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Abstract: This paper suggests a method of evaluation of uncertainties in calculated 

transition probabilities by randomly varying parameters of an atomic code and comparing 

the results. A control code has been written to randomly vary the input parameters with  

a normal statistical distribution around initial values with a certain standard deviation.  

For this particular implementation, Cowan’s suite of atomic codes (R.D. Cowan, The Theory 

of Atomic Structure and Spectra, Berkeley, CA: University of California Press, 1981) was 

used to calculate radiative rates of magnetic-dipole and electric-quadrupole transitions 

within the ground configuration of titanium-like iron, Fe V. The Slater parameters used in 

the calculations were adjusted to fit experimental energy levels with Cowan’s least-squares 

fitting program, RCE. The standard deviations of the fitted parameters were used as input 

of the control code providing the distribution widths of random trials for these parameters. 

Propagation of errors through the matrix diagonalization and summation of basis state 

expansions leads to significant variations in the resulting transition rates. These variations 

vastly differ in their magnitude for different transitions, depending on their sensitivity to 

errors in parameters. With this method, the rate uncertainty can be individually assessed for 

each calculated transition. 

Keywords: atomic spectra; transition probabilities; evaluation of uncertainties 

 

1. Introduction 

With the rapid improvement in computer power and quality of atomic structure codes, calculations 

of atomic structure and transition properties now become widely used in large-scale simulations of 
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physical conditions in complex plasma environments, such as found in fusion devices. Such 

simulations have wide range of applications, from plasma diagnostics to prediction of technological 

characteristics of industrial devices. To assess the accuracy of these simulations, it is important to have  

well-defined uncertainties for all calculated atomic parameters. Thus, critical evaluation of atomic 

data, implying estimation of uncertainties, has recently become one of the top priorities in fusion 

research [1]. 

Currently existing methods of evaluation of uncertainties of calculated transition probabilities were 

summarized by Wiese [2] and Kramida [3]. These methods heavily rely on comparisons between 

different calculations and between calculations and experiments. 

In this paper, I suggest a new method of evaluation of uncertainties. It also relies on comparisons; 

however, these comparisons do not use any external data, but only the data produced by the same 

computational procedure. The base for comparisons is built from data generated with varied 

parameters of the atomic code. Application of this method is illustrated for the case of magnetic-dipole 

(M1) and electric-quadrupole (E2) transitions within the ground configuration of titanium-like iron 

(Fe V). The calculations were made with the suite of atomic structure codes by Cowan [4]. 

Uncertainties evaluated with this method are compared with recent critical compilation [5], where 

radiative rates of these transitions were also calculated with the same Cowan codes, and their 

uncertainties were evaluated by comparison with calculations of Nahar et al. [6].  

2. Method Description 

Calculation of transition probabilities involves several stages. These stages differ in different 

methods. In the non-relativistic or quasi-relativistic Hartree–Fock method, at first, the radial parts of 

wavefunctions are computed for each configuration in the single-configuration approximation. Then 

the Slater parameters and configuration–interaction (CI) parameters, as well as multipole transition 

integrals, are calculated from these radial functions. The parameters mentioned above are called 

hereafter the input parameters. The Hamiltonian matrix is built from these input parameters and 

diagonalized. The resulting eigenvalues and eigenvectors represent the initial calculated energy levels. 

Then these parameters are varied in the least-squares fitting (LSF) to find the set of parameters that 

best fits the experimental energy levels. Then these LSF parameters are used as input for the matrix 

diagonalization procedure, producing an improved set of eigenvalues and eigenvectors. These are used 

to compute the multipole transition probabilities. In most cases, because of the limited accuracy of the 

approximate atomic model, the LSF procedure does not exactly reproduce the experimental energy 

levels. Since the derivatives of the eigenvalues over the Slater and CI parameters can readily be 

calculated, the uncertainties (standard deviations, hereafter denoted as σ) of the LSF parameters can be 

computed from the differences between the fitted and experimental energies.  

The idea of the method is to vary the LSF parameters in a random fashion (using a normal statistical 

distribution centered at the LSF values with a width equal to the σ of the LSF) and to evaluate the 

standard (root-mean-square) deviation of the line strengths calculated with these varied parameters. 

It must be noted that this initial assumption of normal statistical distributions of all parameters is 

arbitrary to a large degree. One could assume, for example, that these distributions are uniform, 

meaning that all values of parameters within certain limits are equally probable. However, a normal 



Atoms 2014, 2 88 

 

 

statistical distribution seems to better reflect the common observation that the results of the LSF 

provide the best (most probable) values for the parameters insofar as the eigenvalues obtained with  

the fitted parameters exhibit symmetrical distributions around experimental values with the smallest 

standard deviations. The standard distribution has well-known statistical properties such as its symmetry 

around the central value (mean), its width at half-maximum (equal to 1.35 times the standard deviation 

around the mean) and the probabilities of occurrence of values deviating by more than one, two,  

or three standard deviations (32%, 5%, and 0.3%, respectively). Although other forms of distributions 

are possible, the normal distribution seems to be a good test case. 

Cowan’s codes [4] already have all necessary routines such as the LSF. Thus, this suite of codes 

was chosen as a test platform for the suggested method.  

A few preliminary remarks should be made. The first one concerns the statistical distributions of  

the calculated quantities. In several recent papers, including [3], I made a statement that the logarithm 

of the calculated line strength, log(S), has much better statistical properties than the line strength itself, 

in the sense that the statistical distribution of log(S/S*), where S* is a true value, is much closer to a 

normal distribution than S/S*. It turns out that this statement is generally incorrect.  

As discussed in Section 3, for the considered M1 and E2 transitions of Fe V, statistical distributions  

of both log(S/S*) and S/S* are asymmetrical. (In the context of this article, the “true value” S* is  

the one obtained with the LSF parameter values and ab initio values of the E2 transition moments).  

The distribution of log(S/S*) tends to be skewed to the negative side, while S/S* has a positive skew, 

meaning that there are more highly deviating values with S > S* than with S < S*. A somewhat better 

symmetry is observed for (S/S*)1/3. However, I have found that no single function of S can produce a 

normal statistical distribution of results for every transition. For any single function f(S), a few percent 

of all calculated transitions have extremely high volatility in the sense that small random variations of 

the input parameters with normal distributions around the initial values lead to a large number of 

strongly deviating results. For some transitions, there are too many trials in which the calculated 

quantity deviates from the initial value f(S*) by more than 3σ, as compared to the normal distribution. 

For such highly volatile transitions, which always exist if the same function f(S*) is used for all 

transitions, it is impossible to provide a definitive value of uncertainty in its normal sense, because 

there is a significant probability that the true value differs from the calculated one by ≥5σ. It is usually 

assumed that such highly volatile transitions are those that are affected by cancellations. This also 

turns out wrong. Some of the highly volatile transitions indeed have strong cancellation effects, but a 

significant fraction of them have weak cancellation. Thus, it is necessary to investigate the shape of the 

distribution function for each calculated transition and choose a function f(S) that has a statistical 

distribution closest to normal. 

The second note concerns the identification of transitions. Generally, when the Slater parameters 

are changed, diagonalization of the Hamiltonian results in changes in both eigenvalues and 

eigenvectors, as well as in the predicted transition wavelengths. Identification of transitions produced 

by such different calculations poses a serious technical problem, since the level ordering is not 

necessarily preserved. The method that works well for this purpose, is the eigenvector recognition used 

in my version of Cowan’s LSF procedure [4], explained in [3]. There is a physical limitation on the 

applicability of this method, as well as any other method of identification of results produced by 

different theoretical calculations. Namely, if the atomic models used in the different calculations differ 
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too much (in the context of this article, the atomic model is defined by the set of input parameters), 

there may be no unique physical relation between the results of these calculations. However, if the 

differences in the input parameters are sufficiently small, such relation can easily be found by the 

eigenvector recognition technique. This is especially easy and fast if configuration mixing is small, 

which is the case for the ground configuration of Fe V, 3d4. 

The third note concerns the calculated radiative rates, A. The small changes of the input parameters 

cause changes in the calculated wavelengths. The primary calculated quantity is the line strength S, 

Variations of S due to small changes of parameters are small, but changes in A may be very large, 

especially for E2 transitions, since A is calculated from S using relations involving high powers of 

wavelength. Thus, if one wants to compare the A values from different calculations, they should be 

first rescaled to the same transition wavelengths. In the present work, this rescaling is made for all 
calculated A values; thus, in this work, the relative variations δA/A are identical to those of the line 

strength, δS/S. 

Before describing the implementation of the method, a brief description of Cowan’s suite of codes 

is necessary. The suite consists of four separate programs that are run consecutively. The programs are 

named with Cowan’s initials, “RC”, followed by a letter symbol defining the code category (“N” for 

the program calculating single-configuration wavefunctions, “G” for the program diagonalizing the 

matrix of the Hamiltonian and computing the spectrum, “E” for the LSF program). An exception is 

made for the RCN2 program, which will be explained below. Each program has one or more input files 

and produces output files, some of which are intended to be input files for the next program in the 

chain. Thus, RCN has an input file that defines the configurations to be included in the calculation,  

as well as several parameters having technical purposes, such as the tolerance for iterations in the  

self-consistent field calculations. As output, RCN produces a binary file defining the computed 

wavefunctions, which is then used by the next program, RCN2, as an input file. RCN2 also has an 

additional input (text) file that can be modified by the user. This file contains definitions of some 

adjustable parameters, such as scaling factors for Slater parameters. Input files that can be modified by 

the user have in their names letters “in” followed by the code symbol and sometimes by numerals 

defining the code version. Thus, the input file for RCG version 11, produced by RCN2, is named 

“ing11.” This file contains all parameters needed for the construction of the Hamiltonian matrix, such 

as Slater and CI parameters denoted below as P), and the multipole transition matrix elements. The 

program RCG (version 11), in turn, produces output files “outg11” and “outgine.” The first of them 

contains the calculated spectrum (eigenvalues, eigenvectors, wavelengths, and transition probabilities), 

and the second one is an input file for the RCE program. In addition to these text files, RCG produces 

a binary file with additional input data for RCE, which, among other things, contains the matrix of the 

partial derivatives of parameters P over eigenvalues E, [∂P/∂E]. This matrix is used by RCE to adjust 

P in an iterative way so as to produce the minimum standard deviation of E from experimental 

energies Eexp. The standard deviation of the fitted parameters is then computed as 

ΔPLSF = ∂P/∂E (Eexp − E). (1) 

This organization of the codes allows the user to make either ab initio or semi-empirically adjusted 

calculations. In particular, the least-squares-fitted parameters PLSF produced by RCE can be easily 

transferred to the input file of RCG, ing11, to calculate the semi-empirically adjusted spectrum. 
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The procedure implemented here is as follows. 

(1) The main directory of the calculation is set up with the input and output files for the  

Cowan-code calculation with LSF. The LSF for the even parity of Fe V was made earlier as 

described in [5]. 

(2) The control code creates a separate subdirectory for each random trial and sets up all files 

necessary for calculations in each of these subdirectories. The maximum number of random 

trials used in this test implementation was 10,000, so there were 10,000 sub-directories. 

(3) The control code reads the input file for the matrix-diagonalization code RCG (ing11) from  

the main directory and prepares sets of randomly varied E2 matrix elements for each trial.  

The random variations are implemented using a standard random number generation routine 

(producing uniformly distributed random floating-point numbers in the interval between 0 and 1), 

converted to normally distributed numbers using the Box–Miller transformation [7] (see 

Section 3.2). The centers of these normal distributions are set to be equal to the initial values of 

the input parameters. For the E2 matrix elements, the width of the normal distribution of the 

generated random numbers was arbitrarily set to 1% of the initial parameter value. Using these 

generated sets of randomly varied E2 matrix elements, the control code creates input files for 

the RCG code in each trial subdirectory. At this step, all Slater and CI parameters are kept the 

same as in the main directory. 

(4) The control code reads the output file of RCG (outg11) and other auxiliary files from the main 

directory (including ing11), reads the output file of the LSF code RCE (oute), finds the data 

block corresponding to the last LSF iteration, and reads the fitted parameter values (Slater and 

CI) and their σ. It also reads the eigenvectors resulting from the last LSF iteration. In my 

version of Cowan’s RCE code, the eigenvectors produced by LSF are saved in an additional 

output file named rceout.  

(5) The control code identifies the eigenvectors produced by RCG with those produced by RCE 

(which are nearly identical, since the preliminary RCG calculation was made in the main 

directory using the parameter values from LSF), and thus establishes correspondence between 

the initial calculated eigenvalues and experimental energies. 

(6) The control code continues reading the part of the outg11 file from the main directory 

containing the transition data (initial and final energy levels, wavelengths, A-values, and 

cancellation factors). 

(7) In each trial subdirectory, the control code randomly varies the Slater and CI parameters using 

the same procedure as for the E2 matrix elements, except that the widths of normal statistical 

distributions are set to be equal to the corresponding σ of the LSF. The parameters that were 

linked together at a fixed ratio in the LSF are varied in the same linked manner. Namely, their 

scaling factor is varied, but the ratios within each linked group remain fixed. For parameters 

that were fixed (not varied) in the LSF, the width of the normal distribution of the varied values 

was arbitrarily set to 2% of the parameter value. The varied parameters are substituted into the 

ing11 file (input file for RCG) prepared earlier in each subdirectory in step 3. 

(8) In each trial subdirectory, the control code runs RCG, reads the resulting outg11 file containing 

new eigenvectors and sets of transition data, identifies the new eigenvectors with the old ones, 
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kept in memory from step 5, and, for each transition, rescales the new A-values to the 

experimental (Ritz) wavelengths, and appends the statistics data. 

(9) The accumulated statistics data are processed and results are printed to an output file. 

The control code was written in Perl programming language. It has about 1,000 lines of code and 

uses several external Perl utility codes developed earlier and included with the Cowan code package [4]. 

These utilities include, for example, the eigenvector recognition routine and have about 3,000 lines of 

code. They were optimized for speed for the present purpose. With 10,000 random trials, the code 

execution takes about a few hours on a moderately powerful personal computer with 16 Gb of 

memory. Most of this time is taken by execution of RCG on each trial. 

3. Results and Discussion 

The 3d4 configuration of Fe V consists of 34 energy levels spanning the range from zero to 

94,000 cm−1, all of which are experimentally known with uncertainties ranging from 0.3 cm−1 to 

1.5 cm−1 [5]. My calculations with Cowan’s codes yield 232 M1 transitions and 358 E2 transitions 

between these levels. For each of these transitions, the Monte Carlo method described in Section 2 

produced a set of up to 10,000 A-values, providing a basis for statistical analysis. Results of this 

analysis are described below. 

