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Abstract:



The influence of an external test mass on the phase of the signal of an atom interferometer is studied theoretically. Using traditional techniques in atom optics based on the density matrix equations in the Wigner representation, we are able to extract the various contributions to the phase of the signal associated with the classical motion of the atoms, the quantum correction to this motion resulting from atomic recoil that is produced when the atoms interact with Raman field pulses and quantum corrections to the atomic motion that occur in the time between the Raman field pulses. By increasing the effective wave vector associated with the Raman field pulses using modified field parameters, we can increase the sensitivity of the signal to the point where such quantum corrections can be measured. The expressions that are derived can be evaluated numerically to isolate the contribution to the signal from an external test mass. The regions of validity of the exact and approximate expressions are determined.






Keywords:


atom interferometry; inhomogeneous gravitational fields; test mass; quantum phase corrections




PACS:


03.75.Dg; 37.25.+k; 04.80.-y








1. Introduction


Since its birth about 30 years ago [1], the field of atom interferometry (AI) has matured significantly. Experiments based on AI have been used to measure fundamental constants [2,3,4,5], the acceleration of gravity near the Earth’s surface [6,7,8,9], the gradient of the Earth’s gravitational field [4,10,11] and the curvature of the gravitational field produced by source masses [12]. Atom interferometer gyroscopes allow one to measure rotation rates; experiments have utilized optical fields [13], nanofabricated structures [14] and three or four spatially- or temporally-separated sets of fields that drive Raman transitions to split and recombine the matter waves [15,16,17,18]. The frequency shift arising from a quadratic Zeeman effect was also measured precisely [19]. There have been limits set on a non-Newtonian Yukawa-type fifth force [20] and on dark energy [21] using AI, as well as theoretical proposals for using AI to measure general relativity effects [22,23], including gravitational waves [24]. A detailed theoretical analysis of the combined effect of rotation and gravity on the AI signal has been given [17], based on three- and four-pulse Raman schemes.



Atom interferometry has also been used to probe the gravitational field produced by a heavy test mass [4,5,12,20,21]. Using a double-difference technique [4], one can extract that part of the phase of the AI signal caused by the gravitational field of the test mass. This article provides a theoretical calculation of this contribution to the phase, based on an atom interferometer using three Raman field pulses. The results can be used to optimize measurements of the Newtonian gravitational constant G and to provide a complete derivation of results outlined in a previous paper [25]. We might point out that an analytic, semi-classical expression for the phase response of an atom interferometer to an arbitrarily-placed, stationary point mass has been derived recently [26].



Estimated Phase Corrections Resulting from the Test Mass


The phase in an atom interferometer depends on the interactions of the atoms with the applied Raman fields, as well as the motion of the atoms between and following the applied Raman pulses. The Raman pulses couple two hyperfine sub-levels, g and e, in the atomic ground state manifold, and it is the phase associated with the Raman coherence [image: there is no content] that is measured using the interferometer. The presence of a gravitational potential modifies the atomic trajectories, leading to a modification of the AI phase. This modification of the phase serves as a measure of the sensitivity of AI to gravitational effects. Since the Earth’s gravitational potential is only slightly inhomogeneous over the physical extent of the atom interferometer, it can be approximated by a Taylor series in which only the lead and gradient terms are retained [27,28,29,30]. Approximate solutions for the atomic trajectories were obtained in [17,29], where effects related to the Earth’s rotation (centripetal and Coriolis forces) were also included. An exact expression for the atom trajectories with these combination of forces has also been derived for a non-spherical gravitational source (i.e., for an arbitrary gravity-gradient tensor), rotating with constant angular velocity [31].



The situation can change dramatically if a massive test object is brought close to the interferometer (see Figure 1). The accumulated phase produced by the test mass’ gravitational field, [image: there is no content], increases with decreasing distance [image: there is no content] between the test mass and the trajectories of the atoms in the interferometer and also increases with increasing delay times T between the Raman pulses. For sufficiently long T and small [image: there is no content], it is no longer a good approximation to retain only the lead and gradient terms when considering the gravitational potential associated with the test mass, as was done for the Earth’s gravitational potential.


