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Abstract: In this article we present a pedagogical discussion of some of the optomechanical
properties of a high finesse cavity loaded with ultracold atoms in laser induced synthetic gauge
fields of different types. Essentially, the subject matter of this article is an amalgam of two sub-fields
of atomic molecular and optical (AMO) physics namely, the cavity optomechanics with ultracold
atoms and ultracold atoms in synthetic gauge field. After providing a brief introduction to either
of these fields we shall show how and what properties of these trapped ultracold atoms can be
studied by looking at the cavity (optomechanical or transmission) spectrum. In presence of abelian
synthetic gauge field we discuss the cold-atom analogue of Shubnikov de Haas oscillation and
its detection through cavity spectrum. Then, in the presence of a non-abelian synthetic gauge
field (spin-orbit coupling), we see when the electromagnetic field inside the cavity is quantized,
it provides a quantum optical lattice for the atoms, leading to the formation of different quantum
magnetic phases. We also discuss how these phases can be explored by studying the cavity
transmission spectrum.

Keywords: ultracold atoms; cavity optomechanics; synthetic gauge field; spin-orbit coupling

1. Introduction

The fact that electromagnetic radiation can apply forces on mechanical objects through radiation
pressure follows directly from Maxwell’s equations and was experimentally verified more than a
century ago [1,2]. Cavity optomechanics [3,4] concerns itself with the general method of controlling
the mechanical degrees of various objects through the effect of light by coupling them with the
resonant modes of Fabry-Pérot cavity. The field is referred as cavity quantum optomechanics [5,6]
when such mechanical degrees of freedom are quantized. As a result, cavity optomechanics offers a
route to determine and control the quantum states of microscopic as well as macroscopic object. This
is why using cavity optomechanical technique it is possible to do hypersensitive measurement down
to the size limited only by quantum mechanics.

It is also possible to conduct fundamental tests of quantum mechanics on massive objects
consisting of macroscopic number of atoms [6–8]. The type of systems where these techniques can be
applied are therefore very diverse such as movable mirrors on a cantilever or nanobeam, membranes
or nanowires inside a cavity, nanobeams or vibrating plate capacitors in superconducting microwave
resonators, atom or atomic cloud in a cavity etc. and the typical scale of coupling frequency can vary
from few Hz to GHz. Therefore, it is no wonder that cavity quantum optomechanics has not only
emerged as an extremely fascinating branch in experimental or theoretical physics but also it comes
with a number of promising practical implementation.
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An interesting example of such a cavity quantum optomechanical system is the one consisting of
a two level atom placed inside a Fabry-Pérot cavity interacting with a single resonating mode of the
electromagnetic wave. Such a system is described by well known Jaynes-Cummings model, a simple
but a highly illustrative model in quantum optics to demonstrate light-atom interaction [9]. This
model and it’s generalization for an N-atom system can lead to the realization two most well known
applications of cavity optomechanics. Since the atom-photon coupling inside a cavity is a function
of the spatial co-ordinate inside the cavity, cavity optomechanical technique can sense the atomic
position in a standing wave of light and thereby enabling to perform very sensitive measurement
associated with a microscopic object [10]. The extension of the above model to a macroscopic number
(N � 1) of such atom (or an atomic cloud) placed inside a cavity and a coherent state of atoms
can be created by placing all the atoms in a single quantum mechanical state that leads to the well
known Dicke or Tavis-Cummings Model [11,12]. The corresponding cavity optomechanical system
can now make quantum measurements on macroscopic object. In such N-atom system cavity-atom
coupling parameter scales with the number of atoms N as compared to single atom-photon coupling
and becomes much enhanced. Thus cavity optomechanics with such macroscopic objects realizes
strongly-coupled cavity optomechanical system. Schematic of a typical set up is drawn in Figure 1.

It is natural that with the discovery of ultracold atomic Bose-Einstein condensate (BEC), [13]
which is a coherent matter wave made out of macroscopic number of atoms, there would be efforts
to couple such ultracold atomic condensate with macroscopic number of atoms to a high-finesse
cavity and to do resulting cavity optomechanics. In this direction, the experiments done in
Berkeley group [14,15], the atomic ensemble is split into several harmonic traps each trap confining
a macroscopic number of atoms. In such cases the collective atomic degrees of freedom that
optomechanically couples with the cavity mode is the sum of the center of mass degrees of freedom
of various sub ensembles centered at various harmonic traps. The variation of the optomechanical
coupling strength with the equilibrium position of the atomic ensemble was demonstrated in
subsequent experiments [16].

Figure 1. A typical configuration for trapped ultracold atoms in cavity. The purpose of using a probe
laser and a pump laser are explained later. The κ measured the photon decaying (“leaking”) out of
the cavity. The inset shows a two level atom trapped in the cavity field.

In another experiment the Zürich group loaded a uniform, stationary and weakly interacting
BEC in a high finesse cavity [17] couple the cavity mode with selected low lying Bogoliubov modes
of this condensate. The resulting cavity transmission spectrum was analyzed to study the oscillation
between the ground state and excited state of such BEC and from there the scaling of the cavity-atom
coupling was derived. All these experiments took place in the dispersive regime of the cavity-atom
interaction where the photons are scattered by the atomic ensemble inside the cavity and therefore
a study of the cavity transmission spectrum can be used to identify the quantum many-body state
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of such ultracold atoms inside the cavity [18,19]. Particularly it has been pointed out that detection
of quantum many body states of ultracold atoms in this forms a class of quantum non-demolition
measurement ( for details see [20] and another article in this special issue [21] also addresses this
aspect). Subsequently more detailed analysis of the angle-resolved cavity transmission spectrum
and the related quantum diffraction of single mode electromagnetic wave by an atomic ensemble in
optical lattice was carried on [22].

It has also been pointed out that bi-stability in the cavity transmission spectrum alters the
modulation of standing wave profile of the electromagnetic field inside a cavity. Due to strong
atom-photon coupling in the system this can induce/alter quantum phase transition such as
Superfluid to Mott insulator in ultracold atomic ensemble loaded into it [23,24]. Theoretical analysis
of cavity optomechanical effects that can result from putting ultracold fermionic atoms inside such
cavity was also carried on [25] subsequently.

With this progress in cavity optomechanics with ultracold atomic condensate, it is very natural
to investigate as to what extent the cavity optomechanical method can enrich our learning about
one of the most fascinating sub-fields of the ultracold atomic physics, namely ultracold atoms in
synthetic/artificial gauge field (for review see [26–28]). Study of the behavior of ultracold atoms
in such synthetic gauge field not only helps one to understand the behavior of such systems in
various types of laser induced artificial scalar and vector potential, but it also allows one to quantum
simulate a number of exotic phenomena in condensed matter and high energy physics, but now in the
ultracold atomic systems with higher control on experimental parameters [29]. Given this significance
it is therefore natural to ask if cavity optomechanical techniques can provide new ways to generate
such synthetic gauge field [30–32]. One may also try to investigate what modification cavity does
to quantum phases of ultracold atomic system in synthetic gauge field or what type of quantum
phenomena can be simulated by placing synthetically gauged ultracold atoms in a cavity [33,34].

To facilitate this direction of investigation, in the first part of this review article we provide a
general introduction on the two related sub-fields of ultracold atoms (a) cavity optomechanics with
ultracold atoms and (b) ultracold atoms in synthetic gauge field. In the later sections we discuss a
number of interesting theoretical proposals that came up very recently by gluing these subtopics and
pointing out possible future directions.

The rest of the review article is organized as follows. In Section 2 we shall discuss the cavity
optomechanics with ultracold atoms after introducing the field of cavity optomechanics in general
and how it can be achieved by placing a single atom inside a cavity. In the next section, Section 3 we
shall provide brief but pedagogical discussion of ultracold atoms in synthetic abelian and non-abelian
gauge field. As a particular case of non-abelian gauge field we discuss here briefly the synthetically
generated spin-orbit coupling and NIST method of generating such synthetically spin-orbit coupled
ultracold Bose Einstein condensate. After introducing these background materials, in the subsequent
section, Section 4 we discuss in detail some recent works where it’s shown how ultracold fermionic
atoms in a synthetic abelian gauge field placed in an optical cavity can lead to the cold atom analogue
of well known electronic phenomena like Shubnokov de-Hass oscillation. Then in Section 7 we
discuss in detail the properties of spin-orbit coupled ultracold bosons inside an optical cavity in the
non-interacting limit as well as with interaction. We finally summarize our discussion and point out
future directions.

2. Cavity Optomechanics with Cold Atoms

2.1. Introduction to Cavity Optomechanics

2.1.1. Classical Treatment

The prototype cavity optomechanical system consists of a laser driven single mode Fabry-Pérot
cavity with single mode resonant frequency ωc and length L whose one end-mirror is moving because
of the radiation pressure or for any other external reason and therefore represents a mechanical
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motion. That is why the system is called optomechanics. It is conventional to consider the mechanical
motion to be simple harmonic under the assumption that the typical damping rate of this mechanical
motion is much slower than the damping rate κ of the inter-cavity field. This model is very generic in
nature and can be realized in a large number of systems [6] with optomechanical coupling frequency
Ωm ranges from kHz-GHz. Using this harmonic approximation we can model the motion of the
end-mirror as

x(t) ≈ x0 sin(Ωmt).

For a classical monochromatic pump laser with frequency ωL and amplitude Ein, the inter-cavity
field obeys the equation of motion

dE(t)
dt

= [i(∆ + Gx(t))− κ

2
]E(t) +

√
κEin (1)

The steady state solution ( dE(t)
dt = 0) is given by

E =

√
κEin

−i(∆ + Gx) + κ
2

where ∆ = ωL−ωc is the pump cavity detuning. Thus the normalized transmitted intensity from the
Fabry-Pérot cavity is given by

Iout = |E|2 =
κ Iin

(∆ + Gx)2 + ( κ
2 )

2 (2)

where Iin = |Ein|2 = P
h̄ωL

with P as the input laser power driving the cavity mode. The above result
can also be easily generalized for the case of quantized fields, in which case E will be interpreted as
square root of the inter-cavity photon number, E =

√
〈â† â〉 with â as the usual annihilation operator

for the photon. In the next subsection we shall treat the problem quantum mechanically.

2.1.2. Quantum Treatment

When the above system is treated quantum mechanically, the simplest quantum mechanical
Hamiltonian ( upto the lowest order) for such an optomechanical system is [35]

Hqm = h̄ω(x̂)â† â + h̄Ωm b̂† b̂

The first term represents the quantized single-mode electromagnetic field ( monochromatic
photon) in the cavity. The second term represents the quantized simple harmonic oscillator that
represents the mechanical motion of the moving mirror at the one end of the cavity with the oscillation
frequency Ωm. The functional dependence of the cavity frequency ω on the displacement operator
x̂ of the mechanical oscillator is due to the fact that because of this displacement the cavity length
and hence the cavity frequency will change. This also explains why there will be an optomechanical
coupling. One can write x̂ in terms of the annihilation and creation operator for the mechanical
oscillator as

x̂ = `m(b̂ + b̂†)

where `m is the typical size of the mechanical zero point fluctuation. Expanding the frequency ω in
terms of x̂ and only retaining the linear term one gets

ω(x̂) = ωc(1−
x̂
L
)

Here L is the length of the cavity. Once this expression is inserted in the cavity, the Hamiltonian
contains a term like
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Hrp = −F̂x̂, F̂ =
h̄ωc

L
â† â

The standard optomechanical Hamiltonian to the lowest order becomes

Hom = h̄ωc â† â + h̄Ωb̂† b̂− h̄g0(â† â)(b̂ + b̂†) (3)

where the last term represents optomechanical coupling and g0 = ωc
`m
L represents the strength of the

optomechanical coupling. To summarize, the above situation represents the case of a driven system
where the mechanical coupling determines the resonant frequency. A large number of physical
systems therefore can be found to implement such scenario. However, since our aim is to study
the properties of ultracold atoms in such a cavity in the next Section 2.1.3 we shall discuss how such
cavity optomechanical system can be realized with single two level atom inside a single mode cavity,
a prototype system in Quantum Optics.

2.1.3. Two Level Atom in a Single Mode Cavity

The system of a two level atom inside a single mode Fabry-Pérot cavity is described by the well
known Jayens-Cummings model. This is particularly a good approximation when the atomic vapor
is dilute and and the electromagnetic interaction is very weak. The ground and the excited state of the
unperturbed atom is |g〉 and |e〉 with energy Eg and Ee respectively. The atomic Hamiltonian reads
(setting the ground state energy to 0).

Ĥat = h̄ωa|e〉〈e|.