3.1. Input Parameters 

As described in [5], the calculation of the even parity complex of Fe V included eight 

configurations, 3d4, 3d3(4s + 5s + 4d + 5d), and 3d2(4s2 + 4s4d + 4d2). Thus, there were 38 non-zero 

E2 matrix elements for transitions between these configurations, 86 Slater parameters (average energy 

Eav, spin-orbit parameters ϛ3d and ϛ4d, direct and exchange Coulomb interaction parameters F2,4(nd,nʹd) 

and G0,2,4(nl,nʹlʹ), respectively, and effective parameters α3d, β3d, and T3d; those are coefficients of 

Casimir operators representing many-body effects in shells with equivalent electrons, see Cowan’s 

book [4], section 16-7), and 61 CI parameters. In the LSF, many of these parameters were grouped 

with fixed ratios within each group. In particular, all CI parameters were linked in one group. In total, 

there were 15 such groups, which included 121 parameters, nine parameters were allowed to vary 

independently, and seven parameters were fixed in the LSF (note that these were allowed to vary with 

a relative σ of 2% in the Monte Carlo trials). Thus, in the random trials there were 69 variable 

parameters, 38 of which affected only E2 transitions.  

Calculations of M1 transitions are intrinsically more accurate, because they involve only linear 

combinations of amplitudes of the eigenvector components of the lower and upper levels with 

coefficients that are functions of quantum numbers of the basis states. Thus, the calculated M1  

S-values change only due to changes in the eigenvector component amplitudes. On the other hand, the 

E2 S-values are additionally affected by the (unknown) uncertainties in the E2 transition integrals, 

which depend on the accuracy of the radial wavefunctions. In the present investigation, these 

uncertainties were arbitrarily assumed to be equal to 1%, just so that transitions strongly sensitive to 

these uncertainties would be detected. The statistical distribution of the random trials was preliminary 
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tested with a million trials and was found to be indeed very close to normal with the given variance 

(described above in Section 2).  

The LSF parameters used as initial input for Monte Carlo trials are listed in Table 1. They were 

obtained in the work reported in [5]. The acronym ‘HFR’ appearing in the last two columns of Table 1 

means ‘Hartree–Fock-Relativistic’ and is commonly used to denote the approximation used in ab initio 

calculations with Cowan’s codes, the Hartree–Fock method with relativistic corrections.  

It should be noted that the standard deviation of the eigenvalues produced by the LSF from 

experimental energies is 117 cm−1 for all 220 experimentally known even levels and 41 cm−1 for the  

34 levels of 3d4. Thus, it is a fairly good fitting with well-defined parameters. As can be seen in  

Table 1, the fractional uncertainties of PLSF are in the range between a small fraction of a percent for 

Eav and about 10% for α3d and β3d, except for β3d(3d55s), which had a larger uncertainty. 

Table 1. Parameters of the least-squares fitting (LSF) used as input for Monte Carlo trials 

(in units of cm−1). 

Configurations Parameter LSF σ Group a HFR LSF/HFR 

3d4 Eav 36,510.2 43 0.0 
 F2(3d3d) 90,868.6 118 105,204.6 0.8637 
 F4(3d3d) 55,549.7 191 66,193.4 0.8392 

 α
3d

 36.8 3 0.0 

 β
3d

 599.6 61 0.0 

 T
3d

 −7.7 0 14 0.0 

 ϛ
3d

 531.9 23 533.1 0.9977 

3d34s Eav 215,050.4 31 177,245.6 1.2133 
 F2(3d3d) 95,607.2 135 111,187.6 0.8599 
 F4(3d3d) 58,863.0 209 70,214.5 0.8383 

 α
3d

 45.2 3 0.0 

 β
3d

 634.1 60 0.0 

 T
3d

 −7.7 0 14 0.0 

 ϛ
3d

 586.8 24 585.2 1.0027 

 G2(3d4s) 10,704.7 75 6 12,235.1 0.8749 
3d35s Eav 421,078.0 58 5 382,121.1 1.1019 
 F2(3d3d) 97,235.2 815 112,221.2 0.8665 
 F4(3d3d) 59,610.7 1157 70,920.1 0.8405 

 α
3d

 52.9 7 0.0 

 β
3d

 362.6 362 0.0 

 T
3d

 −7.7 0 14 0.0 

 ϛ
3d

 568.4 31 592.4 0.9595 

 G2(3d5s) 3327.7 101 3315.5 1.0037 
3d34d Eav 387,478.0 30 348,713.5 1.1112 
 F2(3d3d) 96,771.8 95 1 112,024.1 0.8638 
 F4(3d3d) 59,294.2 174 2 70,789.8 0.8376 

 α
3d

 45.5 3 12 0.0 

 β
3d

 495.8 51 13 0.0 

 T
3d

 −7.7 0 14 0.0 
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Table 1. Cont. 

Configurations Parameter LSF σ Group a HFR LSF/HFR 

 ϛ
3d

 589.0 16 3 590.3 0.9978 

 ϛ
4d

 75.8 fixed 76.5 0.9908 

  F2(3d4d) 16,966.1 126 7 19,123.3 0.8872 
 F4(3d4d) 8,158.7 177 8 8,715.8 0.9361 
 G°(3d4d) 5,223.2 28 9 8,263.5 0.6321 
 G2(3d4d) 6,488.4 103 10 7,994.5 0.8116 
 G4(3d4d) 5,643.9 132 11 5,877.2 0.9603 
3d35d Eav 486,707.5 67 5 450,809.1 1.0796 
 F2(3d3d) 97,062.4 96 1 112,360.5 0.8638 
 F4(3d3d) 59,483.7 174 2 71,016.1 0.8376 

 α
3d

 45.5 3 12 0.0 

 β
3d

 495.8 51 13 0.0 

 T
3d

 −7.7 0 14 0.0 

 ϛ
3d

 592.0 17 3 593.3 0.9978 

 ϛ
5d

 33.9 fixed 34.2 0.9912 

 F2(3d5d) 6,810.0 51 7 7,675.8 0.8872 
 F4(3d5d) 3,290.4 71 8 3,515.1 0.9361 
 G°(3d5d) 1,960.2 10 9 3,101.2 0.6321 
 G2(3d5d) 2,624.3 42 10 3,233.5 0.8116 
 G4(3d5d) 2,337.2 55 11 2,433.8 0.9603 
3d24s2 Eav 447,291.0 62 5 411,400.0 1.0872 
 F2(3d3d) 101,108.2 100 1 117,043.9 0.8638 
 F4(3d3d) 62,117.5 182 2 74,160.5 0.8376 

 α
3d

 45.5 3 12 0.0 

 β
3d

 495.8 51 13 0.0 

 T
3d

 −7.7 0 14 0.0 

 ϛ
3d

 639.4 18 3 640.8 0.9978 

3d24s4d Eav 623,244.0 86 5 587,320.0 1.0612 
 F2(3d3d) 101,728.1 100 1 117,761.5 0.8638 
 F4(3d3d) 62,532.2 183 2 74,655.6 0.8376 

 α
3d

 45.5 3 12 0.0 

 β
3d

 495.8 51 13 0.0 

 T
3d

 −7.7 0 14 0.0 

 ϛ
3d

 644.1 18 3 645.5 0.9978 

 ϛ
4d

 85.4 fixed 86.2 0.9907 

 F2(3d4d) 18,159.0 135 7 20,467.8 0.8872 
 F4(3d4d) 8,755.3 189 8 9,353.2 0.9361 
 G2(3d4s) 10,739.7 75 6 12,275.2 0.8749 
 G°(3d4d) 5,514.6 29 9 8,724.6 0.6321 
 G2(3d4d) 6,889.7 110 10 8,488.9 0.8116 
 G4(3d4d) 6,021.5 141 11 6,270.5 0.9603 
 G2(4s4d) 30,469.1 fixed 33,996.9 0.8962 
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Table 1. Cont. 

Configurations Parameter LSF σ Group a HFR LSF/HFR 

3d24d2 Eav 811,506.1 112 5 775,546.8 1.0464 
 F2(3d3d) 102,346.9 101 1 118,477.8 0.8638 
 F4(3d3d) 62,946.2 185 2 75,149.9 0.8376 

 α
3d

 45.5 3 12 0.0 

 β
3d

 495.8 51 13 0.0 

 T
3d

 −7.7 0 14 0.0 

 F2(4d4d) 33,810.3 fixed 39,233.4 0.8618 
 F4(4d4d) 23,909.6 fixed 26,600.9 0.8988 

 ϛ
3d

 649.0 18 3 650.4 0.9978 

 ϛ
4d

 90.6 fixed 91.4 0.9912 

 F2(3d4d) 18,870.5 141 7 21,269.8 0.8872 
 F4(3d4d) 9,140.4 198 8 9,764.6 0.9361 
 G°(3d4d) 5,687.7 30 9 8,998.4 0.6321 
 G2(3d4d) 7,150.7 114 10 8,810.5 0.8116 
 G4(3d4d) 6,265.5 147 11 6,524.5 0.9603 

Configuration interaction 

3d4 –3d34s R2(3d3d, 3d4s) 2,217.4 95 15 3,336.6 0.6646 
 –3d35s R2(3d3d, 3d5s) 1,219.4 52 15 1,834.8 0.6646 
 –3d34d R°(3d3d, 3d4d) 1,821.3 78 15 2,740.5 0.6646 
 R2(3d3d, 3d4d) 12,948.9 557 15 19,484.5 0.6646 
 R4(3d3d, 3d4d) 8,883.0 382 15 13,366.4 0.6646 
 –3d35d R°(3d3d, 3d5d) 1,047.9 45 15 1,576.8 0.6646 
 R2(3d3d, 3d5d) 7,329.0 315 15 11,028.1 0.6646 
 R4(3d3d, 3d5d) 5,046.3 217 15 7,593.2 0.6646 
 –3d24s2 R2(3d3d, 3s3s) 10,004.3 430 15 15,053.6 0.6646 
 –3d24s4d R2(3d3d, 4s4d) 6,419.5 276 15 9,659.5 0.6646 
 –3d24d2 R°(3d3d, 4d4d) 4,952.9 213 15 7,452.7 0.6646 
 R2(3d3d, 4d4d) 6,174.4 266 15 9,290.7 0.6646 
 R4(3d3d, 4d4d) 4,676.0 201 15 7,036.0 0.6646 
3d34s –3d35s R°(3d4s, 3d5s) 409.1 18 15 615.6 0.6645 
 R2(3d4s, 5s3d) 4,080.3 175 15 6,139.6 0.6646 
 –3d34d R2(3d4s, 3d4d) 14,076.1 605 15 21,180.5 0.6646 
 R2(3d4s, 4d3d) 5,091.7 219 15 7,661.5 0.6646 
 –3d35d R2(3d4s, 3d5d) 8,682.3 373 15 13,064.4 0.6646 
 R2(3d4s, 5d3d) 3,471.1 149 15 5,223.1 0.6646 
 –3d24s2 R2(3d3d, 3d3s) 3,873.0 167 15 5,827.8 0.6646 
 –3d24s4d R°(3d3d, 3d4d) 1,926.3 83 15 2,898.5 0.6646 
 R2(3d3d, 3d4d) 13,783.0 593 15 20,739.5 0.6646 
 R4(3d3d, 3d4d) 9,476.2 408 15 14,258.9 0.6646 
 R2(3d4s, 4s4d) −8,252.2 355 15 −12,417.2 0.6646 
 R°(3d4s, 4d4s) −796.0 34 15 −1,197.8 0.6646 
 –3d24d2 R2(3d4s, 4d4d) −3,905.8 168 15 −5,877.1 0.6646 
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Table 1. Cont. 

Configurations Parameter LSF σ Group a HFR LSF/HFR 

3d35s –3d34d R2(3d5s, 3d4d) 3,396.2 146 15 5,110.4 0.6646 
 R2(3d5s, 4d3d) 2,475.6 106 15 3,725.1 0.6646 
 –3d35d R2(3d5s, 3d5d) 4,378.2 188 15 6,588.0 0.6646 
 R2(3d5s, 5d3d) 1,743.1 75 15 2,622.8 0.6646 
 –3d24s4d R2(3d5s, 4s4d) 185.6 8 15 279.3 0.6645 
 R°(3d5s, 4d4s) 2,099.6 90 15 3,159.3 0.6646 
 –3d24d2 R2(3d5s, 4d4d) 954.7 41 15 1,436.6 0.6646 
3d34d –3d35d R°(3d4d, 3d5d) 501.5 22 15 754.6 0.6646 
 R2(3d4d, 3d5d) 6,530.5 281 15 9,826.6 0.6646 
 R4(3d4d, 3d5d) 3,481.2 150 15 5,238.2 0.6646 
 R°(3d4d, 5d3d) 3,347.1 144 15 5,036.5 0.6646 
 R2(3d4d, 5d3d) 3,346.7 144 15 5,035.8 0.6646 
 R4(3d4d, 5d3d) 2,486.7 107 15 3,741.8 0.6646 
 –3d24s2 R2(3d4d, 3s3s) −7,061.3 304 15 −10,625.3 0.6646 
 –3d24s4d R2(3d3d, 3d4s) 4,209.3 181 15 6,333.8 0.6646 
 R2(3d4d, 4s4d) −6,388.1 275 15 −9,612.2 0.6646 
 R2(3d4d, 4d4s) −2,959.1 127 15 −4,452.6 0.6646 
 –3d24d2 R°(3d3d, 3d4d) 1,955.1 84 15 2,941.9 0.6646 
 R2(3d3d, 3d4d) 13,992.6 602 15 21,054.9 0.6646 
 R4(3d3d, 3d4d) 9,625.4 414 15 14,483.5 0.6646 
 R°(3d4d, 4d4d) 80.7 3 15 121.4 0.6647 
 R2(3d4d, 4d4d) −2,931.1 126 15 −4,410.5 0.6646 
 R4(3d4d, 4d4d) −2,127.2 91 15 −3,200.8 0.6646 
3d35d –3d24s2 R2(3d5d, 3s3s) −3,819.9 164 15 −5,747.9 0.6646 
 –3d24s4d R2(3d5d, 4s4d) −2,351.0 101 15 −3,537.6 0.6646 
 R2(3d5d, 4d4s) −1,316.3 57 15 −1,980.6 0.6646 
 –3d24d2 R°(3d5d, 4d4d) 1,550.6 67 15 2,333.2 0.6646 
 R2(3d5d, 4d4d) −657.1 28 15 −988.7 0.6646 
 R4(3d5d, 4d4d) −769.7 33 15 −1,158.1 0.6646 
3d24s2 –3d24s4d R2(3d3s, 3d4d) 15,121.7 650 15 22,753.9 0.6646 
 R2(3d3s, 4d3d) 5,433.2 234 15 8,175.4 0.6646 
 –3d24d2 R2(3s3s, 4d4d) 23,912.3 1,028 15 35,981.2 0.6646 
3d24s4d –3d24d2 R2(3d4s, 3d4d) 15,680.1 674 15 23,594.1 0.6646 
 R2(3d4s, 4d3d) 5,650.7 243 15 8,502.7 0.6646 
 R2(4s4d, 4d4d) 23,674.3 1,018 15 35,623.1 0.6646 

E2 transition reduced matrix elements 

3d4 –3d4 (3d, 3d)    −1.22129  
3d4 –3d34s (3d, 4s)    −36.36873  
3d4 –3d35s (3d, 5s)    −9.56604  
3d4 –3d34d (3d, 4d)    1.04638  
3d4 –3d35d (3d, 5d)    0.40754  
3d34s –3d4 (4s, 3d)    −1.22729  
3d34s –3d34s (3d, 3d)    −1.10293  
3d34s –3d34d (4s, 4d)    5.48000  
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Table 1. Cont. 