Figure 1. Schematic representation of an atom interferometer in the presence of a test mass M. The atom cloud of the interferometer is launched at [image: there is no content] with velocity [image: there is no content] and interacts with Raman pulses at times [image: there is no content], [image: there is no content] and [image: there is no content], indicated by the stars in the diagram. (a) A generic interferometer; (b) the fountain geometry used for the numerical calculations. In this case, the mass is a point mass or spherical mass having radius [image: there is no content] that is centered at position [image: there is no content] at time [image: there is no content] The case of a stationary test mass ([image: there is no content]) and a test mass moving at constant velocity ([image: there is no content]) are considered. The modification of the signal produced by the test mass would be a maximum if the atom cloud were to touch the test mass at the top of the cloud’s trajectory.
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The maximum value of T is limited by experimental considerations; the largest delay time that has been achieved is [image: there is no content] s [32]. Even for smaller delay times, the inhomogeneity of the field can be significant. For example, with [image: there is no content] ms, in a symmetric fountain geometry [33], the length of the atomic trajectory is longer than:


L=12gT2=0.196m



(1)




where [image: there is no content] is Earth’s gravitational field. With [image: there is no content] m (see Eqs. (103) and (104) in Section 3), the usually accepted assumption that the gravitational acceleration is constant or slightly inhomogeneous along the atom trajectory becomes invalid.



In calculating the atomic trajectories, we can assume [34] that the magnitude [image: there is no content] of the gravitational field of the test mass at the position of the atoms in the interferometer is much less than that of the Earth’s field [35],


[image: there is no content]



(2)







Nevertheless, both the average field and field gradient associated with the test mass can modify the phase of the AI signal. Let us denote the average field of the test mass over the interferometric path as [image: there is no content]. The interferometric phase [image: there is no content] associated with this average field strength is of order [6,7,8,9]:


[image: there is no content]



(3)




where k is an effective wave vector of the Raman field and T is the time delay between Raman pulses. This phase change arises owing to the acceleration of the atoms produced by the field of the test mass.



In addition to this “classical” contribution to the phase, there are quantum corrections whose effect we would now like to estimate. Atom interferometers that make use of copropagating optical fields or copropagating Raman pulses as their beam splitters and combiners have a signal phase that is insensitive to quantum corrections if the gravity field is homogeneous. Quantum corrections arise as a result of rotation [39] or inhomogeneous field terms [28,29]. Quantum corrections [image: there is no content] to the phase from an inhomogeneous gravitational field are of order:


[image: there is no content]



(4)




where [image: there is no content] is an atomic mass and γ is the magnitude of the relevant terms in the gravity-gradient tensor. One can understand the estimate (4) as the quantum part of the phase addition [image: there is no content] [28,29,30] associated with the change of atomic velocity [image: there is no content] owing to recoil [36] after interaction with a Raman pulse. When the length of the atomic trajectory L becomes comparable to the characteristic distance over which the gravitational potential of the test mass changes, a reasonable estimate for γ is [image: there is no content]. As a consequence, we find:


[image: there is no content]



(5)







For Rb87[image: there is no content] m-1:


[image: there is no content]



(6)







Calculations [25] indicate that [image: there is no content] can be as large as 1 rad, implying that [image: there is no content] can be as large as [image: there is no content] rad. Since a lower limit for the phase noise in the interferometer is of order [32]:


ϕerr=10-3rad



(7)




one sees that quantum corrections [image: there is no content] are small, but measurable; we will include them in our considerations.



Another type of quantum correction is produced during the free evolution of the atomic coherence between the Raman pulses. We formulate the problem in terms of the Wigner representation [37,38] for the atomic density matrix, [image: there is no content]. This is a standard approach for studying phenomena related to quantization of the atomic center of mass motion [36] and laser cooling [40]. However, to our knowledge, it has been used sparingly in the context of AI [17,41]. The convenience of this approach is that, for the time between Raman pulses, [image: there is no content] obeys an equation that is similar to the classical Liouville equation for the distribution function [37,38].



The Wigner distribution function can be written as,


[image: there is no content]



(8a)






[image: there is no content]



(8b)




where [image: there is no content] is the density matrix in the coordinate representation and [image: there is no content] is the density matrix in the momentum representation. To estimate the quantum corrections, we start from the time evolution equation for the Wigner function for times between the application of the Raman pulses. In the absence of the Earth’s rotation, this equation can be written as [17]:


[image: there is no content]



(9a)






[image: there is no content]



(9b)




where [image: there is no content] is the gravitational potential. For nearly homogeneous fields, such as the Earth’s field, the potential functions in Eq. (9b) can be expanded to first order in ℏ. In that limit, one finds that [image: there is no content] and that the Wigner function obeys the same Liouville equation as the classical density matrix in the time between pulses. In the presence of a test mass, however, the gravitational potential is strongly inhomogeneous, and higher order terms in the expansion are needed.