Here ωa =
Ee−Eg

h̄ is the atomic transition frequency. One can introduce Pauli spin operators to
describe the atomic excitation and de-excitation process in such two-level system as

σx = |e〉〈g|+ |g〉〈e|
σy = −i(|e〉〈g| − |g〉〈e|)
σz = |(e〉〈e| − |g〉〈g|)

with σ+ = σx + iσy, σ− = σx − iσy, [σ+, σ−] = σz, [σz, σ+] = 2σ+. The atomic dipole operator d̂ = er̂,
where re is the electron position operator relative to the center of mass of the atom, can be written in
this two dimensional Hilbert space as

d̂ = d(σ̂+ + σ̂−)

with d = 〈e|d̂|g〉. Now consider such atom in cavity which consists the electromagnetic field to be
confined in one dimension by two reflecting mirrors. The cavity Hamiltonian is given as

Assuming the cavity axis as x-axis and the electromagnetic wave having a sinusoidal mode
profile along that axis the electric field can be written as

Ê(x) =

√
h̄ωc

2ε0Vc
(â + â†) cos(kx)

where ωc = ck. Here c is the velocity of light, Vc is the cavity volume and ε0 is the free space
permeability. With this the cavity atom coupling term will be

Ĥat−cav = h̄g(x)(â†σ− + aσ+) (4)

with

g(x) = −

√
h̄ωc

2ε0Vc
d

cos(kx)
h̄

(5)



Atoms 2016, 4, 1 6 of 41

The above atom-photon coupling strength can be defined as g(x) = g0 cos(kx) where g0 is called
the vacuum Rabi frequency. The full Hamiltonian, namely

ĤJC = Ĥat + Ĥc + Ĥat−cav (6)

is called the Jaynes-Cummings Hamiltonian [9,36].
To model an ultracold atomic condensate inside a cavity we shall first consider the single particle

Hamiltonian in such system [37]. The corresponding single particle Hamiltonian in the frame of the
pump laser oscillating with frequency ωp takes the form

H = Hmec + H′JC + HL + HP (7)

Here Hmech = p2

2m describes the center of mass motion dynamics in absence of coupling with
electromagnetic field. And

H′JC = −h̄∆aσ+σ− − h̄∆c â† â + h̄g(x)(â†σ− + aσ+) (8)

HL = h̄Ω(σ+ + σ−) (9)

HP = h̄η(a† + a) (10)

Here ∆a = ωp −ω0 is the atom-pump detuning and ∆c = ωp −ωc is the cavity-pump detuning.
HL describes the dipole interaction with the Laser with a coupling strength Ω.

The Heisenberg equation of motion for the dipole and the photon operators are, respectively
(for ease of discussion we have omitted the terms that give dissipation and decoherence due to
cavity-environment coupling)

σ̇+ = − i
h̄
[σ+, H] (11)

˙̂a = − i
h̄
[a, H] (12)

For large detunings (|∆a| � g0, ∆c, the atomic transition to the excited state is suppressed.
One can then set the LHS of Equation (11) to zero and take σz(t) ≈ 1. This is known as adiabatic
elimination of the excited level [18,19,34]. Under this situation one gets

σ+ =
g(x)â† + Ω

∆a

Substituting this result in the Hamiltonian in Equation (7) one gets

H′atom−cav =
p2

2m
+ h̄[U0 cos2(kx)− ∆c]â+ â + h̄S0 cos(kx)(â† + â)

+ h̄η(â† + â) + h̄
Ω2

∆a
(13)

Now it is manifest from this form of the Hamiltonian (specifically, from the detuning terms)
that the presence of the atoms has effectively shifted the cavity resonance. Let us concentrate on the
first two terms of these Hamiltonian. It clearly represents an optomechanical system if we compare
it with the Hamiltonian in Equation (3). Thus cavity optomechanical properties can be realized by
placing a single atom in a cavity where the mechanical degrees of freedom are now represented by
the atom. In the next subsection we shall show how it can be generalized for the case of ultracold
atomic condensed and moreover strong coupling regime of the cavity optomechanics can be realized
with such condensate.
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2.1.4. Ultracold Atoms in a Cavity

A relatively new development in the field of cavity quantum optomechanics is the ultracold
atomic BEC in a cavity and the resulting optomechanics. To understand we first generalize the
discussion in the previous case for a system consists of N two level atoms in a cavity. The collection of
such N-atom can be thought as a cloud of super-atom with mass N ma sitting at the atomic co-ordinate
xa where we are describing the dynamics of the center of mass of this atomic cloud. After carrying out
the adiabatic elimination of the excited states of such N two-level atomic system cavity-super-atom
coupling term through the dipole interaction takes the form

V̂dip = h̄N
g2

0
∆ca

cos2(kx̂a − kx̂M − kL)â+ â (14)

where x̂M is the position operator corresponding to mechanical object coupled with one end of the
cavity [38] and L is the cavity length.

Let us consider a BEC at T = 0 trapped inside a single mode Fabry-Pérot cavity of length L and
cavity frequency ωc, with the driving laser frequency ωL and wave number k. If ωL is far detuned
from the atomic transition frequency of the excited electronic state of the atom, such excited state can
be adiabatically eliminated and the atomic cloud act dispersively with the cavity field. In the dipole
and rotating wave approximation, the Hamiltonian that will be describing such cold atom-photon
system minimally will be given by H = Hatom + H f ield with

Hatom =
∫

dxΨ̂†(x)[
p̂2

x
2M

+ h̄U0cos2(kx)â+ â]Ψ̂(x)

H f ield = h̄ωc â† â (15)

Here the atoms interact with the light field in the cavity through the familiar off-resonant
coupling

U0 =
g2

0
ωL −ωa

with g is single-photon Rabi frequency. As always the case for a real cavity there will be terms in
the full atom-cavity Hamiltonian which will take into account the external driving of the cavity field,
dissipation and collisions.

The hamiltonian defined in Equation (15) suggests two important aspects of the ensuing physics
that will occur when an ultracold atomic system will be placed inside such cavity. The cavity atom
interaction term h̄U0cos2(kx)â+ â will provide a quantum optical lattice potential [39] which can
realize novel quantum phases for the ultracold atoms. Also the cavity atom-interaction can create
interesting collective excitation over the many-body ground state of ultracold atoms whose properties
can be studied from the cavity transmission spectrum, that is from the photon emitted from the cavity.
We shall describe in somewhat detail these aspects in later section particularly when the ultracold
atomic ensemble is experiencing certain type of synthetic gauge field. To that purpose in the next
section, Section 3. we shall review briefly the properties of ultracold atoms in synthetic abelian and
non-abelian gauge field.

3. Ultracold Atoms in Abelian and Non-Abelian Gauge Field

The ultracold atomic Bose-Einstein condensate (BEC), whose properties will be discussed in this
section, consists of interacting bosonic atoms at a temperature close to absolute zero. Under the
typical experimental condition, the system is described very well by the mean field Gross-Pitaevskii
equation [40]. The Gross-Pitaevskii equation for such trapped condensate looks like

ih̄
∂Ψ
∂t

= (− h̄2

2m
∇2 +

1
2

m(ω)2r2 + g|Ψ|2)Ψ (16)



Atoms 2016, 4, 1 8 of 41

The above equation is a non-linear Schrödinger equation with Ψ being the mean field superfluid
order parameter of the N-boson condensate. If we set g = 0 in Equation (16), it is mathematically
same as the usual Schrod̈inger equation even though Ψ here is not the usual quantum mechanical
wavefunction. We therefore start our discussion by outlining some general features of the gauge
invariance of an usual quantum mechanical system described by Schrödinger equation. We first
discuss the gauge invariance for abelian gauge field and then extends the discussion for the
non-abliean cases.

3.1. Abelian Gauge Field

According to classical electrodynamics upto a gauge transformations the vector and scalar
potentials are arbitrary. This non uniqueness of the vector potential for a given magnetic field,
however, does not create a problem in describing the motion of charged particle in classical
mechanics under Newton’s Laws since the the Lorenz force is given by the gauge invariant magnetic
field through

F = qv× B .

In quantum mechanics our description of a physical system is through Schrödinger equation

ih̄
∂Ψ
∂t

= Hψ⇒ Ψ(x, t) = U (t)Ψ(x, 0)

where the time evolution operator U (t) = exp(−i Ĥt
h̄ ). Now the Hamiltonian in presence of magnetic

field is given as

H =
1

2m
(p− e

c
A)2.

In the above expression, the canonical momentum p is related to the mechanical momentum
Π = p− e

c A. However, the previously proposed idea about gauge invariance now needs a careful
scrutiny since the vector potential now appears directly in the Hamiltonian. For example, consider
the case of a uniform magnetic field, namely B = Bẑ. It can be checked that the commutators of
different components of the mechanical momentum does not vanish,

[Πi, Πj] =
ih̄e
c

εijkBk .

However, this commutator is indeed gauge invariant. Using the above commutator and the fact
that

H =
Π2

2m
It can be straightforwardly derived that the spectrum is given by so called one dimensional

harmonic oscillator like Landau levels

En = (n +
1
2
)h̄ωc, ωc =

eB
mc

.

The energy spectrum is thus a Gauge invariant quantity. However, the gauge invariant form
of the energy and the basic commutation relation not necessarily ensures that relevant physical
quantities in quantum mechanics, such as the transition matrix elements two different states under
the action of a given operator are necessarily gauge invariant.

To establish the connection to gauge invariance in classical system one uses Ehrenfest theorem
which states that expectation values of the observables in quantum mechanics behave in the same
way like the classical quantities. Therefore we can expect them to gauge transform in the same way
like the classical quantities. As one can see this is not trivially satisfied, since what appears in the
dynamical variable like Hamiltonian is A and not B. This tells us that under a gauge transformation
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the operators indeed gets affected. To see how the gauge invariance of expectation values can be
ensured, let us define a state ket |α〉 in presence of vector potential A and the corresponding state ket
|α′〉 for the same magnetic field with a different vector potential A′ = A+∇Λ. Our basic requirement
for gauge invariance is

〈α|x|α〉 = 〈α′|x|α′〉

〈α|p− e
c

A|α〉 = 〈α′|p− e
c

A′|α′〉 (17)

apart from the normality of each ket. Now since both kets are normalized there must be a unitary
operator such that

|α′〉 = G|α〉 (18)

The invariance of position and momentum expectation values then demands

G†xG = x

G†(p− e
c

A− e
c
∇Λ)G = p− e

c
A (19)

One can immediately see that the unitary operator that does that job is

G = exp[
ie
hc

Λ(r)] (20)

This is actually the generator of U(1) gauge transformation and is same as a phase
transformation. This is also the simplest gauge transformation. What all these tell is that in quantum
mechanics to keep dynamical variables U(1) gauge invariant, the wavefunction needs to acquire an
additional phase under a gauge transformation.

3.2. Neutral Cold Atoms in Synthetic Abelian Gauge Field: Rotating Ultracold Condensate

Abelian gauge transformation discussed in previous Section 3.1 applies to one of the
fundamental interactions in nature, namely the electro-magnetic interaction which occurs only
between charged particles such as electrons. However, simply going by the behavior of quantum
mechanical wave-function under such gauge transformations, one can conclude that the abelian
gauge transformations is mathematically equivalent to phase transformations. This naturally raises
the question if such a phase transformation can be induced in a wavefunction by other means
even for a charge neutral object such as an ultracold bosonic or fermionic atom whether that can
create artificially a gauge field for the corresponding quantum system even in the absence true
electromagnetic interaction. This question was answered in a profound way by M. V. Berry in
his seminal work [41,42] based on a number of other works which already indicated the existence
of such different type of gauge fields in a number of physical phenomena, that spans optics [43],
Chemistry [44], Atomic and Molecular Physics [45] etc. Before discussing such general gauge
transformations following Berry’s argument we discuss one of the simplest example of realizing
abelian gauge field synthetically for ultracold atomic BEC through rotation. The theoretical scheme to
be described here, was experimentally realized by a number of experimental group to create vortices
in ultracold atoms [46,47] such as ENS Group [48], MIT group [49] and JILA group [50]. A typical
configuration is schematically shown in Figure 2.

To understand how a gauge transformation is similar to the one defined in the previous section,
implemented through rotation. Let us consider the plane of this rotation is x-y plane and the
symmetry axis is ẑ. Now the effect of such rotation on spatial co-ordinate is given by

Rz(φ)

[
x
y

]
Rz(φ)

† =

[
cos φ sin φ

− sin φ cos φ

] [
x
y

]
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Figure 2. A typical configuration for rotated trap which realizes an abelian gauge potential for neutral
ultracold atomic condensate. Here the laser induced optical potential imprinted on Bose-Einstein
condensate (BEC) is rotated with the help of a rotating mask. The figure is taken from reference [27].
Reprinted figures with permission from Ghosh, S.; Sachdeva, R. J. Indian Inst. Sci. 2014, 94, 217.
Copyright (2014) by the Journal of the Indian Institute of Science.