Configurations Parameter LSF σ Group a HFR LSF/HFR 

3d34s –3d35d (4s, 5d)    0.09788  
3d34s –3d24s2 (3d, 4s)    −1.05636  
3d34s –3d24s4d (3d, 4d)    0.90280  
3d35s –3d4 (5s, 3d)    −0.09184  
3d35s –3d35s (3d, 3d)    −1.08225  
3d35s –3d34d (5s, 4d)    −9.51515  
3d35s –3d35d (5s, 5d)    17.67485  
3d34d –3d4 (4d, 3d)    1.04638  
3d34d –3d34s (4d, 4s)    5.48000  
3d34d –3d35s (4d, 5s)    −9.51515  
3d34d –3d34d (4d, 4d)    −10.89202  
3d34d –3d35d (4d, 5d)    6.90270  
3d34d –3d24s4d (3d, 4s)    −1.02367  
3d34d –3d24d2 (3d, 4d)    0.87600  
3d35d –3d4 (5d, 3d)    0.40754  
3d35d –3d34s (5d, 4s)    0.09788  
3d35d –3d35s (5d, 5s)    17.67485  
3d35d –3d34d (5d, 4d)    6.90270  
3d35d –3d35d (5d, 5d)    −36.43838  
3d24s2 –3d34s (4s, 3d)    −1.05636  
3d24s2 –3d24s2 (3d, 3d)    −1.00354  
3d24s2 –3d24s4d (4s, 4d)    5.14550  
3d24s4d –3d34s (4d, 3d)    0.90280  
3d24s4d –3d34d (4s, 3d)    −1.02367  
3d24s4d –3d24s2 (4d, 4s)    5.14550  
3d24s4d –3d24s4d (4d, 4d)    −9.84869  
3d24s4d –3d24d2 (4s, 4d)    4.98748  
3d24d2 –3d34d (4d, 3d)    0.87600  
3d24d2 –3d24s4d (4d, 4s)    4.98748  
3d24d2 –3d24d2 (4d, 4d)    −9.45614  

a Parameters in each numbered group were linked together with their ratio fixed at the Hartree–Fock level. 

3.2. Statistical Distributions of A-Values Obtained with 1000 Random Trials 

Let us start with something familiar to atomic physicists, at least to some extent. Namely,  

let us consider how the standard deviations σ of A values behave depending on the line strength S.  

This dependence is presented, separately for M1 and E2 transitions, in the upper half of Figure 1.  

At first glance, the qualitative behavior of these plots confirms the general trend observed by many 

researchers and traditionally used to estimate the uncertainties of A values in different ranges of line 

strength (see, for example, [3,5]). Namely, for strong transitions the A values are well defined, while 

for weaker transitions uncertainties grow rapidly with decreasing S. However, these plots differ from 

traditional comparison plots [3,5] in that each data point represents not a single comparison between 

two calculations, but a standard deviation over 1,000 different calculations. 
  



Atoms 2014, 2 97 

 

 

Figure 1. Relative standard deviations δA/A (percent) of Monte Carlo trial data for M1 

(left) and E2 (right) transitions of Fe V versus line strength S (top) and versus degree of 

cancellation Dc = δCF/|CF| (bottom). Full symbols—transitions with weak cancellation,  

|CF| ≥ 0.01; open symbols—transitions with strong cancellation, |CF| < 0.01. Vertical 

dashed lines in the bottom part show the boundary between regions of significant and 

insignificant cancellation, Dc > 0.5 and Dc < 0.5, respectively. 

 

For strong M1 transitions with S > 1, the calculations are especially stable, giving σ over 1,000 trials 

well below 1%. I was tempted to use the word “accurate” in this statement. However, one should 

remember that this discussion is about statistical distributions of results of one particular computational 

model. The accuracy of this model is necessarily limited by the approximations used. Thus, the 

uncertainties of its results must be greater than the standard deviations discussed here. This point will 

be further discussed in the following subsections. 

If we look closer at the layout of the data points in the upper part of Figure 1, we can see that, in the 

same region of line strengths, the σ of resulting A values strongly differ from each other. For example, 

for M1 transitions with S = (0.001–0.01), most of the data points are clustered around σ ≈ 10%. 

However, there are many data points having σ greater or smaller than that by up to an order of 

magnitude. In the standard method of evaluation of uncertainties by comparing a few different 

calculations with each other, the apparent outliers with too large deviations would be assigned 
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uncertainties much greater than the average for a given line strength. However, because of low 

statistics in such comparisons, there is a big chance of occasional coincidences, so some of such highly 

volatile transitions would not be detected. On the other hand, for some transitions that happen to be 

much more stable than the others with a similar S, uncertainties would be greatly overestimated. 

Large deviations of calculated A values for some transitions are usually explained by strong 

cancellation effects. In Cowan’s codes, these effects are characterized by the so-called cancellation 

factor (CF) defined as follows. Calculation of the line strength of a transition is made by summation of 

contributions of different sign involving eigenvector components of wavefunctions of the lower and 

upper states. All positive and negative contributions are summed separately in partial sums S+ and S−, 

so that the line strength is given by S = S+ + S−. Then CF is computed as CF = (S+ − |S−|)/(S+ + |S−|). 

Thus, CF ߳ [−1, 1], and “strong cancellation” occurs when |CF| is close to zero. 

I tried to find a correlation between the strong cancellation and the high volatility of A-values by 

separating transitions with low cancellation factor |CF| < 0.01 (red circles in Figure 1) from those with 

large CF, |CF| ≥ 0.01 (full symbols). The upper part of Figure 1 does not reveal any strong dependence 

of relative deviations δA/A on |CF|. In general, transitions with low |CF| tend to be weaker, so the red 

circles are clustered in the regions of smaller S. However, in the regions of similar S, the red circles 

(strong cancellation) are intermingled with full symbols (weak cancellation). Thus, the small 

cancellation factor per se cannot serve as a definitive indicator of bad quality of calculations. 

I attempted to investigate the cancellation effects in more detail. For each transition, each trial 

calculation produces a somewhat different CF. The CF values appear to be distributed normally around 

the initial values for most of transitions. Only for about 10% of all transitions distributions of CF are 
far from normal. The widths (i.e., standard deviations) of these distributions, δCF, are very different for 

different transitions, varying from 10−18 to 0.07. To better characterize the cancellation effects,  
I introduce a new quantity, degree of cancellation Dc = δCF/|CF|. The cancellation effects are truly 

significant if Dc is greater than 0.5. In such cases, some trial calculations produce a positive CF, others 
negative. Dependence of relative deviations δA/A on Dc is plotted in the lower part of Figure 1. For E2 

transitions, one can see that, indeed, all transitions with δA/A > 100% have Dc > 0.5. However, for M1 

transitions it is not so. There are some transitions with a rather small degree of cancellation Dc having 
δA/A greater or close to 100%. At the same time, many transitions with truly strong cancellation  

(Dc > 0.5) have unexpectedly small deviations δA/A. Thus, even this statistically augmented approach 

does not allow one to definitively differentiate between “good” and “bad” results. 

Now let us take a look at statistical distributions of results for individual transitions, something that 

was never considered before in the literature. These distributions are shown in Figure 2 for three 

typical transitions. In this figure, the quantity on the vertical axis is the relative deviation δf/f (unlike 

Figure 1, where δA/A is given as percentage, here f = f(A) is a certain function of A, and the quantity on 

the vertical axis is δf/f = f(A)/f(A*) – 1). On the horizontal axes, it is just the trial number from 1 to 

1,000. Each panel (a–c) corresponds to a different transition (specified in the figure caption). The three 

columns of figures represent results obtained for three different functions of A, f = A (“straight A”),  

f = A1/3, and f = ln(A). 
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Figure 2. Relative deviations δf/f of Monte Carlo trial data for three considered  

transition-rate functions, straight A (f = A), power of 1/3 (f = A1/3), and logarithm (f = ln(A)) 

for three typical E1-forbidden transitions within the ground configuration 3d4 of Fe V.  

(a) 3F22–
3F14 E2, (26,760.7–62,238.0) cm−1, λ = 2,817.87 Å, A = 7.18 × 10−3 s−1, 

|CF| = 0.14(3); (b) 5D2–
3F22 E2, (417.5–26,760.7) cm−1, λ = 3,794.9 Å, A = 2.92 × 10−9 s−1, 

|CF| = 0.00001(1); (c) 3P22–
3G3 M1, (26,468.2–29,817.1) cm−1, λ = 29,861.4 Å,  

A = 1.42 × 10−5 s−1, |CF| = 0.89(2). 

 

One can see from Figure 2 that statistical distributions of results obtained for all presented 

transitions are asymmetrical and have significant numbers of far outliers, the number and location of 

which depends on the function used. (Hereafter, “outlier” means a data point deviating from the mean 

by more than one σ, and “far outlier” means a datum deviating from the mean by more than 3σ). For 

each transition, some functions appear to give “better” statistical distributions than others, both in 

terms of symmetry and the number of outliers. Thus, for transition (b), the function f = A1/3 appears to 

give a fairly symmetrical distribution with a relatively small number of high deviations, while for 

transition (c), the best of the three functions is f = ln(A). However, for transition (a), although the 

“straight A” distribution appears to have the lowest number and size of high deviations, none of the 

three functions have a symmetrical distribution. 
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To investigate how the different functions f(A) fair in regards to the closeness of their statistical 

distributions to normal, I counted the numbers of trials producing relative deviations δf/f > nσ, where n 

is an integer number from 0 to +5 and similar numbers for negative δf/f less than –nσ. The quantity 

defining the fractional numbers of these counts is denoted N(n) below. These counts were co-added for 

all 590 investigated transitions and compared to the counts predicted with the cumulative normal 

distribution function, Nnorm(n). For reference purposes, the values of Nnorm(n) are given in Table 2. 

Table 2. Fractional number of outliers deviating from the mean by more than n standard 

deviations for the normal statistical distribution, Nnorm(n). 

n Nnorm(n) 

−5 0.000000286652 
−4 0.000031671242 
−3 0.001349898032 
−2 0.022750131948 
−1 0.158655253932 
−0 0.500000000000 
+0 0.500000000000 
+1 0.158655253932 
+2 0.022750131948 
+3 0.001349898032 
+4 0.000031671242 
+5 0.000000286652 

One can see from Table 2 that, with 1,000 trials made for each transition, with the normal 

distribution, the probability of obtaining a result deviating from the mean by >5σ is negligible. 

However, if counts for all transitions are co-added, this gives a total number of trials of 590,000, and 

the probability of having at least one outlier deviating by more than ±5σ should be about 0.3 for the 

normal statistical distribution. 

The ratios of N(n)/Nnorm(n) obtained with different functions f(A) are depicted in Figure 3. First let 

us consider the three functions discussed above, f = A (panel a), f = A1/3 (panel b), and f = ln(A)  

(panel c). Panel (a) shows that the distribution of straight A values is skewed to the positive side, 

meaning that there are more trials in which δA/A > 0 than those with δA/A < 0. The distribution of  

f = ln(A), shown in panel (c), is similarly skewed to the negative side. The distribution of f = A1/3, 

shown in panel (b), is fairly symmetrical (on average; one should keep in mind that these plots are 

drawn for the overall statistics of all transitions). However, for all these functions the number of far 

outliers (those with |n| > 4) is much greater than one would expect for a normal distribution. 

I attempted to divide all considered transitions in three groups based on the “best” function f(A) out 

of the three ones considered above. The “straight A” function turned out to be the best (of the three) for 

about 14% of all transitions (10% of M1 transitions and 17% of E2 transitions). The function f = A1/3  

is the best one for 47% of all transitions (51% of M1 and 45% of E2), and f = ln(A) is the best for 39% 

of all transitions (40% of M1 and 38% of E2). Thus, neither of these functions provides the best 

statistics for a significant majority of transitions. 
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Figure 3. Ratios of fractional number of counts N(n) of Monte Carlo trial data to those of 

the normal distribution Nnorm(n) for three global transition-rate functions, (a) straight A 

(f = A); (b) power of 1/3 (f = A1/3); and (c) logarithm (f = ln(A)) for all 590 M1 and E2 

transitions of Fe V; Panel (d) shows the same ratios for f = Ap, where p is optimized 

individually for each transition. 

 

Furthermore, even when the best of the three functions is used for each transition, the number of far 

outliers is still much greater than for the normal distribution. No apparent connection was found 

between the choice of the best function and physical characteristics of a transition, such as the type 

(M1 or E2), line strength, wavelength, energy levels involved, and the degree of cancellation. 

Thus, the logarithmic function, which I earlier assumed (in [3,5] and several other papers) to 

provide statistics close to normal, in fact does so only for less than half of all transitions (at least it is 

so for the M1 and E2 transitions considered here).  

In retrospective, the failure to find one or a few simple functions of A having good statistics for all 

transitions should not be surprising. The A values are numerically calculated in a procedure involving a 

matrix diagonalization, so it is obvious that they are complicated functions of the many input 

parameters. There is no reason to believe that there exists a single simple function of A providing  

a normal statistical distribution for all transitions.  

However, it turned out possible to find the best function of a general type described by the  

Box–Cox transformation function [7]: 
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Although the Box–Cox transformation is defined piecewise, it is a smooth function of p, i.e., it does 

not have any singularity at p = 0. In applied statistics, there is a well-known technique for finding the 

optimal values of the parameter p of the Box–Cox transformation providing statistics closest to normal. 

This technique utilizes the so-called normal probability plots [8]. In such plots, the trial data are 

plotted against a theoretical normal distribution in such a way that the points should form an 

approximate straight line. Departures from this straight line indicate departures from normality. 