Let us estimate the correction from these higher order terms. If the term [image: there is no content] in the Liouville Equation (9a) is responsible for the phase [image: there is no content] in estimate (3), then the Q-term results in a quantum correction:


[image: there is no content]



(10)







The density matrix depends on atomic momentum p in two characteristic ways. There is both a thermal momentum:


[image: there is no content]



(11)




([image: there is no content] is Boltzmann constant, [image: there is no content] is atom cloud temperature) and a momentum associated with the Doppler phase,


[image: there is no content]



(12)







For Rb at temperature [image: there is no content]K, [image: there is no content] m-1, and [image: there is no content] ms,


[image: there is no content]



(13)




where [image: there is no content] m/s is the thermal velocity. In qualitative terms, we can think of the dependence of [image: there is no content] on momentum to vary as:


[image: there is no content]








where the first factor represents the thermal distribution and the second a phase factor resulting from the accumulated Doppler phase between Raman pulses. Explicit forms for the Doppler phase acquired by the Raman coherence [image: there is no content] in a time T are derived in the next section, but they are typically of order [image: there is no content].



If [image: there is no content], it follows that the Doppler phase factor makes the dominant contribution to the momentum gradient, since:


[image: there is no content]



(14)







To estimate the quantum corrections, we expand Eq. (9b) to second order in ℏ to obtain:


[image: there is no content]



(15)







Replacing [image: there is no content] by [image: there is no content] and [image: there is no content] by [image: there is no content], we find:


[image: there is no content]



(16)







Consistent with the phase noise given in Eq. (7), one should ignore the Q-term in Eq. (9a). However, if one uses the AI technique to measure the Newtonian gravitational constant G with an accuracy of several ppm (the level achieved is already 150 ppm [5]), then the Q-term should be included. Anticipating innovations capable of reducing the phase noise to [image: there is no content] rad [42], one has to include the Q-term. Consequently, we will include the corrections resulting from this term.



To summarize, there are two types of quantum corrections to the AI phase that are to be considered. The first, [image: there is no content], arises from inhomogeneous gravitational field modifications of the Doppler phase associated with the recoil the atoms undergo on interacting with the Raman fields. The ratio [image: there is no content] is of order [image: there is no content]. The second, [image: there is no content], arises from quantum corrections to the off-diagonal elements of the Wigner distribution during periods of free evolution. The ratio [image: there is no content] is of order [image: there is no content].



It is possible to increase both [image: there is no content] and the quantum corrections [image: there is no content] and [image: there is no content] using larger values of the effective wave vector [image: there is no content]Moreover, since [image: there is no content], [image: there is no content]and [image: there is no content][see Eqs. (3), (4), (16)], the relative weight of the quantum corrections also increases with increasing k. There are at least five ways to increase k: the production of higher order atomic density harmonics in a standing wave field in the Raman–Nath regime (see Eq. (4) in [1]), higher order Bragg scattering [43], the sequential Bragg scattering technique [2], multicolor techniques [44] and Raman standing wave techniques [45]. For example, standing wave pulses in the Raman–Nath regime were used to produce the 10th harmonic of the atomic density without excessive loss of signal magnitude and without sub-recoil cooling [46]. A [image: there is no content] beam splitter was demonstrated using an extension of the Raman standing wave technique [47], and a [image: there is no content] beam splitter has been produced using higher order Bragg scattering [48]. Recently, a high order Bragg scattering atom interferometer was used to determine the fine structure constant with a resolution 0.25 ppb [3]. A [image: there is no content] beam splitter has been utilized for atom interference using sequential Bragg scattering [49]. On the theoretical side, it was shown that, with a proper choice of field polarization, Raman standing waves in the Raman–Nath regime can be used to create a [image: there is no content] beam splitter without increasing the number of separated Raman pulses [45,50]. To account for such enhancements, our calculations of the AI’s phase are carried out for an effective k-vector that is scaled by an integer factor [image: there is no content]



This article is arranged as follows. In the next section, we derive exact and approximate expressions for the phases [image: there is no content], [image: there is no content], and [image: there is no content] The results of numerical calculations of the phases are given in Section 3 for a stationary test mass and a test mass moving at constant velocity. The calculations enable us to establish the regions of validity of the approximate expressions for the phases.