Here Rz(φ) = exp(−i φL̂z
h̄ ) is the rotation operator about ẑ axis. If the rotation is executed at

an uniform angular velocity Ω, then φ = Ωt. We can immediately see the connection between Rz(φ)

and the U(1) gauge transformation defined in Equation (20). The reason can also be traced to the fact
that there is an equivalence between the Coriolis force in a rotating frame and Lorenz force acting on
an electron in a uniform magnetic field [51]. Such a method can be easily implemented experimentally
by rotating the trap in which an ultracold condensate is created through a moving laser beam. The
time dependent Hamiltonian that describes a trapped boson in a rotating frame is given by

H(t) = Rz(Ωt)[
p2

2m
+

1
2

m(ω2
xx2 + ω2

yy2)]R†
z(Ωt)

=
p2

2m
+

m
2
[(ω2

x(x cos Ωt + y sin Ωt)2

+ ω2
y(−x sin Ωt + y cos Ωt)2] (21)

The wavefunction for the above Hamiltonian can be obtained by solving the time dependent
Schrödinger equation (TDSE),

ih̄
∂ψ

∂t
= H(t)ψ. (22)

To do equilibrium thermodynamics of a systems of such bosons one needs to go to the co-rotating
frame from where the Hamiltonian does not change with time and the rotated frame wavefunction
can be obtained from the laboratory frame, with the help of a unitary transformation on the
wave function,

ψ′ = R†
z(Ωt)ψ

As can be straightforwardly seen that this is again equivalent to the gauge transformation given
in Equation (18) where the ψ′ is the wave function in the co-rotating frame. The transformed TDSE
for ψ′ looks like

ih̄
∂ψ′

∂t
=

[
p2

2m
+

m
2
(ω2

xx2 + ω2
yy2)−ΩLz

]
ψ′ (23)

The time independent Hamiltonian on the right hand side can be written

H =
(p−mA)2

2m
+

1
2

m
[
ω2

xx2 + ω2
yy2 −Ω2r2

]
(24)
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with the gauge (vector) potential and the gauge field obtained in this way is of the form

A = −Ωyx̂ + Ωxŷ, B = 2Ωẑ

This synthetically created gauge field is similar to the uniform magnetic field and the
corresponding synthetic gauge potential is equivalent to symmetric gauge potential for such uniform
magnetic field. The transformation also induced a scalar potential

VR(r) = −
1
2

mΩ2r2 (25)

Thus, the effective trap potential in the rotating frame gets reduced. Therefore, in the mean
field approximation the ultracold atomic BEC consists of N interacting bosons near absolute zero
temperature in a rotating trap is described by the gauged (synthetically) version of time dependent
Gross-Pitaevski Equation (16) [40] which is

ih̄
∂ψ′

∂t
=

(
(p−mA)2

2m
+

1
2

m[ω2
xx2 + ω2

yy2 −Ω2r2] + g|ψ′|2
)

ψ′. (26)

It can be readily verified that the non-linear term is invariant under the action of the unitary
operator Rz(Ωt). Thus the entire previous discussion on the artificial gauge transformation of single
boson Schrödinger equation can be applied here for the Gross-Pitaevskii equation also. In the early
days of BEC this was the technique through which vortices and vortex lattice was created in ultracold
condensate. For detail review on this aspect we refer to [46,47]. An interesting regime is where
the rotational frequency Ω is almost equal to the trap frequency in the transverse plane ω⊥. This
means the the trap potential almost becomes negligible. Because of the entry of the large number of
vortices in the ultracold condensate under this condensation, a number of interesting phases of large
number of vortices appear in this regime. This is the regime of rapidly rotating ultracold gas and have
been reviewed extensively in [52,53]. In the subsequent Section 3.3 we shall now discuss the general
theoretical frame work of the occurrence of artificial gauge field of abelian and non-abelian type in
diverse quantum mechanical system in a geometrical way.

3.3. Geometric Phase in Quantum Mechanics and the Related Gauge Fields

After considering the case of generating a synthetic abelian gauge field (electro-magnetic field)
for ultracold through rotation, in this subsection we shall briefly describe the theoretical framework
following Berry’s argument how such gauge field can be generated geometrically for a quantum
mechanical system. The details can be found out in many standard book on Quantum Mechanics
(e.g., [54]). Let us consider the phase change in a quantum mechanical wavefunction under
an adiabatic change. The adiabatic theorem in quantum mechanics tells us that if the particle
Hamiltonian is given by H(R(t)) where R is some external co-ordinate which changes sufficiently
slowly (slower than the natural time scale set by the typical energy spacing in the unperturbed
system) and appears para metrically in H, then the particle will sit in the n-th instantaneous eigenstate
of H(R(t)) at the time t if it started out in the n-th eigenstate of H(R(0)). The solution of the time
dependent Schrödinger equation for this case is

|ψ(t)〉 = c(t) exp
(
− i

h̄

∫ t

0
En(t′)dt′)|n(t)〉

)
(27)

which upon substitution in the time dependent Schrödinger equation yields

dc(t)
dt

= −c(t)〈n(t)| d
dt
|n(t)〉
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with the solution

c(t) = c(0)eiγ(t), γ(t) = i
∫ t

0
〈n(t′)| d

dt′
|n(t′)〉dt′.

The important thing here to notice that this phase is arising because the basis state |n(t)〉 is
constantly changing with time. The instantaneous adiabatic state can therefore be written as

|n(R)(t)〉a = eiγ(t)|n(R(t))〉

where the subscript “a” is used to denote the difference with a time evolved state in the absence of
such phase factor. The extra phase factor can be rewritten as

exp
(
−
∫ t

0
〈n(t′)| d

dt′
|n(t′)〉dt′

)
= exp

(
i
h̄

∫ t

0
An(R)

dR
dt′

dt′
)

(28)

where
An(R) = ih̄〈n(R)| d

dR
|n(R)〉

is known as the “Berry curvature” and plays the role of a vector potential. It can be readily checked
that if the state goes through a phase transformation like

|n(R)〉 → exp(iΦ(R))|n(R)〉 = |n′(R)〉

Berry Curvature transforms as An(R) ⇒ An(R)− h̄
dΦ(R)

dR
(29)

This is the same as the gauge invariance condition that was imposed on the vector potential
in Equation (19) in the previous Section 3.1. The transformation of the wavefunction defined in
Equation (29) is same as the one defined in Equation (18) for real electromagnetic field. Now if the
adiabatic parameter R comes back to the same value after a time period T we have R(T) = R(0) and
H(T) = H(0). Under that case the singlevaluedness of the wave function in the parameter (R) space
demands that the line integral of the Berry curvature around the closed loop in the parameter space
must be invariant under such gauge or phase transformation.

Thus the Berry curvature plays the same role as the vector potential due to a real magnetic
field under gauge transformation and its effect on the wave function, namely the integral of the
vector potential around a close loop in the co-ordinate space is gauge invariant as demanded by the
single-valuedness of the wavefunction. Also in the full analogy with electromagnetic theory which
is a relativistically invariant theory and there will be a time like component in the form of a scalar
potential such adiabatic transformation also generates a corresponding scalar potential which has
the form

V(R) =
h̄2

2m
[| d

dR
|n(R)〉|2 − 〈 d

dR
n(R)|n(R)〉〈n(R)| d

dR
|n(R)〉].

The creation of such “artificial” gauge field through rotation discussed in the Section 3.2 can also
be explained by using the concept of Berry Curvature discussed in section [41]. One can recognize
here that the adiabatic parameter is the time dependent rotation angle Ωt and the Hamiltonian is
a function of this parameter R = Ωt. If the rotational frequency is ramped up adiabatically, then
the adiabatic theorem ensures that the system will always stay in the ground state of the rotated
Hamiltonian provided the initial system is in the ground state.

The above geometrical way of generalization of Gauge transformation in a quantum mechanical
system can be straight-forwardly extended from the abelian cases to the non-ableian cases if the
adiabatic parameter R is a vector having a certain number of components. This will be discussed in
later sections. The most significant impact of the concept of “Berry curvature” or “Geometric Vector
Potential” is that it opens the possibility of identifying gauge potential and fields in a wide variety of
quantum systems including the system of ultracold atoms.
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The general method of creating geometrically induced abelian gauge field was discussed in a
number of review articles [26,27]. We shall here briefly refer to the scheme adopted in NIST by the
group of I. B. Spielman group which is relevant for the discussion in the Section 4 where we describe
some recent work on cavity optomechanics of ultracold fermionic atoms in such synthetically created
abelian gauge field. In the scheme developed in NIST [28], a Landau gauge type artificial vector
potential was generated by coupling different hyperfine states of the atoms through Raman lasers,
which transfers momentum only along the x̂ direction. The coupling can vary spatially and leads to
the effective single atom Hamiltonian

H = H1(kx) + [h̄2(k2
y + k2

z)/2m + V(r)],

where

H1(kx) =
h̄2
(

kx − q∗A∗x
h̄

)2

2m∗
.

Here A∗x is the engineered vector potential and q∗ is the fictitious charge. In this case if the
system size is sufficiently large and one considers the bulk of the system, the Hamiltonian resembles
that for the charged particle in magnetic field, but with the vector potential in Landau gauge. This
Hamiltonian is same as the atomic Hamiltonian we used in the main paper.

3.4. Ultracold Atoms in Non Abelian Gauge Field

To understand how an non-abelian gauge field can be introduced in an elementary atomic system
even in the absence of any fundamental non-abelian gauge interaction, we start by considering the
following case. Consider a general model of a two level atom with |g〉 and |e〉 states (see Figure 3a)
being respectively its ground state and excited state coupled by a spatially dependent external
field [9].

The general Hamiltonian of such coupled system can be written as

HI = Hgg(r)|g〉〈g|+ Hee(r)|e〉〈e|+ Hge|g〉〈e|+ Heg|e〉〈g| (30)

which can be mapped in the spin Hamiltonian

HI =
h̄Ω
2

n · σ

where n is a three dimensional unit vector parametrized in terms of polar angle θ(r) and azimuthal
angle φ(r). As one can see the spatial dependence comes from the fact that the coupling between the
states is assumed to be spatially dependent since it will depend on electric field of the laser and the
atomic wavefunction. A general state in this Hilbert space at any point of time can be written as

|Ψ(r, t)〉 = ψ↑(r, t)|n↑(r)〉+ ψ↓(r, t)|n↓(r)〉 (31)

where the basis states are the local eigenstates of HI at the spatial point r

|n↑(r)〉 =

[
cos θ(r)

2
sin θ(r)

2 eiφ(r)

]

|n↓(r)〉 =

[
− sin θ(r)

2 e−iφ(r)

cos θ(r)
2

]
, (32)

are referred to as the “dressed states” in a quantum optics language or the “adiabatic states” in a cold
atom language. If the system evolves adiabatically through this space then this means that this local
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basis of the Hilbert space is also changing at every point in space. This according to the discussion in
Section 3.3 will generate Berry curvature as

∇(ψi(r)|ni(r)〉) = ∇ψi(r))|ni(r) + ψi(r)|∇ni(r)〉, i =↑, ↓

Figure 3. Typical atom-laser configuration to create geometrical (a) Abelian and (b) Non Abelian
gauge field.

Now suppose that an initial state the particle is in the state |n↓〉 and the motional state is such
that it stays in this state all the time ( the transition amplitude to the up-state is negligible). Under
this condition we assume ψ↑ = 0 and project the Schrödinger equation in the dressed state |n(r)↓)〉.
This gives us the following “gauged” Schrodinger equation for ψ↓ [26].

ih̄
∂ψ1

∂t
= [

(P− A)2

2m
+

h̄Ω
2

+ V]ψ1 (33)

with

A(r) = ih̄〈n↓(r)|∇n↓(r)〉 = −
h̄
2
(cos θ − 1)∇φ

B(r) = − h̄
2
∇ cos θ ×∇φ

V(r) =
h̄2

2m
|〈n↑(r)|∇n↓〉|2 =

h̄2

8m
[(∇θ)2 + sin2 θ(∇φ)2

3.4.1. Geometrically Created Non-Abelian Gauge Field

The above method of inducing gauge field geometrically can be easily generalized for the
non-abelian case [26]. Consider now a N + 1 state atomic system with N ≥ 3 with suitable
configuration of laser beams that induce coupling between these atomic states A prototype
configuration is displayed in Figure 3b. The structure of the the coupling matrix U(r) will be

U(r) =


〈1|U(r)|1〉 〈1|U(r))2〉 · · · 〈1|U(r)|N + 1〉
〈2|U(r)|1〉 · · · · · · 〈2|U(r))|N + 1〉

...
...