Examples of such normality plots are given in Figure 4 for the 5D1–
1S10 M1 transition at 826.53 Å. 

Panel (a) was drawn for the “straight A” transformation function (p = 1 means no transformation), 

while panel (b) presents the transformed trial data with the optimal value of p = 0.133. It can be seen 

from panel (a) that the raw A data significantly deviate from the normal statistical distribution, while 

the near linearity of the plot in panel (b) shows that the data transformed with p = 0.133 are nearly 

normally distributed. The quantity on the vertical axis of Figure 4 is the normalized response value  

(f – f*)/σ, where σ is the standard deviation of f and the starred symbols mean the reference values 

obtained in the original LSF fitting. The trial data are ordered in the order of increasing response value. 

For each data point i (1 ≤ i ≤ n, where n is the number of trials, 1,000 in this case), the corresponding 

value of the normal order statistic median (given on the horizontal axis) is calculated with the function 

Ni = G(Ui), where G is the inverse of the cumulative normal distribution function (probability that its 

argument is less than or equal to some value), and Ui are the uniform order statistic medians defined  

as follows: 

Un = 0.51/n 

Ui = (i − 0.3175)/(n + 0.365)    for i = 2, 3, ..., n − 1 

Ui = 1 − Un for i = 1 

(3) 

The optimal value of p is found by maximizing the correlation coefficient of the normal probability 

plot. This is illustrated in Figure 5a, where the correlation coefficient C(p) is plotted against p (this plot 

uses the trial data for the same transition as in Figure 4). The shape of the function C(p) turned out to 

look similar for all studied transitions, but the position of its maximum varies in a wide range of p. 

An alternate, somewhat simpler method of finding the optimal Box–Cox transformation is to find 

the value of p at which the response data have zero skewness, which is defined as follows: 

ݏݏ݁݊ݓ݁݇ݏ ൌ
෌ ሺݔ௜ െ ሻଷݔ̅

௡

௜ୀଵ

ሺ݊ െ 1ሻߪଷ
 (4) 

For a normal distribution, the skewness is zero. However, in general the zero value of skewness does 

not guarantee that the distribution is close to normal; it only ensures that it is symmetric. Another 

parameter characterizing the shape of a distribution function is kurtosis. For this quantity, I use  

the definition that is usually referred to as “excess kurtosis”: 

ݏ݅ݏ݋ݐݎݑ݇ ൌ
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Figure 4. Examples of normal probability plots for one transition (see text). (a) The plot 

with no transformation of A values (p = 1) shows departure of the statistics from the normal 

distribution; (b) The plot with the optimal Box–Cox transformation parameter (p = 0.133) 

shows that the statistics are close to normal. 

 

For a normal distribution, thus defined kurtosis is zero. Positive values indicate a “peaked” 

distribution, while negative values indicate a “flat” distribution.  

For transitions considered in this work, it turned out that, for the optimal values of p that minimize 

skewness, the corresponding values of kurtosis were in the range −0.7 to +3.3 with an average of  

−0.04 and a standard deviation of 0.23. For all considered transitions, thus found optimal values of  

p are close to those found by maximizing the correlation coefficient of the normal probability plot.  

Both methods of optimizing the parameter p are illustrated in Figure 5. 

Figure 5. Two methods of finding the optimal parameter p of the Box–Cox transformation: 

(a) By maximizing the correlation coefficient C of the normal probability plot; (b) By 

finding the value of p yielding a zero skewness of the distribution of f(A, p). 

 

As noted above, the two methods of optimizing the Box–Cox transformation work almost equally 

well for the considered transitions. However, to avoid ambiguity, hereafter, when mentioning the 

optimal parameter p, I will always mean the results obtained with the first method, i.e., maximizing the 
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correlation coefficient of the normal probability plot. The overall statistic obtained with parameters  

p optimized individually for each transition is shown in panel (d) of Figure 3. Considering the leftmost 

and rightmost data points in this plot, one should keep in mind that the trial counts for these points are 

very small. In particular, the n = 5 point represents the only case (out of 590,000) in which δf/f 

exceeded 5. Thus, the apparent deviations from unity for |n| ≥ 4 seem to be explained by statistical 

noise. However, further analysis with larger statistics indicates that this is not true (see Section 3.3). 

The optimal values of p found for the considered transitions of Fe V span a wide range from about 

−8 to +34 (a few transitions had extremely large values p > 100). The histogram showing the 

distribution of optimal values of p (excluding the abnormal ones with extremely large p) is shown in 

Figure 6. In this figure, the counts plotted on the vertical axis correspond to the number of transitions 

having the value of p between the one shown below each column and the one below an adjacent 

column. For example, for positive p, the value shown for p = 1 is the number of transitions with 

1 ≤ p < 2; the value for p = 2 is the number of transitions with 2 ≤ p < 3, etc. Similarly, for negative p, 

the value shown for p = −1 is the number of transitions with −2 < p ≤ 1; the value for p = −2 is the 

number of transitions with −3 < p ≤ 2, etc. The point labeled p = 1/128 is an exception, because the 

corresponding interval encompasses the p = 0 value.  

Figure 6. Distribution of optimal values of the Box–Cox transformation parameter p 

obtained in a 1,000-trials run. Intervals on the horizontal axis are logarithmically equal, 

except for the interval encompassing the zero value. The vertical axis is the number of 

transitions with p close to the value below the horizontal axis (see text). 

 

The distribution of optimal powers p has two distinct peaks, a greater one at p ≈ 0.3 and a smaller 

one near p ≈ −0.7. However, there is no peak near p = 0, indicating that there are very few transitions 

for which the logarithmic transformation produces statistics close to normal. 
  



Atoms 2014, 2 105 

 

 

3.3. Results with Larger Statistics 

After making several runs with 1,000 trials each, I noticed that for many transitions the optimal p 

values differ strongly from one run to another. This indicated that 1,000 trials give insufficient 

statistics for accurate determination of p. This is due to the fact that the optimal transformation 

strongly depends on the far outliers (i.e., those values of A that strongly deviate from the initial ones). 

As discussed above, 1,000 trials result in a relatively small number of results deviating from the initial 

values by more than 4σ. Therefore, I made an extended run with 10,000 trials. Combining the results of 

this run with those from four 1,000-trials runs allowed me to derive more accurate values of p and 

estimate their uncertainties as standard deviations of the mean over several runs. The distribution of 

these final values of p among all transitions is shown in Figure 7. One can see that it differs 

significantly from Figure 6 obtained from one 1,000-trials run. Now the histogram has only one major 

peak near p = 0.5. 

Figure 7. Distribution of optimal values of the Box–Cox transformation parameter p 

obtained in a 10,000-trials run.  

 

Larger statistics revealed that for a few transitions the optimal Box–Cox transformation is far from 

normal. Examples of normal probability plots for some of such “abnormal” transitions are given in 

Figure 8. All such abnormal transitions are extremely weak. A few transitions required very large 

values of p for an optimal transformation. Thus, five transitions have p = (50–75), seven have  

p = (100–600), and one has p = 2,621. The latter is the 3P21–
3P22 M1 transition at λ = 66,872 Å with 

A = 4.541 × 10−2 s−1. 
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Figure 8. Examples of normal probability plots for abnormal transitions (see text).  

(a) 5D2–
3P22 M1 transition, λ = 3,837.58 Å, A = 4 × 10−5 s−1, |CF| = 2(4) × 10−6; (b) 1G24–

3D3 

E2 transition, λ = 2.252 μm, A = 1.56 × 10−17 s−1, |CF| = 0.0824(13). In both panels, the data 

are plotted for an optimal Box–Cox transformation with the parameter p shown in boxes. 

 

When optimal Box–Cox transformations are applied to all transitions, the overall comparison of 

statistical distributions with normal (similar to the plot given in Figure 3d) looks as shown in Figure 9. 

Figure 9. Similar to Figure 3d, with larger statistics (10,000 trials) and with optimal  

Box–Cox transformations applied to all transitions.  

 

One can see from Figure 9 that the Box–Cox transformation is unable to rectify statistical 

distributions for all transitions. In the particular case of Fe V transitions considered here, all far outliers 

accounted for in Figure 9 in the statistics with n = ±5 (more than 5σ) correspond to extremely  

weak transitions. 

3.4. Uncertainties of A-Values 

Strictly speaking, the standard deviations of optimally transformed A values obtained with the 

described method do not yield dependable estimates of uncertainties. Rather than that, they represent 
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lower limits of those uncertainties. Additional contributions to the uncertainties come from the 

approximations made in the atomic model used. When calculations are made with one theoretical 

atomic code, they should include a study of convergence effects in regards to systematical improvement 

of the atomic model, such as a growing number of included layers of orbitals with increasing quantum 

numbers. Furthermore, a realistic estimate of uncertainties should involve both internal estimations 

based on the sensitivity of each transition to the variation of input atomic parameters and from 

comparisons with results obtained with other theoretical models. 

None of these uncertainty contributions are considered in the present work. Nevertheless, the 

obtained optimal transformation parameters p and relative standard deviations σf of transformed  

A values f(A, p) may be useful for further investigations. Therefore, they are given in Table 3 for each 

transition included previously in [5]. Most of these transitions have a branching fraction greater than 

0.001. Transitions having significant contributions of both M1 and E2 type (greater than 0.01) are 

considered to be of a mixed type M1 + E2. For such mixed transitions, the shapes of the statistical 

distributions were investigated for the sum AM1 + AE2, and the optimal values of p were found for  

these sums. 

A rough estimate of relative σ for A values (σA, standard deviation of δA/A) is given in Table 3 

along with the standard deviations of transformed A-values, σf. For the vast majority of transitions, the 

values of σA and σf are very close to each other. For only 9 transitions out of total 229 listed in Table 3, 

σA differs from σf by more than 10%. Most of these transitions are very weak and have branching 

fractions smaller than 4%. The largest differences between σA and σf (by a factor of more than 3) occur 

for two transitions. One of them is the 5D2–
3P22 M1+E2 transition at 3,837.58 Å having a tiny 

branching fraction of 0.005% and an optimal p value of 0.096. The large difference of σA from σf for 

this transition is explained by the peculiarity of its statistical distribution. The normal probability plot 

for this transition looks very similar to the one shown in Figure 8a for another transition with a 

different optimal value of p = 2.23. Due to smallness of the branching fraction, peculiarity of this 

transition hardly matters in practice. However, another peculiar transition having σA greater than σf by 

a factor of 5 deserves a closer look. It is the 3P21–
3P22 M1 transition at 66,872 Å. Its peculiarity is 

caused by the extremely large value of p = 2,621, which implies that the statistical distribution of trial 

data for this transition is extremely asymmetrical. Ninety five percent of trial A-values for this 

transition are distributed symmetrically around the nominal value of 4.5406 × 10−2 s−1 with a relative 

standard deviation of 0.013% (equal to σf). However, the remaining 5% of trials produce much larger 

deviations, up to 3%, all on the negative side (i.e., these trial A-values are smaller than the nominal 

value from the LSF). Since both σA and σf are very small for this transition (0.06% and 0.013%, 

respectively), this statistical peculiarity may not be of practical importance. However, one cannot rule 

out the presence of such peculiarities in other atomic problems, where they may have 

significant consequences. 

The closeness of σA and σf, if it is confirmed for other types of transitions and for other atomic 

systems, may lead to a conclusion that investigation of shapes of statistical distributions is not really 

necessary. However, one should keep in mind that the standard deviations alone do not fully describe 

statistical properties of the calculated quantities. If derived from a sufficiently large statistical base, 

they do allow one to say that the “true” value of the calculated quantity is within the limits of plus or 

minus one standard deviation from the mean value with a probability of 68%. However, if one needs to 
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know the limits of possible deviations more strictly, say, with a probability of 95%, the values of σ are 

of no use without additional knowledge of the shape of the distribution. Sufficient data about these 

shapes is provided in Table 3 by the values of p describing the optimal Box–Cox transformation. For 

the particular atomic problem considered here, most of them are clustered around 0.3 (see Figure 7). 

This means that statistical distributions of most considered transitions are skewed to the positive side, 

i.e., there are greater number of trials with A > A* than with A < A*. Values of p > 1 result in negative 

skew, meaning that it is more probable to obtain A < A*. This information cannot be obtained from 

standard deviations alone. For the particular 3P21–
3P22 M1 transition at 66,872 Å discussed above, 

knowledge of σA = 0.06% allows one to say that the calculated A-value is (4.5406 ± 0.0027) × 10−2 s−1 

at the 68% confidence level. However, if one needs error limits at the 95% confidence level, the result 

(4.5406ି଴.଴଴ଶହ
ା଴.଴଴଴ଽ) × 10−2 s−1 can be obtained only if p and σf are known.  

As noted above, the standard deviations for straight A values are not of much use for statistical 

considerations. Nevertheless, they can be compared with similar estimates obtained earlier in [5] from 

comparisons with the calculations of Nahar et al. [6]. The latter authors used the Breit–Pauli  

R-matrix method to compute the E1, M1, and E2 transition probabilities of Fe V. The quality of their 

calculations was largely determined by the wavefunctions of the Fe VI ionic core calculated with the 

Breit–Pauli version of the SUPERSTRUCTURE code [9]. The accuracy of such calculations is usually 

similar to that of ab initio calculations with Cowan’s codes. The SUPERSTRUCTURE code, as well 

as Cowan’s codes, uses a non-relativistic approximation with relativistic corrections introduced as 

perturbations. The principal difference is that, to compute one-electron orbitals, SUPERSTRUCTURE 

uses a scaled statistical model of the Thomas–Fermi–Dirac potential, while Cowan’s HFR code uses 

hydrogenic orbitals. The R-matrix code then solves the (e + Fe VI) problem, which couples the bound 

states with the continuum and produces the calculated spectrum represented as continuum with 

multiple resonances. For bound-bound transitions, this introduces an additional problem of 

identification of the calculated resonances with initial and final bound states. Due to poor quality of 

wavefunctions (from SUPERSTRUCTURE), the energy levels calculated by Nahar et al. [6] differ 

from experimental ones by many thousands of reciprocal centimeters. For comparison, the standard 

deviation of calculated and experimental energy levels in my LSF with Cowan’s codes (described in 

Section 3.1) is only 117 cm−1. However, there are no other published calculations of M1 and E2 

transition rates of Fe V, so the results of Nahar et al. [6] were compared in [5] with my  

Cowan-code calculations to estimate the uncertainties of the latter. Due to the low accuracy of the 

SUPERSTRUCTURE calculations, one would expect thus estimated uncertainties to be overly 

pessimistic. However, comparison with the standard deviations of A-values obtained here by the Monte 

Carlo method reveals that for a few transitions the uncertainties given in [5] were underestimated, and 

the corresponding category of accuracy should be degraded by one category (e.g., “C+” should be 

changed to “C”, and “B” to “C+”). These few transitions are marked with an asterisk in the σA column. 