2. Basic Formalism


The working medium of the atom interferometer consists of a cloud of atoms that are launched with some initial velocity at [image: there is no content]. The cloud interacts with three Raman pulses that are separated in time; these pulses couple two hyperfine sub-levels in the atomic ground state manifold. In the time intervals between the pulses, the atoms move under the influence of a gravitational potential [image: there is no content]. The cloud is assumed to be characterized by a Wigner distribution [image: there is no content] at time [image: there is no content] and is assumed to be sufficiently localized, such that, at any time, the gravitational field is the same for all atoms in the cloud. In other words, the cloud can be considered as a point insofar as it interacts with both the Earth’s and the test mass’ gravitational fields. The problem can be broken down into periods of “free evolution” of density matrix elements before the first Raman pulse is applied and for the time intervals between subsequent Raman pulses and into time intervals in which the Raman fields are applied. By “free evolution”, we mean evolution in the absence of applied radiation fields, but including the effects produced by [image: there is no content]. We consider each region separately and then piece together the total response.



We will see that the quantum corrections leading to [image: there is no content] originate in the recoil the atoms undergo as a result of their interaction with the Raman pulses. Following the interactions, this recoil leads to a contribution to the Doppler phase of the off-diagonal density matrix elements [image: there is no content] (g and e are sub-levels of the atoms’ ground state manifold) in the time intervals between the pulses. In addition, the momentum derivatives of the Doppler phase factors give rise to the Q-term corrections; as such, the Q-term corrections depend only on the free evolution of off-diagonal density matrix elements between the pulses.



2.1. Density Matrix Evolution between the Raman Pulses


Between the Raman pulses, the Wigner function evolves according to Eqs. (9). When the distance L over which the gravitational potential energy varies significantly is much larger than ℏ divided by the characteristic width [image: there is no content] of the momentum distribution, i.e.,


[image: there is no content]



(17)




we can expand Q [Eq. (9b)] in a power series in ℏ to obtain:


[image: there is no content]



(18)




where:


[image: there is no content]



(19)







A summation convention implicit in Eq. (18) will be used in all subsequent equations. Repeated indices and symbols appearing on the right-hand side (rhs) of an equation are to be summed over, unless they also appear on the left-hand side (lhs) of that equation.



We have already shown in Eq. (16) that the Q-term can be considered as a small perturbation, allowing us to write:


[image: there is no content]



(20)




where [image: there is no content] is the unperturbed density matrix obeying the equation:


[image: there is no content]



(21)




and [image: there is no content] is a perturbation whose evolution is governed by the equation:


[image: there is no content]



(22)







The [image: there is no content] term contains the [image: there is no content] corrections, while the [image: there is no content] term provides the [image: there is no content] corrections.



Equation (21) has been studied in [17] for the Earth’s gravitational field. In this article, we obtain a solution of Eq. (21) in the presence of a test mass and solve Eq. (22) to get the contribution to the AI phase arising from the Q-term. We assume that the density matrix is known at some preceding time [image: there is no content] and arbitrarily set [image: there is no content] at this time, such that, at [image: there is no content][image: there is no content]. The solution of the homogeneous Eq. (21) is then given by [17]:


[image: there is no content]



(23)




where [image: there is no content] are the atomic classical position and momentum at time [image: there is no content] subject to the constraint that the position and momentum are specified by [image: there is no content] at time [image: there is no content] In other words, in Eq. (23), we look for the values [image: there is no content] for which [image: there is no content] will lead to values [image: there is no content] under the influence of the gravitational fields.



Turning our attention to Eq. (22), we see that the curly brackets in that equation are a total time derivative, enabling us to write:


[image: there is no content]



(24)







Integrating this equation from [image: there is no content] equals [image: there is no content] to [image: there is no content] using the fact that [image: there is no content], and making use of Eqs. (18), (19) and (23), , we find


[image: there is no content]



(25)







Using Eq. (23) one more time, we arrive at:


ρQx,p,t=ℏ224∫t′tdt″χijl′ξ,t″∂πi∂πj∂πlρ0Xξ,π,t′,t″,Pξ,π,t′,t″,t′ξπ=Xx,p,t″,tPx,p,t″,t



(26)








2.2. Changes in Density Matrix Elements Produced by the Raman Pulses


Consider now a cloud of atoms having two hyperfine sub-levels g and e in the ground state manifold. The atoms are prepared in level g at time [image: there is no content], and they proceed to interact with the [image: there is no content] sequence of Raman pulses applied at times:


[image: there is no content]



(27)




where [image: there is no content] is time delay between cloud launch and the first Raman pulse and T is the time delay between pulses. The initial atomic density matrix (8) is given by:


[image: there is no content]



(28a)






[image: there is no content]