...
...

〈N + 1|U(r)|1〉 · · · · · · 〈N + 1|U(r)|N + 1〉

 (34)

For a fixed position r the above matrix can be diagonalized to give N + 1 dressed states |ni(r)〉
with energy eigenvalues Ei(r) where i goes from 1 to N + 1. Under certain circumstances it happens
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that a subset Q out of this N + 1 states are either degenerate or quasi-degenerate and are well
separated from he rest of states energetically. It is under this condition it is possible to realize adiabatic
motion in this low lying degenerate subspaceHQ of dimension Q. Assuming that the motional states
are such that there is almost no scattering from this low energy subspace HQ to (N + 1) − Q higher
energy state.

Again we can write the full wave function of the

|Ψ〉 =
N+1

∑
i=1

ψi(r)|ni(r)〉

And then we can project this Schröedinger equation to the reduce Hilbert space HQ to get an
equation for the reduced spinorial wavefunction ΨQ = (ψ1, · · · , ψQ)

T . We can straightforwardly
extent the gauged Schrödinger equation given in Equation (33) to its spinorial counterpart, namely

ih̄
∂ΨQ

∂t
= [

(P− A)2

2m
+ ε + V]ΨQ (35)

with the important differences that A and V are now matrices with their matrix elements given by.

Ai,j = ih̄〈ni(r)|∇nj(r)〉

Vi,j =
1

2m

N+1

∑
l=Q+1

Ail · Al,j (36)

Since different component ( x, y, z) these effective vector potentials being matrices will not
generally commute with each other and are therefore called non ableian vector potential.Here ε

corresponds to the energy of the unperturbed atomic systems.
The above described atom-light interaction induced synthetic abelian or non-abelian gauge

potential has been successfully implemented by I. B. Spielman’s group [55,56] in NIST by coupling
atomic states with Raman lasers. They created synthetic magnetic field, electric field as well as SO
coupling in ultracold atomic systems.

3.5. Synthetic Spin-Orbit Coupling for Ultracold Atomic Gases: Case of Non Abelian Gauge Field

The generation motivation behind creating synthetic spin-orbit coupling for ultracold atoms
primarily comes from the fact that spin orbit coupling plays a very important role in spinotronics [57]
and Topological Insulators [58] either of which have interesting practical applications. However,
more relevant for the current topic for discussion is that spin-orbit coupling also forms an interesting
example for Non abelian gauge potential which we shall describe in the following discussion.
Therefore, before discussing the behavior of such spin-orbit coupled ultracold atoms in a optical
cavity we shall discuss how spin-orbit coupling realizes a particular form non-abelian gauge
potential.

In our familiar notation a Non abelian vector potential can be written as

A = Ax x̂ + Ayŷ + Az ẑ

where Ax, Ay and Az are now matrices. Field strength for such Non abelian vector potential given by
the expression [59] can be written as

B = ∇× A− i
h̄

A× A (37)
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The first part of the Expression (37), is a generalization of the relation between vector potential
and magnetic field for the abelian case, the second part is only non zero if the gauge potential is Non
abelian. For abelian cases, the second part is identically zero.

In contrast to abelian gauge field, the two non-equivalent Non-abelian gauge potential can lead
to the same Non-abelian magnetic field. Following [59] we shall illustrate this case for the non abelian
magnetic field

B = 2σz ẑ = 2

[
ẑ 0
0 −ẑ

]
(38)

The above magnetic field is uniform but its direction is opposite for spin-up and spin-down
component of the wavefunction of the particle on which it is applied.

One type of vector potential for such uniform field is a generalization of symmetric gauge vector
potential for uniform magnetic field B = Bẑ

A =
1
2

B× r = yσz x̂− xσzŷ (39)

Here the vector potential contributes to the magnetic field only through the first term (on R. H. S.)
of the Expression (37) for Non abelian field strength. All component of the vector potential are
abelian matrices.

Another type of vector potential that can also generate the same magnetic field is given by

A = −σy x̂ + σx ŷ. (40)

This is a uniform non-commuting vector potential (does not depend on local co-ordinate)
and hence Non-abelian. The contribution to the field purely comes from the second term in the
Expression (37). This non abelian gauge potential is also equivalent to spin-orbit coupling.

To see this let us recall the well known spin-orbit coupling (Thomas term) which arises due to
relativistic correction to the motion of a spin-1/2 electron obeying Schrödinger Equation, namely

HSO = − eh̄
4m2

e c2 σ · (E× p) =
eh̄

4m2
e c2 p · (E× σ) (41)

For a uniform electric field along z-axis, E× σ is just the Non abelian uniform vector potential
defined in Equation (40). Identifying this we can rewrite HSO ∝ (p · A) where A corresponds to the
vector potential defined in Equation (40). The corresponding kinetic energy term of the Hamiltonian
with such non-abelian gauge field will take the form,

Hk =
1

2m
(p−mA)2

that describes a free particle in the presence of Non abelian gauge field Equation (40). Thus
the simulation of such synthetic Non abelian gauge field for ultracold atoms is equivalent to
create synthetic spin-orbit (SO) coupling for such systems. SO coupling plays a crucial role in
Spinotronics [57] and Topological Insulator [58]. With this background we shall now briefly discuss
how such SO coupling is created experimentally for ultracold BEC.

3.6. Principle of Spin Orbit Coupling in Ultracold Bosonic Systems: NIST Method

In the NIST method [55] 87Rb atoms whose ground state electronic structure is 2S1/2 giving
electron spin is S = 1/2 and nuclear spin is I = 3/2. Therefore, the total spin F can take value
F = 1 and F = 2 due to hyperfine coupling. The low energy manifold therefore consists of three
F = 1 states characterized by by state vectors |F, mF〉, and are respectively given as |1, 1〉, |1, 0〉
and |1,−1〉. In presence of Zeeman field these states have different energy. The resultant system
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is exposed to two counter propagating Raman laser beams (see Figure 8) along the x̂ direction. The
atom which is moving with velocity h̄kx

m along x̂ direction will absorb a photon coming from the
opposite direction of Laser I and will have momentum h̄(kx − kL). From this excited state it will emit
a a photon in the direction of laser II, making the momentum along x-direction will be h̄(kx − 2kL) .
In terms of the hyperfine quantum number mF and the momentum the resultant state can be written
as | − 1, kx − 2kL〉. Similarly the atoms absorbing photon from laser II and emitting a photon in the
direction of laser I will be finally in the state |1, kx + 2kL〉. The final outcome is to have the following
three states

|1〉 = |1, kx + 2kL〉
|0〉 = |0, kx〉

| − 1〉 = | − 1, kx − 2kL〉 (42)

It is possible to write down the effective Hamiltonian now in 3× 3 matrix form that includes
contribution from atom, field ( laser) and atom-laser interaction. However, tuning the Zeeman energy
and the laser frequency it is possible to restrict (for details see [60]) the system in a two dimensional
substance described by the 2× 2 effective Hamiltonian becomes,

H =

[
k2

x
2m + δ

2
Ω
2 e2ikLx

Ω
2 e−2ikLx k2

x
2m −

δ
2

]
(43)

Here 2kL is the momentum transfer due to the relative motion between the laser and the
hyperfine state of the atom and δ is the detuning between the Raman resonance and the energy
difference between the spin up and spin-down level. We have also absorbed an overall h̄ factor in
various terms. Through a unitary transformation on the two component wave function defined as

ψ′ = Uψ with U =

[
e−ikLx 0

0 eikLx

]
the transformed Hamiltonian UHU† now can be written as

HSO =

[
(kx+kL)

2

2m + δ
2

Ω
2

Ω
2

(kx−kL)
2

2m − δ
2

]
(44)

The above Hamiltonian can be written as

HSO =
(kxI + kLσz)2

2m
+

Ω
2

σx +
δ

2
σz, (45)

and is the one realized in NIST Experiment [55]. Even though here the vector potential has only
one component Ax, since that does not commute with the scalar potential Ω

2 σx +
δ
2 σz, this is one of

the simplest realizations of uniform non abelian gauge potential. With a suitable spin rotation it can
also be shown that the first term actually represent and linear combination of equal weight Rashba
and Dresselhaus SO coupling.

4. Cavity Optomechanics of Ultracold Fermions in a Synthetic Gauge Field

In the previous section we reviewed briefly cavity optomechanics with ultracold atoms and
ultracold atoms in synthetic gauge field. As emphasized at the end of Section 2, cavity optomechanics
with ultracold atoms provides us a different way of probing the quantum many body states of such
ultracold atoms by studying the cavity transmission spectrum. The main issue in this review article
is what type of new physics emerges when such probing technique is employed to study ultracold
atoms in presence of a synthetic gauge field. As the following discussion will show the study of cavity
transmission spectrum in this case has the potential to detect the cold atom analogue of phenomena
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like Shubnikov de Haas oscillation which occurs due to the formation of Landau levels of such
ultracold atoms in a synthetic magnetic field.

4.1. Formalism

Here we briefly discuss how we set up the Hamiltonian that describes the (two-dimensional)
system we are interested in. The key ideas from the discussions in the previous sections will be
largely employed here, albeit in a many-body setting. The system we consider in this section consists
of N ultracold neutral fermionic two-level atoms, each of mass M subjected to a synthetic magnetic
field of strength 2Ω and pointing along ẑ. The atoms are trapped inside a Fabry-Pérot cavity (on a
plane), with mirror area A. The cavity is driven by a pump laser of frequency ωp and wave vector
K = (Kx, Ky). The atoms have transition frequency ωa, and interact strongly with a single standing
wave, the frequency of which is ωc when the cavity is empty.

We can study the system Hamiltonian in three components, Ĥ = ĤA + ĤC + ĤI . The
ĤA describes the dynamics of the atoms only and the starting point is Jaynes-Cummings
Hamiltonian [36]. ĤC describes the dynamics of the cavity photons and ĤI captures the interaction
of the atoms with the photons. Here we assume the atoms interact with the laser field with a
dipole-like interaction. It must be noted that we completely ignore the inter-atomic interaction.
This can be achieved through suitable laser configurations (Feshbach resonance method [61]). Also
the interaction between the pump lase and atoms can be ignored if we choose a mode along
the z-axis, allowing us to exclude its dynamics on x-y plane. With all these, starting from a
single-particle Hamiltonian we now arrive at a many-body Hamiltonian [18,19,25] with the help of
the following approximations.

Firstly we want to remove the time-dependence of the Hamiltonian, for this we perform a unitary
transformation with Û(t) = exp[iωpt

(
|e〉〈e| + â† â

)
]. The purpose of this unitary transformation

is to describe the system in terms of slowly changing variables by entering into a frame rotating
at frequency ωp. However, since the time scale associated with atomic dynamics is much faster in
comparison to the time scale associated with the pump laser frequency all the results obtained in the
rotated frame and lab frame stay the same. Since we are working at a very low temperature there is
only weak atomic excitations. Also if we set a large detuning (between the pump field and the atom
field ∼100 GHz), as compared to the life-time linewidth of the atom (∼1 MHz) then we effectively
end up working at a time-scale too smaller than that of the transition time-scale. Hence we do not
need to include the dynamics of the excited state as all the excited states are already adiabatically
eliminated. It must be noted that this elimination is performed at the level of the Heisenberg equation
of evolution. This provides us an effective Hamiltonian that described the dynamics of our system
but with the inclusion of the above stated approximations.