For the rest of the transitions, the uncertainties estimated in [5] are greater (in most cases much 

greater) than those found here by random trials. This confirms the general validity of the traditional 

method of critical assessment of uncertainties, but indicates that a small statistical basis of comparisons 

sometimes leads to underestimated uncertainties. 
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Table 3. Calculated transition probabilities of M1 and E2 transitions of Fe V with estimated uncertainties and Box–Cox transformation 

parameters optimized for each transition, based on overall statistics for five sets of Monte Carlo trials, four with 1,000 trials each and one with 

10,000 trials. 

Transition Elow, cm−1 Eup cm−1 λRitz,
a Å  A, s−1 σA,b % CF c BF d Type e Fraction(E2)f p g σf,

i % 
3P21–

1S10 24,972.8 121,130.1 1,039.963 6.3 × 10−1 9 0.0440(3) 0.0073(6) M1 0 0.484(21) 9 
3F22–

1S10 26,760.7 121,130.1 1,059.666 2.54 × 10−1 9 0.0625(7) 0.00294(22) E2 1 0.74(6) 9 
3D2–

1S10 36,758.2 121,130.1 1,185.229 8.1 × 10−1 9 0.1150(13) 0.0094(8) E2 1 0.40(4) 9 
1D22–

1S10 46,291.1 121,130.1 1,336.20 75.7 3 −0.1904(19) 0.878(5) E2 1 0.88(21) 3 
3P20–

1D12 24,055.5 93,832.5 1,433.137 3.3 × 10−2 8 0.0229(5) 0.00083(6) E2 1 0.55(4) 8 
3H4–

1D12 24,932.4 93,832.5 1,451.377 2.10 × 10−1 9 0.1449(8) 0.0052(4) E2 1 0.42(3) 9 
3P22–

1D12 26,468.2 93,832.5 1,484.466 6.6 × 10−2 9 0.00398(5) 0.00165(14) M1 + E2 0.092(3) 0.12(3) 9 
3F24–

1D12 26,973.7 93,832.5 1,495.689 2.89 × 10−1 6 −0.1997(12) 0.0072(4) E2 1 0.91(5) 6 
3G4–

1D12 30,147.2 93,832.5 1,570.221 3.1 × 10−1 12 0.2507(8) 0.0076(9) E2 1 0.347(19) 12 
5D1–

3P10 142.4 63,419.8 1,580.343 8.6 × 10−1 8 0.01802(15) 0.193(13) M1 0 0.527(23) 8 
5D2–

3P10 417.5 63,419.8 1,587.244 4.5 × 10−2 8 0.1840(6) 0.0101(7) E2 1 0.48(3) 8 
5D0–

3P11 0.0 62,914.1 1,589.47 9.4 × 10−2 8 0.00491(5) 0.0212(13) M1 0 0.539(23) 8 
5D1–

3P11 142.4 62,914.1 1,593.075 9.4 × 10−3 9 0.139(3) 0.00213(14) M1 + E2 0.9781(18) 0.45(3) 9 
5D2–

3P11 417.5 62,914.1 1,600.087 6.9 × 10−1 8 0.0634(4) 0.156(10) M1 + E2 0.0191(4) 0.505(22) 8 
5D1–

3F12 142.4 62,321.1 1,608.268 2.15 × 10−2 8 0.70(3) 0.00290(19) M1 + E2 0.0398(13) 0.61(3) 8 
5D3–

3P11 803.1 62,914.1 1,610.021 7.6 × 10−3 9 0.0853(4) 0.00171(11) E2 1 0.43(3) 9 
5D2–

3F13 417.5 62,364.3 1,614.288 3.9 × 10−2 8 0.0372(4) 0.0057(4) M1 0.000396(21) 0.58(3) 8 
5D2–

3F12 417.5 62,321.1 1,615.415 4.6 × 10−2 8 0.0164(4) 0.0062(4) M1 + E2 0.0128(4) 0.526(24) 8 
5D0–

3P12 0.0 61,854.1 1,616.71 4.0 × 10−3 10 0.112(3) 0.00112(8) E2 1 0.39(3) 10 
5D1–

3P12 142.4 61,854.1 1,620.438 3.8 × 10−2 9 0.00943(20) 0.0108(7) M1 + E2 0.101(3) 0.492(21) 9 
5D3–

3F13 803.1 62,364.3 1,624.400 1.21 × 10−1 9 0.00286(3) 0.0176(14) M1 + E2 0.0132(4) 0.496(23) 9 
5D3–

3F12 803.1 62,321.1 1,625.540 1.62 × 10−2 9 0.0152(4) 0.00219(18) M1 + E2 0.1097(23) 0.407(17) 9 
5D3–

3F14 803.1 62,238.0 1,627.739 4.0 × 10−2 8 0.01356(19) 0.0059(4) M1 + E2 0.0379(8) 0.548(25) 8 
5D4–

3F13 1,282.7 62,364.3 1,637.154 2.35 × 10−2 9 0.0330(5) 0.0034(3) M1 + E2 0.194(4) 0.478(23) 9 
5D3–

3P12 803.1 61,854.1 1,637.975 4.9 × 10−1 9 0.919(6) 0.138(9) M1 0.00893(19) 0.470(22) 9 
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Table 3. Cont. 

Transition Elow, cm−1 Eup cm−1 λRitz,
a Å  A, s−1 σA,b % CF c BF d Type e Fraction(E2)f p g σf,

i % 
5D4–

3F14 1,282.7 62,238.0 1,640.546 2.39 × 10−1 9 0.00509(10) 0.035(3) M1 + E2 0.0405(9) 0.450(22) 9 
3P11–

1S10 62,914.1 121,130.1 1,717.74 3.6 9 −0.9999951(4) 0.042(4) M1 0 0.448(18) 9 
1G24–

1D12 36,585.6 93,832.5 1,746.819 26.5 2.0 0.3386(15) 0.660(4) E2 1 0.29(13) 2.0 
3D3–

1D12 36,630.0 93,832.5 1,748.175 5.5 × 10−1 9 −0.883(5) 0.0138(11) M1 0.00534(17) 0.484(20) 9 
3D2–

1D12 36,758.2 93,832.5 1,752.102 1.85 × 10−1 9 0.0826(14) 0.0046(4) M1 + E2 0.407(6) 0.470(22) 9 
3D1–

1D12 36,925.2 93,832.5 1,757.244 5.6 × 10−1 9 −0.9550(18) 0.0139(12) M1 0.000143(12) 0.451(19) 9 
1S20–

1D12 39,633.0 93,832.5 1,845.04 1.94 2.5 0.0641(10) 0.0482(7) E2 1 0.09(10) 2.5 
5D4–

1F3 1,282.7 52,732.6 1,943.64 9.0 × 10−4 18 0.0320(7) 0.00138(12) M1 + E2 0.0138(4) 0.237(10) 18 
1D22–

1D12 46,291.1 93,832.5 2,102.76 6.76 1.9 0.3210(14) 0.1682(10) E2 0.99953(9) 0.66(16) 1.9 
3H4–

1G14 24,932.4 71,280.3 2,156.92 1.08 × 10−1 6 0.00095(7) 0.0228(9) M1 + E2 0.0205(19) 0.98(3) 6 
3H5–

1G14 25,225.5 71,280.3 2,170.65 2.9 × 10−1 10 1.0000000(0) 0.062(4) M1 0.00286(11) 0.398(19) 10 
5D2–

1D22 417.5 46,291.1 2,179.22 2.0 × 10−3 18 −0.003989(14) 0.00156(14) M1 0.00082(4) 0.242(10) 17 
3F23–

1G14 26,842.3 71,280.3 2,249.63 2.28 × 10−1 10 −0.0598(12) 0.048(4) M1 0.00560(16) 0.380(19) 10 
3F24–

1G14 26,973.7 71,280.3 2,256.30 2.8 × 10−1 9 −0.000310(9) 0.058(4) M1 0.00086(16) 0.431(22) 9 
3G3–

1G14 29,817.1 71,280.3 2,411.04 2.30 × 10−1 7 −0.274(14) 0.0485(21) M1 0.00355(8) 0.76(3) 7 
1F3–

1D12 52,732.6 93,832.5 2,432.36 1.79 3 0.833(6) 0.0445(8) E2 0.9980(4) 1.00(21) 3 
3G5–

1G14 30,429.9 71,280.3 2,447.22 2.81 × 10−1 8 0.716(14) 0.059(3) M1 + E2 0.0242(6) 0.537(19) 8 
3P20–

3P11 24,055.5 62,914.1 2,572.66 1.72 × 10−2 11 −0.000017(2) 0.0039(4) M1 0 0.343(22) 11 
3P21–

3P10 24,972.8 63,419.8 2,600.21 6.3 × 10−3 6 0.0000020(1) 0.00142(9) M1 0 0.32(6) 6 
3P20–

3F12 24,055.5 62,321.1 2,612.53 1.98 × 10−1 2.2 0.1249(15) 0.0267(6) E2 1 0.75(13) 2.2 
3P21–

3P11 24,972.8 62,914.1 2,634.86 3.23 × 10−1 2.3 0.221(7) 0.073(3) E2 0.9976(4) 0.03(15) 2.3 
3P20–

3P12 24,055.5 61,854.1 2,644.81 3.07 × 10−1 2.1 0.295(5) 0.087(3) E2 1 −0.06(17) 2.1 
3H4–

3F13 24,932.4 62,364.3 2,670.72 5.34 × 10−1 3 0.749(16) 0.0778(10) E2 0.99917(18) 0.00(15) 3 
3P21–

3F13 24,972.8 62,364.3 2,673.61 2.59 × 10−1 2.1 0.1276(11) 0.0377(6) E2 1 0.75(12) 2.1 
3H4–

3F12 24,932.4 62,321.1 2,673.81 2.69 2.1 0.763(10) 0.363(8) E2 1 0.62(22) 2.1 
3P21–

3F12 24,972.8 62,321.1 2,676.70 2.15 × 10−1 2.2 0.1443(11) 0.0290(4) E2 0.99926(12) 0.49(19) 2.2 
3H4–

3F14 24,932.4 62,238.0 2,679.77 8.5 × 10−3 4 0.053(17) 0.00125(6) M1 + E2 0.83(4) −0.04(3) 4 
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Table 3. Cont. 

Transition Elow, cm−1 Eup cm−1 λRitz,
a Å  A, s−1 σA,b % CF c BF d Type e Fraction(E2)f p g σf,

i % 
3H5–

3F13 25,225.5 62,364.3 2,691.80 2.40 2.0 0.804(6) 0.350(6) E2 1 0.56(18) 2.0 
3H5–

3F14 25,225.5 62,238.0 2,700.99 4.05 × 10−1 3 0.831(7) 0.0596(4) E2 0.9975(3) 0.15(15) 3 
3P22–

3P10 26,468.2 63,419.8 2,705.44 1.90 2.2 0.349(7) 0.425(9) E2 1 0.20(4) 2.2 * 
5D0–

3D1 0.0 36,925.2 2,707.37 2.54 × 10−1 9 −0.647(11) 0.3478(13) M1 0 0.508(20) 9 
3P21–

3P12 24,972.8 61,854.1 2,710.60 6.72 × 10−1 2.1 0.301(6) 0.190(4) M1 + E2 0.963(4) 0.04(17) 2.1 
5D1–

3D1 142.4 36,925.2 2,717.86 2.24 × 10−1 8 −0.153(3) 0.3072(17) M1 0.00242(7) 0.561(21) 8 
3H6–

3F14 25,528.4 62,238.0 2,723.28 2.58 1.9 0.9692(14) 0.380(6) E2 1 0.41(16) 1.9 
3F22–

3P10 26,760.7 63,419.8 2,727.03 4.04 × 10−1 4 0.067(3) 0.090(4) E2 1 7.05(9) 3 
5D1–

3D2 142.4 36,758.2 2,730.25 2.12 × 10−1 9 −0.1428(8) 0.3656(9) M1 8.2(6) × 10−6 0.479(20) 9 
5D2–

3D1 417.5 36,925.2 2,738.34 3.3 × 10−3 17 0.00369(17) 0.0045(4) M1 + E2 0.045(4) 0.252(11) 16 
3P22–

3P11 26,468.2 62,914.1 2,742.98 1.49 2.2 0.413(11) 0.336(10) M1 + E2 0.9865(12) 2.35(22) 2.2 * 
5D2–

3D2 417.5 36,758.2 2,750.92 1.70 × 10−1 8 −0.01167(15) 0.294(3) M1 0.00299(7) 0.572(21) 8 
5D2–

3D3 417.5 36,630.0 2,760.66 1.06 × 10−1 9 −0.0764(3) 0.1526(4) M1 7(22) × 10−8 0.444(19) 9 
3F22–

3P11 26,760.7 62,914.1 2,765.17 1.38 × 10−1 6 0.0713(22) 0.0312(13) E2 0.9953(9) −6.08(5) 5 * 
3F23–

3P11 26,842.3 62,914.1 2,771.43 2.55 × 10−1 2.5 0.0737(9) 0.0577(17) E2 1 0.82(8) 2.5 
5D3–

3D2 803.1 36,758.2 2,780.43 1.14 × 10−1 11 −0.0543(7) 0.198(3) M1 0.000132(6) 0.332(17) 11 
3P22–

3F13 26,468.2 62,364.3 2,785.00 1.27 × 10−1 3 0.132(6) 0.0185(5) E2 0.9997(9) 8.19(18) 2.4 
3P22–

3F12 26,468.2 62,321.1 2,788.35 3.3 × 10−2 10 0.122(3) 0.0045(4) M1 + E2 0.9793(25) −4.53(4) 7 
5D3–

3D3 803.1 36,630.0 2,790.38 9.8 × 10−2 8 −0.003092(15) 0.1408(6) M1 0.00552(11) 0.513(20) 8 
5D3–

1G24 803.1 36,585.6 2,793.84 1.08 × 10−3 18 −0.03628(17) 0.00110(11) M1 0.00299(6) 0.238(10) 18 
3P22–

3F14 26,468.2 62,238.0 2,794.83 3.32 × 10−1 2.1 0.1395(10) 0.0488(9) E2 1 0.52(11) 2.1 
3F22–

3F13 26,760.7 62,364.3 2,807.88 3.44 × 10−1 3 0.196(9) 0.0501(9) M1 + E2 0.744(15) −3.21(20) 3 * 
3F22–

3F12 26,760.7 62,321.1 2,811.29 8.01 × 10−1 2.1 0.271(5) 0.1081(22) E2 0.99969(5) 0.49(13) 2.1 
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Table 3. Cont. 

