(Zα)2(√(

j + 1
2

)2
− (Zα)2 + n− j− 1

2

)2


− 1

2

−
√

1− (Zα)2

. (8)

where α—fine structure constant and Z—the atomic number.
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The Einstein coefficient for a spontaneous transition between the state with the main
quantum number n and the ground state is described by the following rigorous formula [14]:

An1 = Z4α3 28n(n− 1)(2n−2)

9(n + 1)(2n+2)
Ry
} . (9)

where Ry—Rydberg.
In the case of dense plasma, delocalized electron shielding has a sufficient impact on

the parameters of the spectral line. Using the finite temperature ion sphere model, the
authors of [15] investigated how plasma screening affects the parameters of atomic electron
transitions. In particular, under the dipole approximation, they calculated spectral radiative
transition rates and oscillator strengths as well as estimated correction terms to transition
frequencies. Spectral line parameters for 1s→ npj transitions in Si13+ ion, published in [15],
are presented in Table 1 for n = {2, 3, 4} and j = {1/2, 3/2} for dense plasma. Besides, for
comparison, it contains line parameters for isolated ions calculated by Formulas (7)–(9).

Table 1. Spectral line parameters for 1s→np transitions (fnpj1s,ωnpj1s, An1) in Si13+ ions for the case
of dense plasma at different values of plasma electron density and temperatures [15] as well as for
isolated ions.

Transition ωnpj1s, eV fnpj1s An1, s−1

ne = 8.7 × 1022 cm−3

Te = 189 eV

1s→2p1/2 2004.444 0.1383 2.411 × 1013

1s→2p3/2 2006.193 0.2748 2.416 × 1013

ne = 2.06 × 1023 cm−3

Te = 251 eV

1s→2p1/2 2004.124 0.1381 2.411 × 1013

1s→2p3/2 2006.386 0.2746 2.416 × 1013

ne = 8.36 × 1023 cm−3

Te = 353 eV

1s→2p1/2 2002.303 0.1379 2.405 × 1013

1s→2p3/2 2003.938 0.2710 2.411 × 1013

ne = 2.76 × 1024 cm−3

Te = 439 eV

1s→2p1/2 1999.166 0.1370 2.388 × 1013

1s→2p3/2 2001.373 0.2740 2.393 × 1013

Isolated ion
1s→2p1/2 2004.848 0.1387

2.410 × 1013

1s→2p3/2 2006.600 0.2775

ne = 8.7 × 1022 cm−3

Te = 189 eV

1s→3p1/2 2374.872 0.0259 6.345 × 1012

1s→3p3/2 2375.385 0.0520 6.392 × 1012

ne = 2.06 × 1023 cm−3

Te = 251 eV

1s→3p1/2 2373.365 0.0258 6.344 × 1012

1s→3p3/2 2373.874 0.0516 6.391 × 1012

ne = 8.36 × 1023 cm−3

Te = 353 eV

1s→3p1/2 2369.118 0.0230 5.645 × 1012

1s→3p3/2 2369.575 0.0463 5.683 × 1012

Isolated ion
1s→3p1/2 2376.636 0.0264

6.434 × 1012

1s→3p3/2 2377.115 0.0527

ne = 8.7 × 1022 cm−3

Te = 189 eV

1s→4p1/2 2502.064 0.0078 2.115 × 1012

1s→4p3/2 2502.273 0.0157 2.113 × 1012

Isolated ion
1s→4p1/2 2506.690 0.0097

2.623 × 1012

1s→4p1/2 2506.909 0.0193

The advantage of the described method is the simplicity of the numerical calculations.
The simulations do not require any sophisticated algorithms and could be performed with
the use of an ordinary PC.
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3. Results and Discussion

Figure 2 demonstrates the scattering cross-section calculated with the use of data
presented in Table 1. Among the all considered plasma conditions, only in the case of 1s→2p
transition was fine splitting distinguishable (Figure 2a). In cases 1s→3p and 1s→4p, the fine
structure blurred as the gap between the peaks of the fine structure was commensurable