Ĥe f f = ĤA + ĤI + ĤC, (46)

ĤA =
∫

d2rΨ̂†(r)
[
Π̂2/2M

]
Ψ̂(r), (47)

ĤI =
∫

d2rΨ̂†(r)
[

h̄U0cos2(K.r)â† â
]
Ψ̂(r), (48)

ĤC = h̄∆c â† â− ıh̄η(â− â†). (49)

Here U0 = g2
0/∆a is the effective light-matter coupling constant with g0 is single photon Rabi

frequency, ∆a = ωp − ωa. Here ĤA is the atomic Hamiltonian in the synthetic magnetic field, ĤC
captures the dynamics of the cavity photons with ∆c = ωc − ωp = ∆ωL ≈ κ, with 2κ being the
cavity decay line-width. η is the coupling between the pump and the cavity. Here Π = p − MA
is the kinetic momentum, with the effective vector potential A = Ω× r in symmetric gauge. The
eigenstates of this operator are Landau levels (LLs) with effective cyclotron frequency ω0 = 2Ω, and
eigen-energies En,m = 2h̄Ω(n + 1/2). The effective magnetic length in this problem is l0 =

√
h̄/2MΩ.
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Since we are interested in probing the LLs with the help of the cavity photons, we expand the atomic
field operator Ψ̂(r) in the LL basis (with symmetric gauge choice),

Ψ̂(r) = ∑
m,n

ĉn,m〈r|n, m〉 = ∑
m,n

e−|z|
2/4l2

0√
2πl2

0

Gm+n,n(iz/l0)ĉn,m . (50)

with z = x + ıy. |n, m〉 is the Landau-eigenket. 〈r|n, m〉 is the symmetric gauge wavefunction. The

special function Gn+m,m(z) = ( m!
(n+m)! )

1/2(− ız√
2
)nLn

m(
|z|2

2 ), where Ln
m is the generalized Laguerre

polynomials of degree m, detailed properties of this function are discussed in the supplemental
information of [33] . ĉ†

n,m is the fermionic creation operator that creates the state |n, m〉, namely
a fermion in the nth Landau level (LL), with the guiding center m obeying, {ĉ†

n,m, ĉ†
n′ ,m′} =

{ĉn,m, ĉn′ ,m′} = 0 , {ĉ†
n,m, ĉn′ ,m′} = δn,n′δm,m′ (n = 0, 1, 2..., ν− 1 and m = 0, 1, 2, ..., Nφ − 1). ν = N/Nφ

is called the filling factor where Nφ = A/(2πl2
0) is the degeneracy of each Landau level.

We want to detect the LLs through the photons leaking out of the cavity (called the cavity
transmission spectrum). For this we approach more like a photo-emission experiment, by scattering
the cavity photons from the atoms at different LLs. The photons energize the atom to jump to a higher
LL (leaving behind an atom-hole), but after a certain time this electron gets de-excited by emitting a
photon. These photons carry a signature of the atom they interacted with before. In the absence of
atom-photon interaction the ground state of our system will be a direct product state of photonic
vacuum and excitonic vacuum, where the later is given by completely filling the first ν Landau levels

of each guiding center, namely, |GS〉 =
Nφ−1

∏
m=0

ν−1
∏

n=0
c†

n,m|0〉. Since these inter Landau level excitations

only involves the change in the LL index, they can be studied using the language of bosonization [62]
by introducing bosonic operator,

b̂†
p(k) =

1√
pNφ J2

p(kRν)
e−(l0|k|)

2/2
∞

∑
n=0

∞

∑
m,m′=0

ĉ†
n′ ,m′ ĉn,m

(
Gn+p,n(l0k∗)Gm′ ,m(l0k)

)
. (51)

This operator creates a bosonic particle-hole excitation by shifting an atom from n-th LL to the
n + p-th LL, where Jp is the Bessel function of first kind, Rν =

√
2νl0. This being a bosonic operator it

obeys the usual bosonic commutation relations. With the help of this operator the bosonized effective
Hamiltonian becomes,

Ĥe f f = h̄
∞

∑
p=1

{
∑
k

pω0b̂†
p(k)b̂p(k) + δν

p
√

p
(

b̂†
p(2K) + b̂p(2K)

)
â† â
}
+ h̄∆â† â− ıh̄η(â− â†) , (52)

where the operator N̂ is replaced with its steady-state expectation value, subsequently the term
N̂h̄U0

2 â†a is incorporated into h̄∆ca†a of HC to get the effective cavity detuning ∆ = ωc − ωp +
NU0

2 .
Notice the atoms interact with the photons (second last term in the above Hamiltonian) with
an exchange of momentum ±2|K|, this is because of two photons moving in the opposite directions.

δν
p = U0

4

√
Nφ J2

p(2KRν) is the atom-photon coupling constant that couples the excited levels with

the photon field, where Jp(x) is the Bessel function of first kind. This coupling linearly depends on
atom-photon coupling constant U0 and is enhanced by the Landau level degeneracy

√
Nφ, which is

different as compared to the case of ordinary fermions [25] and akin to the scaling of the atom-photon
coupling constant by

√
N for a N-boson condensate [17]. In Figure 4, with increasing Ω, the coupling

constant oscillates along with jump discontinuities. This is the usual Shubnikov de Hass (SdH) effect
occurring for synthetic magnetic field when the Fermi level makes a jump to the previous level at
some increased value of the field.
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(a)

(b)

Figure 4. (a) Variation of coupling constant (for p = 1) with synthetic field strength. The green colored
steps in the background correspond to the corresponding first empty LL, ν = 6,5,4; (b) variation of
Sν with number of trapped atoms. Figures taken from [33]. (Reprinted figures with permission from
Padhi, B.; Ghosh, S. Phys. Rev. Lett. 2013, 111, 043603. Copyright (2013) by the American Physical
Society. Source: http://dx.doi.org/10.1103/PhysRevLett.111.043603)

4.2. The Shubnikov de Hass Oscillation

The oscillatory behavior of δν
p is an early indication of the fact that this cold atomic system is

successfully mimicking the physics of LLs and there is indeed SdH present in this system. A closer
look at this reveals this oscillation is simply due to the length scales associated with the current
problem.

In presence of synthetic gauge field the cyclotron radius of the ultracold atoms (l0 ∼ 200–800
nm) is comparable with the wavelength of the probing photon (λ ∼ 600 nm). With increase in field
strength the cyclotron radius decreases and the number of wavelengths that fits within this radius also
changes, leading to the oscillatory behavior of the atom-photon coupling strength as a function of the
field strength. In comparison, in the corresponding electronic problem the electron cyclotron radius
is much smaller (l0 ∼ 20 nm ) so the incident photon can not actually see the individual cyclotron
orbit, making such oscillation hard to be observed in electronic LL spectroscopy [63].
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(a)

(b)

Figure 5. Steady-state interactivity photon number as a function of (a) pump cavity detuning for a
set of synthetic field and η/κ; (b) pump rate for the same set of synthetic fields and cavity detuning
∆ = 2π× 2.5 MHz. Figure taken from [33]. (Reprinted figures with permission from Padhi, B.; Ghosh,
S. Phys. Rev. Lett. 2013, 111, 043603. Copyright (2013) by the American Physical Society. Source:
http://dx.doi.org/10.1103/PhysRevLett.111.043603)

Next we proceed to see how the SdH oscillation manifest itself through the cavity spectrum.
For that we look at the time-evolution of the cavity photon operators. By setting up the Heisenberg
equation one obtains the steady solution â†(s)(â(s))

n̂ph = â†(s) â(s) =
η2

κ2 + (∆− Sνn̂ph)2 , Sν =
2

ω0

∞

∑
p=1

(δν
p)

2 =
U2

0AM
32πh̄

(
1− J2

0 (2KRν)
)

. (53)

The cavity spectrum is obtained by taking the expectation value of the above equation and it
turns out to be, S2

νn3
ph− 2Sν∆n2

ph + (κ2 +∆2)nph = η2. Such non-linear cubic equation is characteristic
of optical multistability [17], which is also apparent from Figure 5.
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The distance between the two turning points of the bistability curve in Figure 5b is calculated

to be h(Sν) =
4(∆2−3κ2)3/2

27Sν
. This is the quantity which can be measured experimentally and as shown

in Figure 4b this also carries the signature of the SdH oscillation. The experimentally measurable
cavity spectrum [15,17] can be used to extract the corresponding h(Sν), and hence Sν which can be
compared with the theoretical value obtained from Equation (53), provides one the information about
the LL inside the cavity.

To summarize this section here, we saw that cavity optomechanics could be very useful tool to
explore ultracold atomic systems in a synthetic gauge field, providing us a direct access to the atomic
Landau levels. We will explore more possibilities in the next section, in a more general situation. As
part of further studies on the system discussed here one may try to study the physics of the lowest
LLs through the cavity spectrum. One can also include inter-atomic interaction and explore how they
affect the spectrum.

5. Dynamically Created Spin-Orbit Coupling inside a Cavity

In the previous Section 4 we have discussed the interesting physics that comes to picture when
ultra cold fermionic atom in a laser induced synthetic gauge field is coupled to a cavity field. An
alternative way is to dynamically induce a synthetic gauge field for such ultra cold atomic ensemble
using the tricks of cavity quantum electrodynamics. A number of schemes [31,32,64,65] is proposed
in this direction.

5.1. Synthetic SO Coupling in Ring-Cavity

In the scheme proposed by Mivehvar and Feder [31] a three level atom is coupled with the help
of two counter-propagating laser modes which form a ring cavity in the well known Λ scheme. The
resulting system can be described by the atom-photon hamiltonian

Hr =
h̄2q2

z
2m

I3×3 + Eaσaa + Ebσbb + Eeσee

+h̄(ω1a†
1a1 + ω2a†

2a2)

h̄(gae(z)a1σea + gbe(z)a2σeb + H.c.)

In the above expression Ee > Eb > Ea are the energy of the three internal states of the atom,
with the condition that (Eea, Eeb) � Eba, (Eij = Ei − Ej). σij = |i〉〈j|, and gae(z) is the coupling
strength between the levels |a〉 and the excited state |e〉 through the laser a1 exp(ik1z) and gbe(z) is the
coupling strength between the levels |b〉 and the excited state |e〉 through the laser a2 exp(−ik2z). h̄qz

is the center of mass momentum of the atom, multiplied by the 3× 3 identity matrix in the internal
space of this atom.

Now under the condition that frequency detuning h̄∆1 = h̄ω1 − Eea and h̄∆2 = h̄ω2 − Eeb are
very large in comparison to the energy gap Eba, the exited state can be eliminated adiabatically (for
details see [31]). Now after making a unitary transformation to the resulting hamiltonian so that
it moves with the resulting momentum transferred to it through the atoms photon interaction, one
finally gets an effective Hamiltonian

Hr
e f f =

h̄2

2m
[qz − (k1σaa − k2σbb)]

2

1
2

h̄ω̃0σz + h̄(ω†
1 a1 + ω2a†

2a2)

h̄ΩR(a†
2a1σba + h.c.) .

Here the Rabi frequency ΩR = gaegbe(
∆1+Delta2

∆1∆2
) and h̄ω̃0 = Ẽb − Ẽa, where Ẽ is the Stark-shifted

atomic energy E. The interesting point to note in the above effective hamiltonian is that the last
term is similar to the Jaynes-Cummings hamiltonian described in the section, but with a replaced
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by a†
2a1 which is a two photon operator. One can now define the following spin operators for the

atomic system

σ+ = σba =
1
2
(σx + iσy) =

1
h̄

s+

σ− = σab =
1
2
(σx − iσy) =

1
h̄

s− (54)

Similarly we can define Schwinger angular momentum operators for the photon field

jx =
h̄
2
(a†

1a2 + a†
2a1)

jy =
h̄
2i
(a†

1a2 − a†
2a1)

jz =
h̄
2
(a†

1a1 − a†
2a2) (55)

H̃e f f =
h̄2

2m
{qz I2×2 − [

∆k
2

I2×2 − kσz]}2

+ ω̃0sz +
h̄
2
(ω1 + ω2)N + (ω1 −ω2)jz

+
ΩR
h̄

(j−s+ + j+s−) (56)

Here k = (k1+k2)
2 and ∆k = k1 − k2. The first term in the above hamiltonian Equation (56)

represents spin-orbit coupling with equal contribution from the Dresselhaus and Rashba term.
The rest of the terms that represents atom-photon interaction is a generalized Jaynes-Cummings
hamiltonian. One can define total angular momentum J = j + s combining the photonic angular
momentum and atomic pseudo-spin and analyze the spectrum of such hamiltonian. In the work [31]
Mivehver and Feder studied the eigenvalue problem corresponding to the above hamiltonian and
particularly discussed in detail superposition states of atomic and photonic excitations known as
cavity polaritons. Particularly diagonalizing the full hamiltonian in the dressed state basis they
showed under what condition two photon process can lead to the typical double well like dispersion
structure which is a hallmark of the spin-orbit coupling. They have also considered the strong and
weak atom-photon coupling regime and described how they can be achieved.

6. Cavity Mediated Spin-Orbit Coupling

In an alternative suggestion by Deng et al. [64] synthetic spin-orbit coupling is generated for
Λ-type atoms placed inside a cavity. The electronic ground state of such system can exist in | ↑〉 and
| ↓〉 state are respectively denoted as |g ↑〉 and |g〉 ↓ where as the excited state is denoted as |e ↓〉 and
the transition frequency between the ground state is given as ωa. A Zeeman splitting of magnitude
h̄ωz is created between | ↑〉 and | ↓〉 state. The atomic transition | ↓〉 → |e〉 is driven by the pump laser
by illuminating the atoms along the y-axis by a standing-wave pump laser with frequency ωL + ∆ωL
and the atomic transition | ↑〉 → |e〉 is driven by a plane wave probe laser with frequency ωL. These
lasers are respectively polarized along x and z axis.