(28b)




where [image: there is no content] is the Wigner distribution at [image: there is no content]



If a [image: there is no content]-pulse is applied at time [image: there is no content], the density matrix elements undergo changes given by [17]:


ρeex,p,τj+=12ρeex,p,τj-+ρggx,p-ℏk,τj-+Reiexp-ik·x-δ12(j)τj-ϕjρegx,p-ℏk2,τj-



(29a)






ρggx,p,τj+=12ρeex,p+ℏk,τj-+ρggx,p,τj--Reiexp-ik·x-δ12(j)τj-ϕjρegx,p+ℏk2,τj-



(29b)






ρegx,p,τj+=i2expik·x-δ12(j)τj-ϕjρeex,p+ℏk2,τj--ρggx,p-ℏk2,τj-+12ρegx,p,τj-+exp2ik·x-δ12(j)τj-ϕjρgex,p,τj-



(29c)







Similarly, for π-pulse applied at time [image: there is no content],


[image: there is no content]



(30a)






[image: there is no content]



(30b)






[image: there is no content]



(30c)







In these equations, [image: there is no content] is an effective wave vector (assumed to be the same for all of the pulses); [image: there is no content] is the detuning between the hyperfine transition frequency and the effective frequency of the Raman fields (the effective frequency is the frequency difference of the two fields used to create the Raman pulse); [image: there is no content] is the phase difference between traveling components of the Raman field; and [image: there is no content] are times just after and before the pulse. We allow pulses to have different detunings and phases [image: there is no content] ([image: there is no content]).



It is assumed that the temporal width of the Raman pulses is sufficiently short to guarantee that all phases related to the detuning, Doppler shifts and the gravitational fields are effectively frozen during the application of the pulses. In addition, we assume that the Raman field amplitude and phase are constant over the size of the atomic cloud, allowing us to neglect corrections arising from the ac -Stark effect and wave front curvature of the Raman fields. In principle, most of these assumptions are not necessary. One can derive and explore the analogue of Eqs. (29) and (30) considering extended atom clouds at finite temperature, including corrections arising from Doppler broadening, ac-Stark effects and gravitational acceleration produced during the Raman pulses. In this case, however, the corrections depend on the initial atomic distribution [image: there is no content] Since this distribution is usually not known accurately, it is preferable for high precision atomic interferometry to use Raman pulses of sufficiently short duration, sufficiently large diameter and sufficiently flat wave fronts to avoid such corrections.



If a [image: there is no content] pulse acts on a ground state atom, it produces a superposition of ground and excited states. If there were a momentum [image: there is no content] associated with the ground state amplitude [image: there is no content] before the pulse is applied, the excited state amplitude [image: there is no content] depends on [image: there is no content]. As a consequence, the off-diagonal density matrix element following the pulse involves the product of state amplitudes evolving with different momenta. It is this difference in momentum that leads to the Q-term correction in periods of free evolution.




2.3. AI Signal


Our goal is to calculate [image: there is no content], the excited state atomic density matrix element following the third Raman pulse, since [image: there is no content] can be related to experimentally-measurable quantities. To carry out the calculation, we use Eqs. (23) and (26) for the “free evolution” of density matrix elements before the first Raman pulse is applied and for the time intervals between subsequent Raman pulses and use Eqs. (29) and (30) for changes in the density matrix elements resulting from the application of the Raman pulses. In these free evolution regions, density matrix elements are affected by the presence of a gravitational potential that ultimately contributes to the phase of the AI signal.



From the time the cloud is launched at [image: there is no content] to the time [image: there is no content] that the first Raman pulse is applied, the only non-vanishing density matrix element is [image: there is no content]. In the time interval between [image: there is no content] and [image: there is no content], this density matrix element evolves to:


[image: there is no content]



(31)







For reasons to be discussed below, corrections from the Q-term can be neglected in this time interval. After the first [image: there is no content]-pulse, the density matrix elements change to:


[image: there is no content]



(32a)






[image: there is no content]



(32b)






[image: there is no content]



(32c)







One uses these density matrix elements as initial values for the free evolution between the first and second pulses of the unperturbed density matrix; that is,


[image: there is no content]



(33)







We now consider the modifications produced by the Q-term in the time interval between the first and second pulses. The modifications produced by the Q-term (26) in the atomic coherence before the second pulse acts, [image: there is no content], can be calculated from Eqs. (26), (32c) and (33) as:


ρQegx,p,τ2-=-iℏ248∫τ1τ2dt×χijl′ξ,t∂πi∂πj∂πlexpik·Xξ,π,τ1,t-δ121τ1-ϕ1×fXXξ,π,τ1,t,Pξ,π,τ1,t-ℏk2,0,τ1PXξ,π,τ1,t,Pξ,π,τ1,t-ℏk2,0,τ1ξπ=XPx,p,t,τ2.