Transition Elow, cm−1 Eup cm−1 λRitz,
a Å  A, s−1 σA,b % CF c BF d Type e Fraction(E2)f p g σf,

i % 
3F23–

3F13 26,842.3 62,364.3 2,814.33 4.77 × 10−1 3 0.170(8) 0.0695(20) M1 + E2 0.979(4) −0.02(15) 3 
3F23–

3F12 26,842.3 62,321.1 2,817.76 9.7 × 10−1 3 0.3846(24) 0.1305(14) M1 + E2 0.929(3) 0.41(14) 3 
3F22–

3F14 26,760.7 62,238.0 2,817.87 7.2 × 10−3 10 0.14(3) 0.00106(12) E2 1 5.04(3) 8 
3F23–

3F14 26,842.3 62,238.0 2,824.37 3.09 × 10−1 4 0.127(11) 0.0456(9) M1 + E2 0.555(25) −0.22(3) 4 
3F24–

3F13 26,973.7 62,364.3 2,824.78 7.14 × 10−1 3 0.267(11) 0.1039(12) M1 + E2 0.801(12) 0.929(10) 3 
3P22–

3P12 26,468.2 61,854.1 2,825.15 5.00 × 10−1 2.4 0.338(5) 0.1411(24) E2 0.99984(3) −0.52(18) 2.4 
5D4–

3D3 1,282.7 36,630.0 2,828.24 4.1 × 10−1 9 −0.932(3) 0.5910(9) M1 0.00234(5) 0.457(19) 9 
3F24–

3F12 26,973.7 62,321.1 2,828.23 1.63 × 10−1 7 0.503(8) 0.0220(12) E2 1 0.29(4) 7 
5D4–

1G24 1,282.7 36,585.6 2,831.80 4.8 × 10−3 18 −0.001868(12) 0.0049(5) M1 0.000342(17) 0.250(11) 17 
3F24–

3F14 26,973.7 62,238.0 2,834.90 7.71 × 10−1 2.1 0.210(6) 0.114(3) M1 + E2 0.971(5) −0.02(16) 2.1 
3F22–

3P12 26,760.7 61,854.1 2,848.70 1.06 × 10−2 10 0.050(9) 0.0030(4) M1 + E2 0.995(5) 4.45(4) 8 
3F23–

3P12 26,842.3 61,854.1 2,855.34 5.12 × 10−2 3 0.0505(25) 0.0145(6) M1 + E2 0.982(4) 0.61(13) 3 
3F24–

3P12 26,973.7 61,854.1 2,866.10 2.44 × 10−1 2.5 0.0750(9) 0.0688(24) E2 1 0.81(9) 2.5 
1G24–

1G14 36,585.6 71,280.3 2,881.44 1.14 × 10−1 7 0.081(7) 0.0241(16) E2 0.9948(10) 0.38(6) 7 
1I6–

1G14 37,511.6 71,280.3 2,960.46 2.99 1.9 −0.9848(9) 0.629(18) E2 1 0.21(15) 1.9 
3G3–

3P11 29,817.1 62,914.1 3,020.54 8.3 × 10−3 10 −0.0745(9) 0.00187(13) E2 1 0.415(14) 10 
3G3–

3F13 29,817.1 62,364.3 3,071.57 5.60 × 10−1 4 0.385(17) 0.0815(23) M1 + E2 0.654(14) 0.55(3) 4 
3G3–

3F12 29,817.1 62,321.1 3,075.65 1.130 2.0 0.33(3) 0.1525(7) M1 + E2 0.724(23) −0.67(16) 2.0 
3G3–

3F14 29,817.1 62,238.0 3,083.53 5.5 × 10−2 8 0.277(19) 0.0081(5) M1 + E2 0.564(20) 0.154(4) 8 
3G4–

3F13 30,147.2 62,364.3 3,103.04 6.29 × 10−1 2.4 0.405(20) 0.0916(22) M1 + E2 0.981(3) −0.10(20) 2.4 
3G4–

3F12 30,147.2 62,321.1 3,107.21 3.16 × 10−1 2.1 0.693(7) 0.0427(3) E2 1 0.16(20) 2.1 
3G4–

3F14 30,147.2 62,238.0 3,115.25 4.73 × 10−1 4 0.382(15) 0.0696(16) M1 + E2 0.671(14) 0.651(20) 4 
3P12–

1D12 61,854.1 93,832.5 3,126.20 9.4 × 10−2 9 −0.00802(7) 0.00234(20) M1 0.00695(21) 0.475(18) 9 
3G5–

3F13 30,429.9 62,364.3 3,130.51 3.00 × 10−1 3 0.881(5) 0.0436(5) E2 1 0.22(14) 3 
3G5–

3F14 30,429.9 62,238.0 3,142.94 1.163 1.9 0.783(5) 0.1713(8) M1 + E2 0.831(13) 0.38(17) 1.9 
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Table 3. Cont. 

Transition Elow, cm−1 Eup cm−1 λRitz,
a Å  A, s−1 σA,b % CF c BF d Type e Fraction(E2)f p g σf,

i % 
3F12–

1D12 62,321.1 93,832.5 3,172.54 7.7 × 10−2 9 0.0451(10) 0.00191(16) M1 + E2 0.0316(6) 0.451(19) 9 
3F13–

1D12 62,364.3 93,832.5 3,176.89 1.55 × 10−1 9 0.98985(9) 0.0038(3) M1 + E2 0.0162(6) 0.447(20) 9 
5D2–

3G4 417.5 30,147.2 3,362.67 4.9 × 10−5 9 0.115(4) 0.000453(13) E2 1 0.47(3) 9 
5D1–

3G3 142.4 29,817.1 3,368.91 3.3 × 10−5 10 0.153(8) 0.000225(6) E2 1 0.41(3) 10 
5D3–

3G5 803.1 30,429.9 3,374.35 4.8 × 10−5 10 0.136(4) 0.000349(12) E2 1 0.40(3) 10 
5D2–

3G3 417.5 29,817.1 3,400.43 8.4 × 10−3 18 0.2067(5) 0.057(4) M1 + E2 0.0101(9) 0.252(10) 18 
5D3–

3G4 803.1 30,147.2 3,406.86 8.8 × 10−3 16 0.1012(4) 0.082(5) M1 + E2 0.0207(15) 0.310(11) 16 
5D4–

3G5 1,282.7 30,429.9 3,429.88 8.2 × 10−4 15 0.782(12) 0.0060(4) M1 + E2 0.326(21) 0.216(14) 15 
5D3–

3G3 803.1 29,817.1 3,445.62 2.0 × 10−2 18 0.01776(8) 0.136(11) M1 0.00104(13) 0.254(10) 18 
5D4–

3G4 1,282.7 30,147.2 3,463.47 3.2 × 10−2 16 0.00535(3) 0.295(19) M1 0.00051(8) 0.315(12) 16 
5D4–

3G3 1,282.7 29,817.1 3,503.54 2.9 × 10−3 18 −0.02342(14) 0.0197(16) M1 0.000037(23) 0.251(10) 18 
3H4–

1F3 24,932.4 52,732.6 3,596.07 8.4 × 10−3 15 0.179(7) 0.0129(8) M1 + E2 0.348(19) 0.214(10) 15 
3H5–

1F3 25,225.5 52,732.6 3,634.39 3.4 × 10−3 8 0.676(10) 0.00516(17) E2 1 0.469(18) 8 
1D12–

1S10 93,832.5 121,130.1 3,662.28 5.07 1.9 0.9519(13) 0.0588(8) E2 1 0.49(16) 1.9 
5D0–

3F22 0.0 26,760.7 3,735.76 2.0 × 10−5 13 −0.0236(9) 0.000052(2) E2 1 −0.62(3) 12 * 
5D1–

3F23 142.4 26,842.3 3,744.27 4.7 × 10−6 7 −0.0040(3) 6.2(4) × 10−6 E2 1 0.33(5) 7 
3D2–

3P10 36,758.2 63,419.8 3,749.65 1.058 1.9 0.761(7) 0.237(5) E2 1 0.20(15) 1.9 
5D1–

3F22 142.4 26,760.7 3,755.75 1.10 × 10−1 8 −0.955(3) 0.289(4) M1 0.000223(7) 0.97(4) 8 
5D2–

3F24 417.5 26,973.7 3,764.53 6 × 10−8 50 −0.00005(3) 6(4) × 10−8 E2 1 0.606(3) 50 
3D1–

3P10 36,925.2 63,419.8 3,773.28 1.87 × 10−1 9 −0.1172(19) 0.042(3) M1 0 0.462(18) 9 
5D0–

3P22 0.0 26,468.2 3,777.05 7.6 × 10−5 8 0.0780(19) 0.000087(2) E2 1 0.83(6) 8 
5D2–

3F23 417.5 26,842.3 3,783.25 1.90 × 10−1 9 −0.24931(7) 0.251367(17) M1 0.000088(4) 0.505(20) 9 
5D2–

3F22 417.5 26,760.7 3,794.97 2.13 × 10−1 9 −0.1413(5) 0.561(4) M1 1(3) × 10−8 0.463(20) 9 
5D1–

3P22 142.4 26,468.2 3,797.48 4.1 × 10−2 8 −0.0174(3) 0.0466(10) M1 0.00165(5) −1.30(3) 8 * 
3D3–

3P11 36,630.0 62,914.1 3,803.50 4.31 × 10−1 2.0 0.759(7) 0.097(3) E2 1 0.27(15) 2.0 
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Table 3. Cont. 

Transition Elow, cm−1 Eup cm−1 λRitz,
a Å  A, s−1 σA,b % CF c BF d Type e Fraction(E2)f p g σf,

i % 
3P22–

1F3 26,468.2 52,732.6 3,806.35 1.21 × 10−3 19 0.34(10) 0.00185(18) M1 + E2 0.0081(21) 0.156(10) 19 
5D3–

3F24 803.1 26,973.7 3,820.00 1.80 × 10−1 9 −0.11327(12) 0.17361(9) M1 0.000080(4) 0.510(20) 9 
3D2–

3P11 36,758.2 62,914.1 3,822.14 1.044 × 10−1 2.3 0.778(9) 0.0236(3) M1 + E2 0.985(3) −0.10(20) 2.3 
5D2–

3P22 417.5 26,468.2 3,837.58 4 × 10−5 200 0.00052(19) 0.00005(9) M1 + E2 0.11(21) 0.096(2) 61 * 
5D3–

3F23 803.1 26,842.3 3,839.27 4.9 × 10−1 9 −0.025879(5) 0.65408(6) M1 4.55(15) × 10−5 0.504(20) 9 
3D1–

3P11 36,925.2 62,914.1 3,846.71 5.41 × 10−1 3 0.457(18) 0.1224(12) M1 + E2 0.676(19) −0.04(5) 3 
3F22–

1F3 26,760.7 52,732.6 3,849.22 1.87 × 10−3 9 0.297(6) 0.00287(6) M1 + E2 0.940(8) 0.51(3) 9 
5D3–

3F22 803.1 26,760.7 3,851.34 5.7 × 10−2 15 0.070(6) 0.150(8) M1 0.000149(17) −1.192(17) 13 
3F23–

1F3 26,842.3 52,732.6 3,861.36 8.1 × 10−3 17 0.023(4) 0.0123(10) M1 + E2 0.126(15) 0.218(12) 17 
1G24–

3F13 36,585.6 62,364.3 3,878.07 3.4 × 10−2 11 0.0160(4) 0.0050(5) M1 + E2 0.059(3) 0.303(22) 11 
3F24–

1F3 26,973.7 52,732.6 3,881.05 1.71 × 10−2 14 0.0254(14) 0.0263(13) M1 + E2 0.138(9) 0.340(10) 14 
3D3–

3F13 36,630.0 62,364.3 3,884.76 1.95 × 10−1 7 0.0180(11) 0.0284(18) M1 + E2 0.072(5) 0.602(21) 7 
5D4–

3F24 1,282.7 26,973.7 3,891.31 8.5 × 10−1 9 −0.008406(8) 0.8191(4) M1 0.000170(4) 0.509(20) 9 
3D3–

3F12 36,630.0 62,321.1 3,891.30 4.8 × 10−2 9 0.0497(6) 0.0065(5) M1 + E2 0.079(5) 0.386(15) 9 
5D3–

3P22 803.1 26,468.2 3,895.24 7.9 × 10−1 8 −0.957(18) 0.901(4) M1 0.000177(5) 0.85(3) 8 
1G24–

3F14 36,585.6 62,238.0 3,897.17 3.8 × 10−2 10 0.01470(24) 0.0056(5) M1 + E2 0.0778(22) 0.327(25) 10 
3D3–

3F14 36,630.0 62,238.0 3,903.92 2.61 × 10−1 8 0.910(12) 0.038(3) M1 + E2 0.102(9) 0.391(18) 8 
3D2–

3F13 36,758.2 62,364.3 3,904.21 1.35 × 10−2 3 0.083(4) 0.00197(6) E2 0.99990(8) 0.79(15) 3 
3D2–

3F12 36,758.2 62,321.1 3,910.81 3.08 × 10−1 8 0.0663(12) 0.042(3) M1 + E2 0.052(4) 0.479(18) 8 
5D4–

3F23 1,282.7 26,842.3 3,911.32 7.0 × 10−2 8 0.03872(4) 0.09226(13) M1 0.000442(10) 0.519(20) 8 
5D4–

3F22 1,282.7 26,760.7 3,923.84 1.53 × 10−6 11 0.0242(11) 4.03(16) × 10−6 E2 1 −1.38(4) 10 * 
3D1–

3F12 36,925.2 62,321.1 3,936.53 2.07 × 10−1 8 0.895(8) 0.0279(19) M1 + E2 0.094(8) 0.402(18) 8 
3D3–

3P12 36,630.0 61,854.1 3,963.34 5.91 × 10−1 2.3 0.870(5) 0.1668(16) M1 + E2 0.793(13) 0.20(13) 2.3 
5D4–

3P22 1,282.7 26,468.2 3,969.42 9.7 × 10−6 9 −0.0060(3) 1.11(5) × 10−5 E2 1 0.56(3) 9 
3D2–

3P12 36,758.2 61,854.1 3,983.59 3.56 × 10−1 4 0.376(23) 0.1006(8) M1 + E2 0.641(23) −0.39(5) 4 
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Table 3. Cont. 