with Doppler broadening
(
ωnp3/21s −ωnp1/21s ∼

√
2Ti
mi

ωnp1s
c

)
.
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1s→3p (b), and 1s→4p (c). Solid lines correspond to calculations for ions shielded by dense plasma,
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The screening of Coulomb interactions induced by the plasma environment affects the
atomic structure and radiative atomic data. Hence, the phases and amplitudes of continuum
wave functions change. Thus, according to the configuration interaction method, the energy
of considered levels decreases. The latter is clearly expressed by the red shift of spectral
peaks at the electron density increase in relation to the graphs plotted for isolated ions in
accordance with Formulas (5)–(9). Exclusion is the 1s1/2→2p3/2 transition, whose frequency
increases at the density increase from 8.7·1022 cm−3 to 2.06·1023 cm−3 (green spectral peak
with higher frequency in Figure 2). In this case, level 2s1/2 undergoes a larger energy shift
than other levels as its wavefunction is more sensitive to changes in the plasma shield.
Configuration interaction of 1s1/2 and 2s1/2 leads to a more significant energy decrease of
1s1/2 energy than 2p1/2 and 2p3/2. As a result, the energy gap between 1s1/2 and 2p3/2 is
greater than for other transitions [16].

Figure 3a demonstrates the dependence of the resonance scattering probability by
bound electron on USLP carrier frequency at the variation of electron plasma density. It
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is clearly seen that the dynamics of the Wsc(ωc) profile are identical to the cross-section
dynamic illustrated in Figure 2. Figure 3b demonstrates how the Wsc(ωc) profile changes
according to pulse duration variation. At durations in order of 0.1 fs, dependence had a
bell-shaped curve, almost symmetric about the frequency of the 1s1/2→2p3/2 transition.
With the increase in the pulse duration, the USLP spectrum narrowed, and for carrier fre-
quencies near the 1s1/2→2p1/2 transition frequency, the scattering probability component
corresponding to transition 1s1/2→2p3/2 decreased. Thus, with an increase in the pulse
duration, the maximum corresponding to 1s1/2→2p1/2 appeared.
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The probability dependence on the USLP duration (τ-dependence) had different trends
at durations τ ~ 1 fs, including non-monotonic (Figure 4). When carrier frequency was in
the vicinity of spectral maximum (green line in Figure 4), the τ-dependence monotonically
grew. Greater σ(be)

sc (ωc) corresponds to a greater steepness of Wsc(τ). From a certain
detuning ofωc from a maximum of σ(be)

sc (ω), the τ-dependence became non-monotonic.
In the vicinity of τ~1 fs, the maximum and minimum appeared (i.e., the magenta curve
in Figure 4). The mechanism of non-monotonic dependence at small τ USLP comprises
non-monotonic changes of the integral value

∫
σ
(be)
sc (ω)|E(ω)|2dω, to which probability

(1) is proportional, due to the commensurability of the scattering cross-section and USLP
spectral width. When the carrier frequency was out of the spectral maximum vicinity
and the scattering cross-section was negligibly small, the probability was nonzero at small
durations (cyan line in Figure 4) as the USLP spectral width was large enough to overlap
with the scattering cross-section maxima. As the USLP duration increased, the overlapping
degree of σ(be)

sc (ω) and |E(ω)|2 decreased, and the τ-dependence tended to zero.
Density affects the τ-dependency trend (Figure 5). As discussed above, as the density

increased, peaks of Wsc(ωc) shifted. Thus, nonmonotonic trends are shown. Greater
plasma density corresponds to less τmax and τmin values according to the local maximum
and minimum of τ-dependence. As the peak of Wsc(ω), to which the isolated case ωc is
oriented, shifted, the magnitude of τ-dependence decreased.
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4. Conclusions

In the present paper, we studied the particularities of resonance ultrashort laser pulse
scattering on bound electrons in dense plasma. Studying the cross-section spectra and
dependency of resonance scattering probability on USLP carrier frequency and duration,
we determined the effects of dense plasma.

Due to dense plasma screening, cross-section spectrum and probability dependence on
the carrier frequency, in general, had a redshift as the density increased. We considered the
dependence of scattering probability on USLP duration (τ-dependence) and demonstrated
that. in general, it is not a monotonic function. Separately, we showed that as the plasma
density increased, the τ-dependence trend became non-monotonic and USLP durations, cor-
responding to extremums, decreased. Along with this, the scattering probability magnitude
radically decreased.

Typical trends of τ-dependence were herein assessed. We demonstrated that for carrier
frequency in the vicinity of spectral maximum, τ-dependence monotonically rises, and the
greater the scattering of the cross-section, the greater the steepness of τ-dependence. At
the carrier frequencies detuned from the the spectral maximum for a certain value, the
local maximum and minimum of the considered function appeared due to the complex
τ-dependence of the overlapping area between the scattering cross-section and the USLP
spectrum. If the cross-section value at the carrier frequency was negligibly small, τ-
dependence was nonzero at low pulse durations due to the broad USLP spectrum.