In the large atom-pump detuning limit, |Ω1,2
∆ | � 1 and | g0

∆ | � 1, the excited state of the atom
can be eliminated and the single-particle part of the many body hamiltonian is given by [64]

ĥ =
p2

2m
Î + h̄

[
− δ

2 M̂−(x, y)
M̂†
−(x, y) δ

2 + M̂z(x, y)

]
(57)
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Here

δ = ωz + ∆ωL +
Ω2

2
∆

is the effective two-photon detuning. M̂− = (−Ω cos ky + Ωc â cos kx)e−iky with â being the
annihilation operator of the cavity photon. Ω = −Ω1Ω2

∆ and Ωc = g0Ω2
∆ are the effective Raman

coupling strength of the classical and cavity field and thus realizes Spin-Orbit coupling through
Raman transitions. The other term Mz = U1 cos2 ky + η(â + â†) cos kx cos ky + U0 â† â cos kx realizes a

quantum optical lattice with η = − g0Ω1
∆ , U0 = − g2

0
∆ and U1 = −Ω2

1
∆ .The effective second quantized

hamiltonian of such spin-orbit coupled pseudo-spin - 1
2 system is

Ĥ = ∑
σ,σ′

∫
drψ̂†

σ[ĥσ,σ′ + Vext(r)δσ,σ′ ]ψ̂σ′(r)

+
1
2 ∑

σ,σ′

4πh̄2aσσ′

m

∫
drψ̂†

σ(r)ψ̂
†
σ′(r)ψ̂σ′(r)ψ̂σ(r) (58)

Here m is the mass of the atom, ψ̂σ=↑,↓ is the field operator for spin -σ atom, Vext(r) is the
spin-independent trapping potential, and aσ,σ′ is the s-wave scattering length between spin σ and
σ′ atoms.

For large decay rate κ � |η|, |Ωc|, the cavity field reaches a steady state on a much faster time
scale than the time scale of atomic motion in this case one can set ∂â

∂t = 0 for the Heisenberg equation
of motion for the photon field operator substitute the resultant expression in the Heisenberg equation
of motion for the atomic field operator. The atomic field operator is then replaced by their expectation
value ψσ(r) = 〈ψ̂(r)〉. This finally yield the spinorial Gross-Pitaevskii like equation

ih̄
∂ψσ

∂t
= ∑

σ′
(ĥσσ′ + Vextδσσ′ +

4πh̄2aσσ′

m
ψ∗σ′ψσ)ψσ′ (59)

This equation was solved to explore the quantum phases of the spin-orbit coupled pseudo-spin- 1
2

bosonic atoms in the η, Ω parameter plane and a number of interesting phases such as checkerboard
phase, striped phase was obtained with exotic spin-ordering. Using somewhat similar mechanism in
the next Section 7 we shall explain in detail the phase diagram of SO coupled bosonic atoms realized
in NIST type experiments placed in side a high finesse optical cavity.

7. Spin-Orbit Coupled Ultracold Bosons in a Cavity

In this section we study a two component BEC interacting with a cavity, in presence of spin-orbit
coupling (SOC). We explore how the SOC combined with cavity dynamics give rise to various
magnetic phases and how cavity spectrum can be used to detect them.

7.1. Formalism

We borrow much of the formalism from the previous section, however, present here with more
detail. The assumptions discussed in the previous section for constructing the effective Hamiltonian
still hold here. However, there are few significant differences. Due the presence of SOC, along
with the U(1) gauge field we have a SU(2) gauge field appearing [66] in the canonical momentum,
Π̂

2/2m = (p + mA)2/2m , where A = AU(1) + ASU(2) and we choose ASU(2) = (ασy, βσx, 0) which
is a combination of Rashba and Dresselhouse [67,68] type spin-orbit coupling. Such a scenario has
already been realized in [55]. When β = −α the spin orbit coupling is purely of Rashba type. Here
α, β actually denote the strength of SOC in the unit of h̄K/πm, σ̂x,y,z are 2× 2 spin1/2 representation
of Pauli matrices.

Another difference in this case is, we have a three level system. For simplicity we assume both
the transitions |2〉 ↔ |1〉 and |3〉 ↔ |1〉 have the same coupling with the cavity. In this case also
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we can perform an adiabatic elimination of the excited state provided the following conditions are
respected. The excited state vary with a time scale of 1/γ (atomic line-width) and the ground state
and cavity photons evolve with a time scale of 1/∆a, in this case ∆a stands for ∆a

12 + ∆a
13. Hence by

choosing a large atom-pump detuning, ∆a
ij � γ we can adiabatically eliminate the excited states from

the dynamics of our system. In other words, the two laser-dressed hyperfine states |F = 1, mF = 0〉
and |F = 1, mF = 1〉 of the 87Rb atoms are now mapped to a synthetic spin-1/2 system (hence
pseudo-spin), with states labeled as | ↑〉 and | ↓〉. It must be noted that there exists no real spin-1/2
bosonic systems in nature due to spin-statistics theorem, but with the help of lasers we could realize
such a system in ultracold atomic condensate [55]. With all these machinery we arrive at the effective
Hamiltonian of the system

Ĥ(1)
e f f =

∫
dxΨ̂

†
(x)
( Π̂

2

2m
+ Ulat

)
Ψ̂(x) + Ĥc

+
1
2

∫
dx ∑

s,s′
Us,s′ Ψ̂

†
s (x)Ψ̂†

s′(x)Ψ̂s′(x)Ψ̂s (x), (60)

Here s, s′ ∈ {↑, ↓}. For simplification of notations we have defined a column vector Ψ̂ =

(Ψ̂↑, Ψ̂↓)T . The atom-atom interaction strength is denoted as U↑,↑ = U↑,↑ = U and U↑,↓ = U↓,↑ = λU.
Here U = 4πa2

s h̄2/m and as is the s-wave scattering amplitude, the parameter λ is decided by the
laser configuration. One can note the atom-cavity coupling has lead to the formation of an optical
lattice [18], which is Ulat = V0[cos2(Kx) + cos2(Ky)]. Here V0 is the depth of the well, V0 = h̄U0 â† â
and U0 ∼ 1/∆a is the effective atom-photon coupling strength. Now since the lattice depth has
become a (photon number) operator, it is no longer a classical lattice but a quantum lattice. In our
calculations we have considered a Nd:Yag (green) laser source of λ =1064 nm (hence the lattice
constant is a0 = λ/2 = 532 nm). The kinetic energy of an atom carrying one unit of photon
momentum, |p| = h̄K describes the characteristic frequency of the center of mass motion of the
cloud. Thus the relevant energy scale is Er = h̄2K2/2m (recoil energy), in the units of which we
measure all other energies involved in the problem. For our case the lattice recoil frequency is
ωr = Er/h̄ = 12.26 kHz.

To investigate various interesting phases of this system through the cavity spectrum, first we
establish an equivalence of the effective Hamiltonian obtained in Equation (60) in a cavity induced
quantum optical lattice with a prototype Bose-Hubbard model in a classical optical lattice. Using tight
binding approximation this is done as follows. By constructing maximally localized eigenfunctions
at each site of the lattice we expand each component of the atomic field operator Ψ̂s in the basis of
Wannier functions Ψ̂s(r) = ∑i b̂siw(r − ri), where b̂†

si is a bosonic operator that creates an atom in
pseudo-spin state |s〉 (s = {↑, ↓}) at site i of the optical lattice. However, in presence of a gauge
potential the Wannier functions pick up a gauge dependent phase and should be modified as

w(r− ri)→W(r− ri) = e−i m
h̄
∫ r

ri
A(r′)·dlw(r− ri). (61)

Under nearest neighbor approximation (i.e., hopping is permitted in between two adjacent sites
only), the gauge transformed Wannier function in Equation (61) forms a valid basis for the Hilbert
space hence we expand the effective Hamiltonian in Equation (60) in this basis. Note, however, the
following approximation is done in order to write the Wannier function in the above form [24]: The
Wannier function depends on the atomic density, which in turn depends on the Wannier function as
well. So by assuming the thermodynamic limit (by letting the number of atoms and cavity volume
go to infinity), yet keeping finite number of atoms on each site one decouple the above mentioned
feedback mechanism and write the function in this way.

Unlike the case of the BH model in a classical optical lattice [69], for a lattice generated by
quantum light one should treat the matrix elements of the potential and kinetic energy separately.
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It is because of the presence of the term â† â in the potential term. So the modified BH Hamiltonian
becomes

Ĥ(2)
e f f = E0N̂ + E1T̂ + h̄U0 â† â(J0N̂ + J1T̂ )− h̄∆c â† â

−ih̄η(â− â†) + 1
2 ∑i,s,s′ Us,s′b†

isb†
is′bis′bis, (62)

Here, E0 (E1) and J0 (J1) are the on-site (off-site) elements of Eij and Jij, respectively and
these are:

Eij =
h̄2

2m

∫
d2rw∗i (r)∇2wj(r), (63a)

Jij =
∫

d2rw∗i (r)[cos2(Kx) + cos2(Ky)]wj(r). (63b)

N̂ = ∑s,i b̂†
si b̂si is the total atom number operator and T̂ = ∑s ∑<i,j> b̂†

sie
−iφij b̂sj is the nearest

neighbor hopping operator. Here φij is the phase acquired by an atom while hopping from lattice site
i to j: Here is a 2× 2 unit matrix. Because of the dynamical nature of the lattice ( the coefficient term
for the lattice potential involves operators) Eij and Jij are treated separately, otherwise the hopping
amplitude would be identified with t = E1 + J1 and the chemical potential with µ = E0 + J0.

Now we do the final job of eliminating the cavity degrees of freedom to arrive at our working
Hamiltonian. The interplay of energy scales associated with the spin orbit coupling, motion of atoms
in a dynamical lattice and atom-atom interactions brings out a richer and more complex dynamics,
as compared to the usual BH model [18,69], which we try to capture through the light coming out
of the cavity. To facilitate further discussion on dynamics governed by Equation (62) we shall do
certain simplifications based on the typical experimental systems. Following typical experimental
situation [14,70–72] we work under so called "bad cavity limit", where we assume the cavity field
reaches its stationary state very quickly than the time scale involved with atomic dynamics. Hence it
is reasonable (at least for t > 1/κ) to replace the light field operators with their steady state values,
and thus adiabatically eliminate the cavity degrees of freedom from the Hamiltonian Equation (62) so
that it depends only on the atomic variables. It will be useful to remember this process is distinct from
the adiabatic elimination of the excited state |1〉. By constructing the time evolution of the photon field
operator we arrive at its steady state solution

â(s) =
η

κ + i[U0(J0N̂ + J1T̂ )− ∆c]
≈ η

κ − i∆′c

[
1− iU0 J1

κ − i∆′c
T̂ −

U2
0 J2

1
(κ − i∆′c)2 T̂

2 + ...
]

(64)

where ∆′c = ∆c − U0 J0N0 and N0 = 〈N̂ 〉 is the total number of atoms. Substituting this in the
previous Hamiltonian Equation (62) we obtain the effective Hamiltonian, expressed only in terms of
atomic variables :

Ĥ(3)
e f f = − J̃0T̂ + J̃1T̂ 2 + ... +

1
2 ∑

i,s,s′
Us,s′ b̂

†
is b̂†

is′ b̂is′ b̂is. (65)

J̃0/J1 = U0η2 κ2 − ∆′2c
(κ2 + ∆′2c )2 − E/J1, (66a)

J̃1/J2
1 = 3U2

0 η2∆′c
3κ2 − ∆′2c
(κ2 + ∆′2c )4 . (66b)

The parameter J̃0 is the rescaled hopping amplitude, where the scaling factor is introduced by
the cavity parameters and that of atom-photon interaction strength. Note J̃0 can be made to vanish
by setting ∆′c = κ, and similarly J̃1 vanishes when ∆′c =

√
3κ.
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It is clear from Equation (65) that cavity-atom coupling induces higher order hoppings feasible
through terms like T̂ (n). Also the amplitude of there terms are well controllable through cavity
parameters allowing to study higher order atom-atom correlations in these systems. Through suitable
choice of cavity parameters, we suppress all higher order terms starting from T̂ 2. This renders Ĥ(3)

e f f
to a tight-binding Hamiltonian [73], which has incorporated in itself the effects of cavity, abelian and
non-abelian gauge field altogether :

Ĥ(4)
e f f = − J̃0T̂ +

1
2 ∑

i,s,s′
Us,s′ b̂

†
is b̂†

is′ b̂is′ b̂is. (67)

This is our effective Bose Hubbard Hamiltonian, on which rest of the work is built on. The
hopping amplitude is J̃0. The hopping operator T̂ now contains all the information about spin orbit
coupling. However, it may be pointed out that apart from modifying bare hopping amplitude J0 to
the rescaled J̃0, the cavity also triggers long-range correlations via higher order terms in T̂ which we
ignored. We’ll discuss this issue later on. In the following subsection we analyze the complete energy
spectrum in the non-interacting limit of the effective Hamiltonian in Equation (67).