Transition Elow, cm−1 Eup cm−1 λRitz,
a Å  A, s−1 σA,b % CF c BF d Type e Fraction(E2)f p g σf,

i % 
1D22–

1G14 46,291.1 71,280.3 4,000.60 1.36 × 10−2 5 0.0258(14) 0.00286(16) E2 1 0.34(5) 5 
5D0–

3P21 0.0 24,972.8 4,003.22 1.37 × 10−1 8 −0.0323(3) 0.1033(10) M1 0 0.612(22) 8 
3D1–

3P12 36,925.2 61,854.1 4,010.27 7.56 × 10−2 2.5 0.379(20) 0.02134(18) M1 + E2 0.709(18) 0.13(12) 2.5 
5D1–

3P21 142.4 24,972.8 4,026.18 2.7 × 10−4 12 0.073(3) 0.000201(7) M1 + E2 0.625(19) 0.275(13) 12 
5D2–

3P21 417.5 24,972.8 4,071.29 1.18 9 −0.2726(10) 0.8860(19) M1 0.000131(3) 0.454(19) 9 
5D2–

3H4 417.5 24,932.4 4,078.00 8.0 × 10−8 7 0.0014(3) 0.000014(5) E2 1 2.59(4) 7 
5D3–

3H5 803.1 25,225.5 4,093.45 1.52 × 10−6 6 0.0106(5) 0.00225(12) E2 1 1.00(7) 6 
5D4–

3H6 1,282.7 25,528.4 4,123.28 1.16 × 10−5 10 0.0308(4) 0.0185(18) E2 1 0.40(3) 10 
5D3–

3P21 803.1 24,972.8 4,136.25 5.5 × 10−5 9 0.03538(23) 4.11(8) × 10−5 E2 1 0.44(3) 9 
5D3–

3H4 803.1 24,932.4 4,143.17 9.2 × 10−4 25 0.1288(6) 0.1629(3) M1 0.000017(4) 0.170(9) 24 
5D4–

3H5 1,282.7 25,225.5 4,175.44 1.2 × 10−5 27 0.9716(20) 0.018(5) M1 + E2 0.0285(19) 0.167(7) 26 
5D1–

3P20 142.4 24,055.5 4,180.63 1.52 9 −0.1224(6) 0.999728(5) M1 0 0.407(18) 9 
5D4–

3H4 1,282.7 24,932.4 4,227.19 4.7 × 10−3 25 0.01030(7) 0.8368(3) M1 0.000280(7) 0.170(9) 24 
5D2–

3P20 417.5 24,055.5 4,229.29 4.1 × 10−4 9 0.1029(5) 0.000272(5) E2 1 0.41(3) 9 
1S20–

3P11 39,633.0 62,914.1 4,294.12 1.57 × 10−1 8 −0.0827(14) 0.0355(22) M1 0 0.50(3) 8 
3G3–

1F3 29,817.1 52,732.6 4,362.63 1.40 × 10−1 9 −0.01243(24) 0.2141(7) M1 0.00700(18) 0.484(20) 9 
3G4–

1F3 30,147.2 52,732.6 4,426.40 1.93 × 10−1 8 0.436(11) 0.2955(23) M1 0.00030(6) 0.540(21) 8 
1G14–

1D12 71,280.3 93,832.5 4,432.91 5.54 × 10−1 2.0 0.867(5) 0.01377(11) E2 1 0.46(16) 2.0 
3G5–

1F3 30,429.9 52,732.6 4,482.50 9.1 × 10−4 10 0.813(6) 0.00139(3) E2 1 0.343(17) 10 
3P21–

1D22 24,972.8 46,291.1 4,689.49 7.6 × 10−2 8 0.313(5) 0.05932(17) M1 0.00191(5) 0.494(19) 9 
3P22–

1D22 26,468.2 46,291.1 5,043.26 2.14 × 10−1 8 0.0215(6) 0.1662(22) M1 0.000072(3) 1.33(5) 8 
3F22–

1D22 26,760.7 46,291.1 5,118.80 2.48 × 10−1 9 −0.03653(17) 0.193(3) M1 0.000119(4) −0.316(18) 9 * 
3F23–

1D22 26,842.3 46,291.1 5,140.27 4.9 × 10−1 8 0.999725(23) 0.3795(19) M1 0.00106(3) 0.578(22) 8 
1F3–

1G14 52,732.6 71,280.3 5,390.01 1.108 × 10−1 1.9 0.920(3) 0.0233(6) M1 + E2 0.981(3) 0.25(14) 1.9 
1D22–

3P11 46,291.1 62,914.1 6,014.10 1.33 × 10−1 9 0.99741(21) 0.0301(20) M1 0.00256(6) 0.408(25) 9 
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Table 3. Cont. 

Transition Elow, cm−1 Eup cm−1 λRitz,
a Å  A, s−1 σA,b % CF c BF d Type e Fraction(E2)f p g σf,

i % 
3G3–

1D22 29,817.1 46,291.1 6,068.49 1.26 × 10−2 17 −0.99957(4) 0.0098(9) M1 0.0031(4) 0.269(11) 17 
1G24–

1F3 36,585.6 52,732.6 6,191.4 1.176 × 10−2 2.1 0.2411(13) 0.0180(17) E2 0.9942(13) 0.31(17) 2.1 
3D3–

1F3 36,630.0 52,732.6 6,208.46 1.82 × 10−1 9 0.019892(22) 0.2794(12) M1 0.000269(7) 0.431(18) 9 
1D22–

3F13 46,291.1 62,364.3 6,219.82 7.4 × 10−2 9 −0.253(3) 0.0107(9) M1 0.00210(5) 0.371(15) 9 
1D22–

3F12 46,291.1 62,321.1 6,236.58 5.6 × 10−2 10 0.02148(14) 0.0076(6) M1 0.000023(3) 0.356(16) 10 
3D2–

1F3 36,758.2 52,732.6 6,258.28 8.2 × 10−2 9 0.815(6) 0.1251(4) M1 0.00223(5) 0.462(19) 9 
1D22–

3P12 46,291.1 61,854.1 6,423.72 1.88 × 10−1 9 0.03917(5) 0.053(3) M1 0.000694(21) 0.421(25) 9 
3P21–

1S20 24,972.8 39,633.0 6,819.3 1.66 8 −0.999980(2) 0.99912(6) M1 0 0.615(22) 8 
3P20–

3D1 24,055.5 36,925.2 7,768.1 5.7 × 10−2 9 0.9999895(11) 0.0778(6) M1 0 0.50(3) 9 
3H5–

1I6 25,225.5 37,511.6 8,137.0 1.24 × 10−1 9 1.0000000(0) 0.4314(3) M1 1.4(5) × 10−7 0.492(20) 9 
3H6–

1I6 25,528.4 37,511.6 8,342.7 1.63 × 10−1 9 0.0059430(0) 0.56728(17) M1 1.14(4) × 10−5 0.479(20) 9 
3P21–

3D1 24,972.8 36,925.2 8,364.2 1.34 × 10−1 8 0.2511591(3) 0.1833(14) M1 0.0041(4) 0.50(3) 8 
3P21–

3D2 24,972.8 36,758.2 8,482.7 7.2 × 10−4 16 0.0076(9) 0.00125(9) M1 + E2 0.098(16) 0.155(16) 16 
3H4–

1G24 24,932.4 36,585.6 8,579.0 1.74 × 10−1 7 0.0082(3) 0.177(3) M1 4.87(13) × 10−5 1.02(3) 7 
3H5–

1G24 25,225.5 36,585.6 8,800.3 2.54 × 10−1 8 −0.741(12) 0.2584(22) M1 0.000105(3) 0.68(3) 8 
3P22–

3D1 26,468.2 36,925.2 9,560.3 3.7 × 10−2 9 −0.1111(10) 0.0513(8) M1 0.0031(5) 0.88(3) 9 
3P22–

3D2 26,468.2 36,758.2 9,715.5 5.9 × 10−2 10 0.01476(11) 0.1024(17) M1 0.0033(3) −0.058(23) 10 
3F22–

3D1 26,760.7 36,925.2 9,835.5 1.80 × 10−2 11 0.88(3) 0.0246(6) M1 + E2 0.111(12) −0.63(3) 10 * 
3P22–

3D3 26,468.2 36,630.0 9,838.1 6.1 × 10−2 9 −0.945(6) 0.0869(12) M1 0.0037(4) 0.42(3) 9 
3F22–

3D2 26,760.7 36,758.2 9,999.8 1.75 × 10−2 8 0.067(6) 0.0303(7) M1 + E2 0.041(4) 1.23(6) 8 
3F23–

3D2 26,842.3 36,758.2 10,082.0 2.96 × 10−3 8 0.36(3) 0.00511(9) M1+E2 0.55(4) −0.404(23) 8 
3F23–

3D3 26,842.3 36,630.0 10,214.1 7.5 × 10−3 8 0.048(6) 0.01083(10) M1 + E2 0.069(6) 0.370(18) 8 
3F23–

1G24 26,842.3 36,585.6 10,260.7 1.46 × 10−1 7 0.599(18) 0.1487(21) M1 1.50(8) × 10−6 0.91(3) 7 
3D3–

1D22 36,630.0 46,291.1 10,348.0 1.16×10−1 9 0.9537(17) 0.0902(8) M1 0.000194(5) 0.473(21) 9 
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Table 3. Cont. 

Transition Elow, cm−1 Eup cm−1 λRitz,
a Å  A, s−1 σA,b % CF c BF d Type e Fraction(E2)f p g σf,

i % 
3F24–

3D3 26,973.7 36,630.0 10,353.1 9.7 × 10−3 6 0.399(11) 0.0139(4) M1 + E2 0.214(14) 0.451(20) 6 
1F3–

3F13 52,732.6 62,364.3 10,379.5 1.24 × 10−2 9 0.001661(3) 0.00181(14) M1 0.000142(7) 0.430(18) 9 
3F24–

1G24 26,973.7 36,585.6 10,400.9 3.3 × 10−1 9 0.01357(12) 0.336(3) M1 3.6(7) × 10−7 0.453(20) 9 
1F3–

3F12 52,732.6 62,321.1 10,426.3 1.88 × 10−1 8 0.9999919(9) 0.0254(18) M1 1.35(4) × 10−5 0.441(19) 8 
3D2–

1D22 36,758.2 46,291.1 10,487.1 2.17 × 10−2 9 0.006205(20) 0.01686(16) M1 0.000181(6) 0.432(20) 9 
1F3–

3F14 52,732.6 62,238.0 10,517.5 1.02 × 10−1 8 0.999963(4) 0.0151(11) M1 0.000285(8) 0.445(19) 8 
3D1–

1D22 36,925.2 46,291.1 10,674.1 1.04 × 10−1 9 0.9869(6) 0.0804(7) M1 2.24(8) × 10−5 0.471(21) 9 
3F14–

1G14 62,238.0 71,280.3 11,056.1 5.7 × 10−2 9 −0.012325(3) 0.0120(7) M1 3.74(8) × 10−5 0.491(22) 9 
3F13–

1G14 62,364.3 71,280.3 11,212.7 3.3 × 10−2 9 −1.0000000(0) 0.0069(4) M1 0.00102(3) 0.492(22) 9 
3G3–

3D1 29,817.1 36,925.2 14,064.6 6.68 × 10−4 2.1 0.753(9) 0.00091(8) E2 1 −0.05(19) 2.1 
3G5–

1I6 30,429.9 37,511.6 14,117.0 3.6 × 10−4 17 1.0000000(0) 0.00126(10) M1 0.0032(3) 0.264(11) 17 
3G3–

1G24 29,817.1 36,585.6 14,770.3 4.2 × 10−2 12 * −1.0000000(0) 0.0424(18) M1 2.26(10) × 10−5 0.305(14) 12 
3G4–

1G24 30,147.2 36,585.6 15,527.6 5.9 × 10−3 14 −0.00145(4) 0.0060(4) M1 0.000037(4) 0.322(13) 14 
3G5–

1G24 30,429.9 36,585.6 16,240.7 2.5 × 10−2 12 * −1.0000000(0) 0.0255(9) M1 1.21(4) × 10−5 0.333(17) 12 
3H4–

3G5 24,932.4 30,429.9 18,185.1 1.00 × 10−3 2.5 0.0044(3) 0.0073(5) M1 0.000031(11) 1.32(18) 2.5 
3H4–

3G4 24,932.4 30,147.2 19,171.0 3.44 × 10−2 4 −0.0093(5) 0.321(19) M1 0.000297(17) 3.40(8) 4 
3H5–

3G5 25,225.5 30,429.9 19,209.3 4.7 × 10−2 8 −0.0055920(0) 0.344(3) M1 0.000144(16) 0.57(3) 8 
3H5–

3G4 25,225.5 30,147.2 20,318 6.6 × 10−4 19 * 0.080(22) 0.0061(6) M1 + E2 0.102(21) 0.156(11) 19 
3H6–

3G5 25,528.4 30,429.9 20,402 4.7 × 10−2 8 1.0000000(0) 0.344(3) M1 0.00156(13) 0.55(3) 8 
3H4–

3G3 24,932.4 29,817.1 20,472 4.2 × 10−2 6 −0.642(22) 0.283(12) M1 0.00167(12) 0.97(4) 6 
3F24–

3G5 26,973.7 30,429.9 28,934 4.0 × 10−2 8 1.0000000(0) 0.295(5) M1 0.000053(5) 0.72(3) 8 
3F23–

3G4 26,842.3 30,147.2 30,258 9.7 × 10−4 19 * 0.0071(8) 0.0090(9) M1 0.0013(3) 0.267(10) 19 
3F24–

3G4 26,973.7 30,147.2 31,511 2.99 × 10−2 7 −0.00800(5) 0.278(6) M1 3.7(6) × 10−6 0.84(3) 7 
3F22–

3G3 26,760.7 29,817.1 32,718 3.3 × 10−2 9 −1.0000000(0) 0.225(3) M1 0.000029(3) 0.572(24) 9 
3F23–

3G3 26,842.3 29,817.1 33,616 4.1 × 10−2 9 −0.0332325(9) 0.278(4) M1 4.4(5) × 10−6 0.591(24) 9 
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Table 3. Cont. 