In the example 1s→2p transition in Si13+ ions, we assessed full scattering probability
as a function of carrier frequency and established that as the USLP duration decreases, the
dependence profile broadens and at after a certain duration, the fine splitting of the atomic
energy level becomes indistinguishable.

Author Contributions: Writing—original draft preparation, E.S.K.; writing—review and editing,
V.A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Russian Science Foundation, Agreement No. 22-22-00537.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, F.F. Plasma Physics and Controlled Fusion; Plenum Press: New York, NY, USA; London, UK, 1984; p. 421.
2. Kraeft, W.D.; Kremp, D.; Ebeling, W.; Ropke, G. Quantum Statistics of Charged Particle Systems; Akademie-Verlag: Berlin, Germany,

1986; p. 298.
3. Ichmaru, S. Statistical Plasmas Physics: Condensed Plasmas; Westview Press: Oxford, UK, 2004; p. 304.
4. Lindroth, E.; Calegari, F.; Young, L.; Harmand, M.; Dudovich, N.; Berrah, N.; Smirnova, O. Challenges and opportunities in

attosecond and XFEL science. Nat. Rev. Phys. 2019, 1, 107–111. [CrossRef]
5. Rosmej, F.B.; Astapenko, V.A.; Lisitsa, V.S. Plasma Atomic Physics; Springer International Publishing: Berlin, Germany, 2021; p. 650.
6. Gorbunov, L.; Salikhov, D. Scattering of nonmonochromatic radiation. Radiophys. Quantum Electron. 1981, 24, 759–763. [CrossRef]
7. Arkhipov, R.; Pakhomov, A.; Arkhipov, M.; Demircan, A.; Morgner, U.; Rosanov, N.; Babushkin, I. Selective ultrafast control of

multi-level quantum systems by subcycle and unipolar pulses. Opt. Express 2020, 28, 17020–17034. [CrossRef] [PubMed]
8. Pakhomov, A.; Arkhipov, M.; Rosanov, N.; Arkhipov, R. Ultrafast control of vibrational states of polar molecules with subcycle

unipolar pulses. Phys. Rev. A 2022, 105, 043103. [CrossRef]
9. Arkhipov, R.M.; Pakhomov, A.V.; Arkhipov, M.V.; Babushkin, I.; Demircan, A.; Morgner, U.; Rosanov, N.N. Unipolar subcycle

pulse-driven nonresonant excitation of quantum systems. Opt. Lett. 2019, 44, 1202–1205. [CrossRef]
10. Matveev, V.I. Emission and electron transitions in an atom interacting with an ultrashort electromagnetic pulse. J. Exp. Theor.

Phys. 2003, 97, 915–921. [CrossRef]
11. Makarov, D.N.; Matveev, V.I. Spectra for the reemission of attosecond and shorter electromagnetic pulses by multielectron atoms.

J. Exp. Theor. Phys. 2017, 125, 189–194. [CrossRef]
12. Astapenko, V.A. Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range. J. Exp. Theor.

Phys. 2011, 112, 193–198. [CrossRef]
13. Rosmej, F.B.; Astapenko, V.A.; Lisitsa, V.S.; Moroz, N.N. Nonlinear resonance scattering of femtosecond X-ray pulses on atoms in

plasmas. Phys. Lett. A 2017, 381, 3576–3579. [CrossRef]
14. Berestetskii, V.B.; Lifshitz, E.M.; Pitaevskii, L.P. Quantum Electrodynamic; Butterworth-Heinemann: Oxford, UK, 1982; Volume 4.

https://doi.org/10.1038/s42254-019-0023-9
https://doi.org/10.1007/BF01035933
https://doi.org/10.1364/OE.393142
https://www.ncbi.nlm.nih.gov/pubmed/32549512
https://doi.org/10.1103/PhysRevA.105.043103
https://doi.org/10.1364/OL.44.001202
https://doi.org/10.1134/1.1633947
https://doi.org/10.1134/S1063776117070093
https://doi.org/10.1134/S1063776111010018
https://doi.org/10.1016/j.physleta.2017.09.023


Atoms 2023, 11, 100 9 of 9

15. Zeng, J.; Li, Y.; Yuan, J. Effects of plasma screening on radiative transition and photoionization of Si10+–Si13+ in a dense plasma
environment. J. Quant. Spectrosc. Radiat. Transf. 2021, 272, 107777. [CrossRef]

16. Zeng, J.; (College of Science, Zhejiang University of Technology, Hangzhou Zhejiang 310023, China). Private Communica-
tion, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jqsrt.2021.107777

	Introduction 
	General Formulas 
	Results and Discussion 
	Conclusions 
	References