7.2. Non-Interacting Limit

The rescaling of the hopping amplitude by cavity parameters allows a number of physical
properties to be controlled through such parameters. We study the spectrum of this tight-binding
Hamiltonian obtained in Equation (67). We shall show that the resulting system yields two interesting
spectra namely, the Hofstadter butterfly spectrum, see Figure 6 and the Dirac spectrum, see Figure 7.

The emergence of Hofstadter spectrum is natural as the considered non interacting bosonic
system mimics the motion of a Bloch particle (a quantum mechanical particle in a periodic lattice
potential) in presence of a uniform U(1) gauge field. The Hofstadter spectrum is revealed when the
energy values of the Bloch particle is plotted against the abelian Flux inserted. Such is the case in the
absence of Spin Orbit coupling (α = 0) where the Hamiltonian in Equation (67) becomes identical with
a Harper Hamiltonian, which can be obtained through Peierl’s substitution in the usual tight-binding
Hamiltonian [74]. Recently, two groups at the M.I.T and in Munich have experimentally realized
such butterfly spectrum in cold atomic systems [75,76]. However, compared to those systems, in the
present case one can control (through suitable choice of J̃0) the energy scale of the butterfly structure
just by suitably tuning the cavity parameters. The effects of non-abelian gauge field on such butterfly
structure, was also studied [66].

Next we show how the Dirac spectrum emerges. For this the Hamiltonian in Equation (67) is
diagonalized and the spectrum obtained is:

E±/ J̃0 = 2 cos α cos kx + 2 cos β cos(ky − 2mπΦ)

±
√

sin2 α sin2 kx + sin2 β sin2(ky − 2mπΦ), (68)

where (m, n) is a lattice point, see Figure 8b. The energy values are plotted against particle momentum
and a Dirac like spectrum is obtained in Figure 7.

The band-splitting in the spectrum becomes evident as soon as the effects of SOC is incorporated,

showing a band gap (Eg) of Eg/ J̃0 = 4 sin α
√

sin2 kx + sin2(ky − 2mπΦ), where the gap can be

tuned by the cavity as well (through J̃0). Also in the first Brillouin zone the band gap is maximum
when (kx, ky) ∈ {(±π/2,±π/2)} and Emax

g / J̃0 = 4
√

2 sin α ≡ W. It is possible to carry out
a bandgap measurement in such systems through Bragg spectroscopy [77,78], through which one
can measure the non-abelian flux inserted in the system. However, the gap vanishes when both
sin ky = sin kx = 0. In the first Brillouin Zone (by setting Φ = 0) this can happen for (kx, ky) ∈



Atoms 2016, 4, 1 28 of 41

{(0, 0), (±π, 0), (0,±π), (±π,±π)} ≡ kD. In the vicinity of these points the effective low energy
behavior can be described by a Dirac like Hamiltonian,

Ĥe f f = −∑
p

Ψ̂†
p ĤDΨ̂p, ĤD = cxγx px + cyγy py. (69)

(a)

(b)

Figure 6. The spectra obtained in presence of a purely abelian gauge field, for different cavity
detunings: ∆ = −45 MHz; (b) ∆ = 45 MHz. Here we have taken a 8 × 8 lattice with a filling
factor equal to one.

Here, ĤD is a Dirac Hamiltonian, p = k− kD, but the field operators Ψ̂p are bosonic annihilation
operators. The gamma matrices γ0 = 1, γ1 = γx = σy, γ2 = γy = σx are the 2 + 1 dimension
representation of Clifford algebra, {γi, γj} = 2δij. The speeds of light cx = 2 sin α, cy = 2 sin β are
now anisotropic. As shown in the Figure 7, through this anisotropy the SOC strength can be used
as a handle to controlling the shape of the Dirac cones. We refer the “Dirac-like” points kD in our
bosonic system also as Dirac points. Near kD the excitation quasi particles are mass-less bosons
having a dispersion relation linear in k, the slope of which is controlled by adjusting the spin-orbit
coupling strength.
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Figure 7. A three dimensional view of the energy spectrum plotted for a purely (Φ = 0 non-abelian
gauge field. The strength of SOC is (a) α = π/2 = β; (b) α = π/2 + 0.25, β = π/2 − 0.25. The
surface plot is an intensity map of the energy difference between E+ and E−. The four green spots
on the surface correspond to the four (Bosonic) Dirac points (at the zone centers) where the energy
gap between the two bands vanishes. The red band and the blue band correspond to E+ and E−,
respectively. W is the maximum band-gap, that occurs at the zone boundaries; In (c,d) the location
of the Dirac points on the momentum space are shown for 2mπΦ = 0.75 and 1.5, respectively. With
increasing Φ the Dirac points move along +ve ky axis. From [34]. (Reprinted figures with permission
from Padhi, B.; Ghosh, S. Phys. Rev. A 2014, 90, 023627. Copyright (2014) by the American Physical
Society. Source: http://dx.doi.org/10.1103/PhysRevA.90.023627)

It must be emphasized that such massless bosonic quasiparticles which mimic the massless Dirac
fermions in relevant fermionic systems [77,78] arise in this system as a consequence of the spin-1/2
nature of the bosons. Such spin-1/2 bosons have no natural analogue because of Pauli’s spin-statistics
theorem. However, this constraint can be lifted by synthetic symmetries [79] and synthetic bosonic
(pseudo) spin-half system can be realized. After the preliminary proposals on simulation of Dirac
fermions in cold atom system [80] they were soon realized experimentally [77,78], using density
profile measurement methods or Bragg spectroscopy. Similar techniques may also be exploited to
observe the bosonic quasiparticles that follows massless Dirac equation. In the above derivation of
Dirac like hamiltonina we have not considered inherent atom-field nonlinearities that can lead to the
formation of loop like structures in the energy band [81]. An exploration of this issue will be very
interesting, but is kept out of further discussion in this article.

As evident from Equation (68), the effect of an abelian field would be to move these points on the
momentum space (see Figure 7c,d. With finite abelian field there also emerges a Hofstadter spectrum
as discussed previously. This can be verified by plotting the energy as a function of the abelian
(magnetic) flux [66]. For the same system here in Figure 7c,d and we plotted the energy against
the Bloch momentum for a given value of the abelian flux to show the location of the Dirac points.
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From the Equation (68) it is also suggestive that with the use of a spatially modulated abelian flux one
may control the separation between the Dirac points. Motion and merging of Dirac points has also
been very interesting as they lead to topological phase transitions [82–84]. One can also switch on the
interaction and study its effects on the spectrum [85,86].

(a)

(b)

Figure 8. (a) 87Rb BEC inside an optical cavity: spin-orbit coupling (SOC) is created by
two counter-propagating Raman lasers with frequencies ωL and ωL + ∆ωL that are applied along
x̂. The Raman beams are polarized along ẑ and ŷ (gravity is along -ẑ). A bias field B0 is applied along
ŷ to generate the Zeeman shift. (Inset) Level diagram of the 87Rb atom. Internal states are denoted
as |1〉, |2〉, |3〉. The coupling of these states is shown schematically; (b) Schematic of an optical lattice.
The phase operator Ux determines the phase acquired by an atom when it hops from site (m, n) to
the site (m + 1, n). Similarly, the operator Uy determines the phase acquired by hopping along the
positive y-axis. The operators U†

x and U†
y determine the phase acquired in hopping along negative x

and y axes, respectively. Figure taken from [34]. (Reprinted figures with permission from Padhi, B.;
Ghosh, S. Phys. Rev. A 2014, 90, 023627. Copyright (2014) by the American Physical Society. Source:
http://dx.doi.org/10.1103/PhysRevA.90.023627)

7.3. Interaction and Magnetic Order

The primary effect of turning on inter-particle interaction is the onset of various magnetic
orders in the ground state of the Hamiltonian. This can be shown by mapping the Hamiltonian
in Equation (67) to an effective spin Hamiltonian ( one treats the interaction part of Equation (67)
as the zeroth-order Hamiltonian and then the hopping part ( J̃0T̂ ) is treated perturbatively to get the
effective spin Hamiltonian matrix elements). Readers interested in details may look into [87–90].
Using such analysis the effective spin Hamiltonian have been studied in cold atomic systems, in
presence [91–94] or absence [87–90] of SOC. We realize that the mathematical structure of our effective
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mBHM Hamiltonian in Equation (67) is the same to the one considered in [91–94], provided we switch
off the abelian field part. However, since we have considered a cavity induced quantum optical lattice,
instead of the hopping amplitude t in a classical optical lattice, which was the case studied in those
works, here we have a rescaled hopping parameter J̃0, which essentially captures the information of
the quantum light. Thus in the parent Hamiltonian of references [91–94], if we substitute J̃0 in place of
t we arrive at the same conclusion. In fact, since J̃0 can be controlled by means of the cavity parameters
thus one can also maneuver the entire phase diagram by suitably adjusting these parameters.

The effective spin Hamiltonian turns out to be a combination of two-dimensional Heisenberg
exchange interactions, anisotropy interactions, and Dzyaloshinskii-Moriya interactions [95,96]. These
terms collectively stabilize the following orders [93]: ising ferromagnets (zFM), antiferromagnets
(zAFM), Stripe phase, Spiral phase (commensurate with 3-sites or 4-sites periodicity, respectively
denoted as 3-Spiral and 4-Spiral), and the vortex phase (VX). Detailed discussion of these phases can
be found in [93]; for completeness we provide a brief description of each of these phases below.

A schematic of the spin configurations of these phases are given in the insets of Figure 9. The
zFM order is a uniformly ordered phase where all the spins are aligned along the z-axis; however,
in the zAFM phase the direction of the spin vectors alternate as parallel or anti-parallel to the z-axis.
There is a subtle difference between the stripe phase and the zAFM: in the stripe phase, along a given
axis on the xy-plane all spins are up but for the other axis they alternate as up and down. In zAFM
they the spins alternate along both the axes. Two types of spiral waves appear for this system. In
both the cases, all the spins along one axis on xy-plane are parallel; however, along the other axis, the
spin vectors make an angle with the z-axis which changes (starting from 0) as we move along the axis.
However, there exists a period in number of lattice sites after which the angles are repeated like wave.
In 4-spiral, 4 sites make one period: the angles progress with site as π, π/2, 0,−π/2, π.... In 3-spiral,
3 sites make one period: the angles progress with site as π, π/3,−π/3, π.... The vortex phase is one
of the XY phases, in which all the spin vectors lie on the XY plane.

Now we turn our attention to the spectrum of the non-interacting SOC bosons in a cavity induced
quantum optical lattice potential. The cavity spectrum can be obtained from Equation (64) by setting
∂t â = 0 as:

nph = 〈â†(s) â(s)〉Ψ =
η2

κ2 + (∆′c −U0 J1〈T̂ 〉Ψ)2
. (70)

The many body wavefunction Ψ above has an orbital part and a spinorial part. We focus on
the spinorial part of the wavefunction since they characterize the magnetic orders. Detection of
various phases in the orbital part of the wavefunction, through the cavity spectrum was carried
out in [18]. To simplify our discussion we assume that the orbital (optical lattice site) part of the
wavefunction corresponds to a Mott insulator (MI) state with one atom per lattice site (by restricting
the lattice depth ≥ 20Er [97]). In our work we propose a method which enables us to probe the
spinorial part of the wavefunction (hence the magnetic orders) with the help of the cavity spectrum.
The key idea is by forming a quantum lattice with the help of the cavity a feedback mechanism (of
cavity light) is triggered, causing the cavity spectrum to non-linearly depend on nph through this
modified Lorentzian [98]. In addition, the spectrum is also dependent upon the state |Ψ〉 through
the expectation value of the hopping operator 〈T̂ 〉Ψ. This dependence is pronounced only when J1 is
finite. In further discussions we will show how this dependence can be used to probe the spinorial
part of the quantum many-body ground state wavefunction.