Transition Elow, cm−1 Eup cm−1 λRitz,
a Å  A, s−1 σA,b % CF c BF d Type e Fraction(E2)f p g σf,

i % 
3F24–

3G3 26,973.7 29,817.1 35,169 1.6 × 10−4 22 * 0.0015(4) 0.0011(4) M1 0.0008(4) 1.015(7) 22 
3H4–

3F24 24,932.4 26,973.7 48,988 6.3 × 10−3 15 * −0.03761(23) 0.0061(4) M1 1.7(10) × 10−8 0.286(19) 15 
3H4–

3F23 24,932.4 26,842.3 52,359 1.6 × 10−3 15 * −1.0000000(0) 0.00218(17) M1 9.1(6) × 10−6 0.286(17) 15 
3P21–

3P22 24,972.8 26,468.2 66,872 4.5406 × 10−2 0.06 1.0000000(0) 0.052(4) M1 9.9(6) × 10−8 2621(13) 0.013 
3P12–

3P11 61,854.1 62,914.1 94,340 2.6842 × 10−2 0.012 1.0000000(0) 0.00607(17) M1 6.95(15) × 10−7 444(16) 0.012 
3P20–

3P21 24,055.5 24,972.8 109,020 1.3837 × 10−2 0.06 1.0000000(0) 0.0104(9) M1 0 35(3) 0.06 
3P11–

3P10 62,914.1 63,419.8 197,700 7.0044 × 10−3 0.010 1.0000000(0) 0.00157(4) M1 0 453(15) 0.010 
5D3–

5D4 803.1 1,282.7 208,500 2.9885 × 10−3 0.007 1.0000000(0) 0.9999994364(2) M1 1.048(20) × 10−7 594(20) 0.007 
5D2–

5D3 417.5 803.1 259,300 2.6639 × 10−3 0.010 1.0000000(0) 0.99999968(8) M1 3.61(7) × 10−8 325(13) 0.011 
3G3–

3G4 29,817.1 30,147.2 302,900 9.212 × 10−4 0.23 1.0000000(0) 0.0086(8) M1 3.1(6) × 10−10 17.5(6) 0.23 
3H5–

3H6 25,225.5 25,528.4 330,100 6.144 × 10−4 0.15 1.0000000(0) 0.9815(18) M1 8(3) × 10−11 24.6(6) 0.15 
3H4–

3H5 24,932.4 25,225.5 341,200 6.625 × 10−4 0.15 1.0000000(0) 0.979(5) M1 2.8(4) × 10−10 49(3) 0.15 
3G4–

3G5 30,147.2 30,429.9 353,700 4.685 × 10−4 0.4 1.0000000(0) 0.0034(3) M1 7.4(11) × 10−10 7.7(4) 0.4 
5D1–

5D2 142.4 417.5 363,500 1.1839 × 10−3 0.015 1.0000000(0) 0.99999992(8) M1 6.89(13) × 10−9 294(11) 0.015 
5D0–

5D1 0.0 142.4 702,000 1.5517 × 10−4 0.018 1.0000000(0) 1.000000000(0) M1 0 264(7) 0.018 
a The energy levels and Ritz wavelengths calculated from them are taken from [5]. Wavelengths between 2,000 Å and 20,000 Å are in standard air; shorter and longer wavelengths are in 

vacuum; b Relative standard deviation of straight A values over 10,000 trial calculations (percent). Transitions for which the accuracy estimated in [5] should be degraded are marked by an 

asterisk in this column; c Cancellation factors for mixed M1 + E2 transitions are calculated as a weighted mean of absolute values, CFM1+E2 = (|CFM1|AM1 + |CFE2|AE2)/(AM1 + AE2).  

The quantity in parentheses is the standard deviation of CF over 10,000 trial calculations (in the units of the last digit of the value); d Branching fractions were calculated for each trial. The 

given value is the result of the initial LSF calculation. The quantity in parentheses is the standard deviation of the branching fraction over 10,000 trial calculations (in the units of the last digit 

of the value); e Transition type is specified as mixed M1 + E2 for transitions having the fraction of the minor contribution to the total A value greater than 1%; f Fraction of E2 transition in the 

total A value was calculated for each trial. The given value is the result of the initial LSF calculation. The quantity in parentheses is the standard deviation of the E2 fraction over 10,000 trial 

calculations (in the units of the last digit of the value); g The parameter p of the optimal Box–Cox transformation is determined as a weighted mean over five runs, four with 1,000 trials each 

and one with 10,000 trials. The quantity in parentheses is the weighted standard deviation of the mean over five runs; i Relative standard deviation of transformed A values using the optimal 

Box–Cox transformation with the given parameter p, over 10,000 trial calculations (percent). The starred values denote transitions for which the optimal Box–Cox transformation yields 

statistical distributions that are far from normal. 
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As noted in Section 3.3, for a few transitions the optimal Box–Cox transformation produces 

statistical distributions that are rather far from normal, meaning that there are too many trials in which 

transformed A-values deviate from the initial (LSF) ones by more than 5σ. Such abnormal transitions 

are marked in Table 3 with an asterisk in the last column.  

3.5. Required Number of Comparisons 

The number of comparisons required for a reliable estimation of uncertainty of calculated A-values 

can be estimated by comparing the values of σA obtained with a progressively increasing number of 

trials. Such comparison shows that, with just ten random trials, the resulting σA differs from the “true” 

value (obtained with 10,000 trials) by more than 20% for about 99% of all transitions. With 100 random 

trials, the number of such inaccurate determinations of σA abruptly drops to about 3% of all transitions, 

and with 1,000 trials, it further decreases to about 1%. Thus, the number of calculations compared to 

each other, required for a reliable determination of uncertainties of A-values, is proportional to the 

number of transitions considered and should be about a million for 600 transitions considered here. 

With the maximum number of trials considered here, 10,000, one can expect to have a few transitions 

with an insufficiently accurate estimate of σA. If the requirement on the accuracy of σA is relaxed to  

50% instead of 20% (let us call it “reasonable” instead of “accurate”), the needed number of 

comparisons drops drastically. Just ten trials then result in reasonable estimates of σA for about 90% of 

all transitions, and with 100 trials there are only a few unreasonably bad estimates of σA. 

Of course, the above considerations apply only to the test case considered here, the M1 and E2 

transitions of Fe V calculated with Cowan’s codes. Other codes and other atomic systems may have 

different properties, and it would be interesting to obtain similar estimates for them. This would lead to 

better understanding of dependability of traditional methods of uncertainty estimation based on 

comparison of results of different atomic codes. 

3.6. Further Considerations 

Statistical distributions of A values considered here were obtained using several arbitrary 

assumptions described in the Introduction. First of all, the variations of the input atomic parameters 

such as Slater and CI parameters were assumed to have normal statistical distributions. There is no 

physical or mathematical reason behind this assumption. A further investigation is needed in order to 

find actual shapes of these distributions and their influence on the final A values. The same is true for 

the E2 transition integrals. In addition, the widths of statistical distributions of the latter were 

arbitrarily assumed to be equal to a fixed value of 1%. Estimation of the actual variances of the E2 

transition matrix elements requires a separate study. Furthermore, the various atomic parameters are 

strongly correlated. These correlations were accounted in the present work only partially, via linking 

some of the parameters in groups having fixed parameter ratios. The actual correlations are much more 

complex and should be investigated. 

The method suggested here was relatively easy to implement with Cowan’s suite of codes, which 

include the LSF procedure with well-defined uncertainties of the fitted parameters. Other codes also 

have adjustable parameters. For example, SUPERSTRUCTURE [9] uses a set of adjustable scaling 

parameters λ of the Thomas–Fermi–Dirac potential. Some theorists adjust these parameters to produce 
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energy levels most close to observed ones. This procedure is, in principle, similar to Cowan’s LSF.  

To make it a true LSF, one needs a matrix of derivatives [∂λ/∂E] similar to [∂P/∂E] in Equation (1). 

Then the uncertainties of adjusted λ could be estimated with a similar formula. I am not aware if such 

procedure is implemented in SUPERSTRUCTURE, and I never saw uncertainties of λ reported in 

publications. However, even if the adjustment of λ is manual, one can obtain some idea of their 

uncertainties by trial and error, and the resulting uncertainties in A-values can be estimated by  

a method similar to the one described here. 

Adjustable parameters are also used by Hibbert in the CIV3 code [10]. Namely, in the process that 

he calls “fine tuning”, he adjusts the diagonal Hamiltonian matrix elements to achieve the best 

agreement of calculated energies with experiment [11]. This adjustment is not much different from 

adjusting Eav in Cowan’s LSF. Thus, it must be possible to investigate the uncertainty of this fine 

tuning and its effect on A-values. 

Other sophisticated ab initio atomic codes implementing multi-configuration Hartree–Fock and 

Dirac–Fock methods [12,13] also compute the Slater and CI parameters. However, in the current 

implementation of these codes these parameters cannot be adjusted, which is quite unfortunate. To 

implement the described method with these codes, they must be modified. Estimation of uncertainties 

of ab initio calculations without the use of experimental data would require different methods. 

However, these methods must necessarily involve an analysis of error propagation through  

matrix equations. 

In principle, a clever statistician should be able to predict the expected transformations of 

distribution functions of calculated A-values on the basis of known matrix-diagonalization procedures 

and formulas for summation of various contributions to the line strength used in atomic codes, 

avoiding the computationally expensive empirical method used here. So far, I could not find any 

methods for that. In-depth investigation of statistical properties of atomic calculations requires much 

more than basic training in applied statistics. The present work shows only a first glimpse of these 

properties and gives more questions than answers. Some aspects of the problems touched upon appear 

to be on the cutting edge of statistical theory. 

Solving these problems calls for development of a relatively new field of atomic physics, statistical 

atomic physics, the main subjects of which should be investigation of statistical properties of atomic 

parameters and propagation of errors through atomic and plasma-kinetic models. Some studies related 

to this field have already been published. They involve such topics as unresolved transition arrays, 

chaos theories for spectra of complex atomic systems with open f-shell, and Monte Carlo simulations 

of plasma kinetics. However, in view of the present findings, statistical considerations used in these 

studies seem to be rather naïve. Proper treatment of statistical distributions and correlations of atomic 

properties requires a deep knowledge of both atomic physics and applied statistics. Thus, a new 

generation of specialists possessing the needed skills should be created. 

4. Conclusions 

The present work suggests a method for evaluation of sensitivity of calculated transition 

probabilities (A values) to small variations of input atomic parameters by Monte Carlo random trials. 

This method provides an insight into shapes of statistical distributions of the A values. These 



Atoms 2014, 2 121 

 

 

distributions were found to be far from normal for most M1 and E2 transitions within the ground 

configuration of Fe V, which were used as a test problem. However, for almost all transitions, it turned 

out possible to find an optimal Box–Cox transformation that results in near normal statistical 

distribution. If the range of possible random variations of the input parameters is known, e.g., from  

a least-squares fitting of Slater parameters, this method leads to statistically sound estimates of internal 

uncertainties of the particular computational atomic model used. 

In order to determine the total uncertainties of the calculation, these internal uncertainty estimates 

should be combined with studies of effects of approximations made in the atomic model, for example, 

by comparing A values obtained with increasing number of included basis states, estimating 

convergence trends, and extrapolating these trends to an infinite basis size. Additionally, the calculated 

A values should be compared with other independent ones based on different atomic models of 

comparable quality (for example, non-relativistic calculations with perturbative account for relativistic 

effects can be compared with fully relativistic calculations). Neither of these additional uncertainty 

estimates was made in the present work, so the numerical results given here represent the lower bounds 

of uncertainties. Even so, they helped detect and correct uncertainties underestimated earlier by  

other methods. 

One conclusion following from the present results is that uncertainties should be estimated not for 

the straight A values, but for the transformed ones that have a statistical distribution close to normal. 

This requires that, for each transition, the optimized transformation parameter p should be given along 

with the A value and an estimate of σ for the transformed A value. 

When results of two different theoretical models are compared to each other, one can expect that the 

shapes of statistical distributions of the A value for the same transition should be similar for different 

calculations, at least if cancellation is weak. This statement is not substantiated by any factual data, but 

is based on a general consideration of the method of computation of line strengths in all currently 

available atomic codes. Expanding the basis set should only add some minor terms in the summation 

series of these calculations. Thus, a significant change in the distribution shape should be expected 

only for transitions with strong cancellation. 

There is an important implication for Monte Carlo simulations of plasma kinetics, namely, the 

distributions of the input atomic parameters (such as the A values and collision rates) should not be 

assumed normal. Instead, they must be skewed according to a Box–Cox transformation optimized 

individually for each transition. 

Conflicts of Interest 

The author declares no conflict of interest.  

References  

1. Chung, H.; Braams, B.J. Preface to Selected Papers from IAEA-NFRI Technical Meeting on Data 

Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, Daejeon, 

Republic of Korea, 4–7 September 2012; Fusion Sci. Technol. 2013, 63; p. iii. 

2. Wiese, W.L. The critical assessment of atomic oscillator strengths. Phys. Scr. 1996, T65,  

188–191. 



Atoms 2014, 2 122 

 

 

3. Kramida, A. Critical evaluation of data on atomic energy levels, wavelengths, and transition 

probabilities. Fusion Sci. Technol. 2013, 63, 313–323. 

4. Cowan, R.D. The Theory of Atomic Structure and Spectra; University of California Press: 

Berkeley, CA, USA, 1981; p. 731. The version of the codes adapted for Windows-based computers 

is available online at http://das101.isan.troitsk.ru/COWAN (accessed on 7 April 2014). A newer 

version with extended numerical precision of the output values was made for the present work and 

is available from the author upon request. 

5. Kramida, A. Energy levels and spectral lines of quadruply ionized iron (Fe V). Astrophys. J.  

Suppl. Ser. 2014, in press. 

6. Nahar, S.N.; Delahaye, F.; Pradhan, A.K.; Zeippen, C.J. Atomic data from the Iron Project. XLIII. 

Transition probabilities for Fe V. Astron. Astrophys. Suppl. Ser. 2000, 144, 141–155. 

7. Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. 1964, 26, 211–243. 

8. Chambers, J.; Cleveland, W.; Kleiner, B.; Tukey, P. Graphical Methods for Data Analysis; 

Wadsworth International Group: Belmont, CA, USA, 1983. 

9. Eissner, W.; Jones, M.; Nussbaumer, H. Techniques for the calculation of atomic structures and 

radiative data including relativistic corrections. Comput. Phys. Commun. 1974, 8, 270–306. 

10. Hibbert, A. CIV3—A general program to calculate configuration interaction wave functions and 

electric-dipole oscillator strengths. Comput. Phys. Commun. 1975, 9, 141–172. 

11. Brage, T.; Hibbert, A. Plunging configurations and J.-dependent lifetimes in Mg-like ions. J. Phys. B: 

At. Mol. Opt. Phys. 1989, 22, 713–726. 

12. Froese Fischer, C. A B-spline Hartree–Fock program. Comput. Phys. Commun. 2011, 182,  

1315–1326. 

13. Jönsson, P.; Gaigalas, G.; Bieroń, J.; Froese Fischer, C.; Grant, I.P. New version: GRASP2K 

relativistic atomic structure package. Comput. Phys. Commun. 2013, 184, 2197–2203. 

© 2014 by the author and the Department of Commerce, USA. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