Following [99] the wave function for various orders can (in the Mott phase only) be written as

|ΨMI〉 = ∏
i∈A,j∈B

|ψA〉i|ψB〉j, (71)

with site indexes i, j and |ψA,B〉 = cos θA,B
2 | ↑〉 + eiφA,B sin θA,B

2 | ↓〉. The entire lattice is divided into
two sub-lattices A, B and we assume alternating sites belong to different sub-lattices. The parameters
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θ, φ are projection angles in the internal spin space. We assume there are exactly equal number of
lattice sites in sub-lattices A and B, hence the total number of sites is K2 even, also assuming unit
filling we set K2 = N0. Please note K was earlier used to denote the wave number of the cavity
photon and here we use the same notation for a different thing. We calculate the expectation value of
the tunneling operator, 〈T̂ 〉 for various magnetic orders and summarize in the Table 1. This will be
the basis of further discussions. We can distinguish between different magnetic orders because each
order can now be associated with a corresponding 〈T̂ 〉, hence a cavity spectrum, provided there is
non-vanishing z-axis component of the spin vector (the reason will be clear later on). Thus one can
not distinguish between any of the XY phases, such as the vortex phase or the anti-vortex phase etc.
However, the other various magnetic orders, which can arise in a spin-orbit coupled system through
experimental control of the free parameters (α, β) [93] or (α, λ) [91,94] can be well distinguished.

Figure 9. (a) The spin vectors in internal spin spaces of two neighboring sites; (b–d) Cavity spectrum
for different phases in the MI region for different non-abelian flux insertions. The SOC strength for
all the phases are (α, β)/π = (0.01,0.01) zFM; (0.2, 0.2) 4-Spiral; (0.3, 0.3) 3-Spiral; (0.5, 0.5) Stripe;
(0.34, 0.34) VX. Note the turning points are highly dependent upon the phases. The dotted part
shows the unstable region of the spectrum. The red and blue legends correspond to the magnetic
order, shown in boxes. From [34]. (Reprinted figures with permission from Padhi, B.; Ghosh,
S. Phys. Rev. A 2014, 90, 023627. Copyright (2014) by the American Physical Society. Source:
http://dx.doi.org/10.1103/PhysRevA.90.023627)

We further divide the MI regime into two regions separated at a potential depth of 25Er (see
Figure 10a). In one region of the depth values the J1 vanishes, hence it becomes impossible to probe
the spinorial part of ground state through the cavity spectrum. In the other region the J1 is finite,
enabling us to probe the ground state. We name these regions as region I: Shallow MI regime.
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Lets first consider region II. As evident from Figure 10a in this region J0 vs V0 can be
approximated by a linear function (J0 = aV0 + b) and J1 can be assumed to be zero. The variation of
nph with respect to pump amplitude η2 is shown in Figure 10b and that with respect to detuning ∆′c
is shown in Figure 10c. There exists a bi-stable region in the spectrum which is shown by red dashed
line. In the strong MI regime the atoms get tightly localized at their site resulting in a negligible
hopping amplitude. The atoms can sense the presence of the abelian or non-abelian field only through
the hopping term, and now since the hopping amplitude is almost negligible the cavity spectrum is
insensitive to the abelian or non-abelian gauge field.

Table 1. Expectation of the hopping operator and the steady-state photon number for different phases
in the Mott insulator (MI) state.

Order 〈T̂ 〉Ψ
zAFM 0
Stripe 2K(K− 1) cos β

VX K(K− 1)(cos α + cos β)
3-Spiral 3K(K− 1)(cos α + 4 cos β)/8
4-Spiral K(K− 1)(cos α + 3 cos β)/2

zFM 2K(K− 1)(cos α + cos β)

As the pumping amplitude η decreases the photon number decreases (see Figure 10b; however,
at a certain point (point D) the photon number abruptly drops to a very small value (point A), hence
the lattice suddenly becomes very shallow. This causes a phase transition from Mott insulator to
superfluid phase. Similarly, as η increases the photon number also increases, so does the lattice depth
as well. At the point B it suddenly jumps to a large value of nph (point C) hence a phase transition from
super fluid to Mott insulator occurs. This is an instance of bistability driven driven phase transition,
which was previously pointed out in [24,25] in different contexts. Points B or D are often referred to
as turning points or critical points. When the photon number gets lowered one might end up at a
super fluid phase or one might stay in the shallow MI region. So to determine the phase exactly one
needs to obtain the exact phase diagram and locate the appropriate turning points. We do not extend
this discussion further.

Now we turn to the case of shallow MI regime (or region I). We separate the following section
where we show that in this region it is feasible to probe the ground state of the SOC BEC through the
cavity spectrum. When J1 6= 0, the Lorentzian in Equation (70) can sense the presence of the magnetic
orders through 〈T̂ 〉.

Before getting to our results, it is worthwhile to point out that after the realization of spin-orbit
coupling for bosonic clouds [100] or condensate [55] by Spielman’s group the phase diagram of such
a system was theoretically obtained by various groups in [91–94]. Experimental verification of these
phases might not be very trivial, most importantly detecting all the emergent phases using a single
experimental setup is a formidable task. So far, the method of spin structure factor measurement
through Bragg spectroscopy [101] has been commonly used. Other methods include measurement of
spatial noise correlations [102], polarization-dependent phase-contrast imaging [103], direct imaging
of individual lattice sites [104] etc. However, each of these techniques come with their own set
of complications.

Extending the idea which was originally espoused for BEC without spin degrees of freedom [18]
here we propose a different scheme of experiment where such magnetic orders can be ascertained
without making a direct measurement on the atomic system. The relation between such approach
and “quantum non-demolition measurement” technique was also discussed [105,106]. The method
facilitates the detection all possible phases arising in the Mott regime of a SOC BEC and this can also
be extended to the superfluid (SF) regime.
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Figure 10. (a) The variation of overlap integral elements with potential depth. We study the variation
in two regions, which are (arbitrarily) separated at V = 25Er; we have used a 6× 6 lattice, {U0, κ} =
{12, 1}ωr; (b) with pump amplitude η for ∆c = 5000ωr; (c) with detuning ∆c for η = 6ωr. The red
dotted lines are the unstable regions of photon count. From [34]. (Reprinted figures with permission
from Padhi, B.; Ghosh, S. Phys. Rev. A 2014, 90, 023627. Copyright (2014) by the American Physical
Society. Source: http://dx.doi.org/10.1103/PhysRevA.90.023627)
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The cavity spectra for each of these orders are obtained in Figure 9. The spin-orbit coupling
strength (α, β) chosen for a particular order is such that, that specific order gets stabilized [93]. As
we gradually increase the pump value the photon number gets increased, but at the turning point
(ηc) it suddenly jumps to a higher value of photon number, since the photon intermediate count
corresponds to the unstable region. Clearly, the behavior of the spectra for different orders are
different, specifically the value of ηc varies widely. The zAFM will not show any such jump, and
the stripe phase will have a very small value of ηc. For zFM phase, ηc will always be the largest and
for 4-spiral phase it would be quite comparable with the ηc of zFM. For the XY phase and 3-spiral, the
ηc are always between these two extremes.

The above discussion is supported by the following observation. In Figure 9a the internal spin
(by “spin” we actually refer to “pseudo-spin”) spaces of two neighboring sites are shown as red or
blue blobs. The basis vectors of the spin spaces are the eignvectors of Ŝz. If a spin vector makes
an angle θ with the z-axis in the real space, then in the spin space it makes an angle θ/2 with the ↓
axis. A particular magnetic order is nothing but a specific spatial distribution of these θ and φ values.
The value of 〈T̂ 〉 is a measure of the probability of spin-dependent hopping across neighboring sites,
which hence captures this variation of θ values over the configuration space. We proceed in the
following way: if a spin vector creates an angle θA with the z-axis and the spin vector at the site
nearest to it makes an angle θB then in their internal spin spaces they make an angle θA/2 and θB/2
with ↓. Hence the projection of the spin vectors on the ↓ axis are cos θA,B/2 and that on the ↑ axis are
sin θA,B/2. The probability for a hopping of ↑ to ↑ (or ↓ to ↓) is the modulus squared product of the
projection lengths along ↑ (↓) axes. Hence for hopping of ↑ to ↑ has a probability of (sin θA

2 sin θB
2 )2

and for hopping of ↓ to ↓ it is (cos θA
2 cos θB

2 )2. Since ↑ and ↓ are orthogonal vectors hopping associated
with a spin flip is found to have vanishing 〈T̂ 〉.

To illustrate the implication of the above technique consider the case of zAFM. In zAFM on
alternative sites spin vectors are oriented parallel or anti-parallel to the z-axis, i.e., θA = 0, θB =

π. Hence any reordering of the spin vectors (mediated by the cavity light) which do not alter the
magnetic order should consist of hopping from ↑ to ↓ or visa-versa. However, the matrix element
〈T̂ 〉 for such a hopping is zero. Hence 〈T̂ 〉zAFM = 0 (see the Table). Similarly, in the case of zFM all
spin vectors are aligned along the z-axis, i.e., θA = π = θB. Hence any hopping other than ↑ to ↑ will
have vanishing contribution in 〈T̂ 〉zFM and 〈T̂ 〉zFM ∝ (sin π/2 sin π/2)2. It must be noted that the
value of 〈T̂ 〉 in turn controls the value of ηc, hence the trend of variation of 〈T̂ 〉 with respect to the
phases gets mapped to that in the values of ηc. The cos α or cos β are just scaling factors introduced
because of SOC. This is the central result of our work. Now we show that other than the phase
information the cavity spectrum can also be used to extract the amount of abelian or non-abelian flux
inserted in the system.

In order to show how the cavity spectra can be used for flux detection we consider the zFM
phase, which is stabilized in presence of both an abelian and a non-abelian field [107]. In presence
of an abelian flux, the expectation value of the tunneling operator for zFM order becomes 〈T̂ 〉FM =

2 cos α(K− 1)(K + f (K, Φ)). The presence of the abelian flux gives additional phases to the hopping
thus resulting in a overall phase factor of f (K, Φ) = sin(KπΦ)

sin(πΦ)
cos[πΦ(K− 1)]. This function is plotted

in Figure 11a. The similarity of the functional form of f (K, Φ) with that of an N-slit grating function
is just because in this case the phases arising due to the presence of this field gets summed over to
yield such a function. Evidently the optical lattice acts as a quantum diffraction grating [18,22].
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Figure 11. (a) The variation of grating function f (K, Φ) with the inserted abelian flux. The graph
legends indicate the size of the lattice. In a large lattice limit the grating function does not sense the
variation of Φ; The cavity spectrum for different fields: (b) abelian fields (with fixed non-abelian field,
α = −β = π/2− 0.15); (c) non-abelian fields (with fixed abelian field, Φ = 0.08Φ0). The negative
slope region is the unstable (gray) part of the spectrum. From [34]. (Reprinted figures with permission
from Padhi, B.; Ghosh, S. Phys. Rev. A 2014, 90, 023627. Copyright (2014) by the American Physical
Society. Source: http://dx.doi.org/10.1103/PhysRevA.90.023627)
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8. Conclusions

The review article analyzes some recent progress in cavity optomechanics with ultracold atomic
condensate in synthetic gauge field after providing a general introduction to the field of cavity
optomechanics (with single atom an atomic ensemble) and the physics of cold atoms in artificial
gauge field. At this moment the field is nascent and many interesting problems in this direction can
be addressed. However, one of the main issues will be experimental implementation of such scheme
which involves ultracold atomic condensate in a synthetic gauge field inside an optical cavity. This
requires further detailed theoretical analysis of the relevant systems which for example will consider
the effect of measurement backaction on the quantum phases of the cold atoms [108].

One more thing is, in the presence of a dynamical lattice, both the atom and photon operators
evolve, in accordance with their corresponding (coupled) Heisenberg equations [18,19]. One can
solve this pair of equations simultaneously to study the full self-organization. However, assuming
the atoms fall through the cavity light field sufficiently faster (much before the atoms affect the cavity
photon) we ignore the back action of the atoms on the cavity light [4]. Self-organization of atoms
in the lattice [105,109,110] can in itself be a separate direction to pursue, facilitating the study of
self-organized checkerboard phase [64], supersolid phase [106], or quantum spin-glass phase [111].

In most of the analysis presented in this review, only the average photon number is calculated
from the cavity transmission spectrum and was related with the quantum phases of ultracold atoms in
the cavity. Another interesting quantity that can be calculated from the cavity transmission spectrum
is the quantum fluctuations around the mean photon number [112] which could be again be used to
quantify the back action of the measurement process on the many-body state of the ultracold atoms.
This apart it will also be useful to explore if topological characterization of ultracold atomic states [58],
detection of edge or surface states in such states [113] can be carried out for ultracold atomic system
inside an optical cavity.

Hopefully, our analysis will augment the theoretical and experimental study of the behavior
synthetically gauged ultracold atoms inside high finesse cavity.
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