(34)







In Eq. (34), the π derivatives lead to two types of terms. The first of these originates from the thermal distribution and is of order:


[image: there is no content]



(35)




where [image: there is no content] is thermal momentum defined in Eq. (11). The second arises from the phase factor [image: there is no content] in Eq. (34), evaluated at [image: there is no content] To estimate this contribution, we “turn off” the gravitational field. In this approximation:


[image: there is no content]



(36)




and the Doppler phase becomes equal to [image: there is no content] This phase factor is a rapidly oscillating function of momentum π having period of order [image: there is no content] defined by Eq. (12), from which we find:


[image: there is no content]



(37)







In the limit that:


[image: there is no content]



(38)




the thermal derivative is smaller than the Doppler derivative by the ratio given in Eq. (13) and can be neglected.



When inequality (38) holds, the time separation between pulses T is sufficiently large to ensure that the dominant contributions to the Q-term comes from the momentum derivatives of the Doppler phase factor. As we will show, the atomic levels’ populations ([image: there is no content] and [image: there is no content]) have no phase factor for [image: there is no content]; therefore, the Q-term corrections arise only from the atomic coherence [image: there is no content] As a consequence, we can neglect any contribution to the Q-term corrections from atomic state populations. It was for this reason that we did not include any Q-term corrections to the Wigner distribution for the time interval [image: there is no content]. In the Doppler limit defined by Eq. (38), the AI phase is pretty much independent of the atomic momentum and spatial distributions.



Calculating the derivatives and retaining those contributions to the derivatives arising from the Doppler phase only, we arrive at:


ρQegx,p,τ2-=-ℏ248kukvkw∫τ1τ2dt×χijl′ξ,t∂πiXuξ,π,τ1,t∂πjXvξ,π,τ1,t∂πlXwξ,π,τ1,tξπ=XPx,p,t,τ2expik·Xξ,π,τ1,t-δ121τ1-ϕ1×fXXξ,π,τ1,t,Pξ,π,τ1,t-ℏk2,0,τ1,PXξ,π,τ1,t,Pξ,π,τ1,t-ℏk2,0,τ1ξπ=XPx,p,t,τ2



(39)




where [image: there is no content] is the u-th component of the effective k-vector. In this approximation, the derivative no longer acts on the term inside the curly brackets. Therefore, we can apply the multiplication law,


[image: there is no content]



(40)




to get:


[image: there is no content]



(41)







The expression inside the curly brackets of Eq. (39) becomes t-independent, and the Q-term just before the second pulse is given by:


ρQegx,p,τ2-=-ℏ248expik·ξ-δ121τ1-ϕ1fξ,πξπ=Xx,p,τ1,τ2Px,p,τ1,τ2-ℏk/2×kukvkw∫τ1τ2dtχijl′ξ,t∂πiXuξ,π,τ1,t∂πjXvξ,π,τ1,t∂πlXwξ,π,τ1,tξπ=XPx,p,t,τ2



(42)







We still need an expression for the time evolution of [image: there is no content] between the first and second pulses. From Eqs. (23), (32) and (40), we find:


[image: there is no content]



(43a)






[image: there is no content]



(43b)






[image: there is no content]



(43c)







At time [image: there is no content], the π pulse acts, which, according to Eqs. (30), transforms these density matrix elements at time [image: there is no content] into:


[image: there is no content]



(44a)






[image: there is no content]



(44b)






ρ0egx,p,τ2+=i2expik·2x-ξ-2δ122τ2+δ121τ1-2ϕ2+ϕ1×fXξ,π,0,τ1,Pξ,π,0,τ1ξ=Xx,p,τ1,τ2,π=Px,p,τ1,τ2-ℏk/2



(44c)






ρQegx,p,τ2+=-ℏ248expik·2x-ξ-2δ122τ2+δ121τ1-2ϕ2+ϕ1×fXξ,π,0,τ1,Pξ,π,0,τ1ξ=Xx,p,τ1,τ2,π=Px,p,τ1,τ2-ℏk/2×kukvkw∫τ1τ2dtχijl′ξ,t×∂πiXuξ,π,τ1,t∂πjXvξ,π,τ1,t∂πlXwξ,π,τ1,tξπ=XPx,p,t,τ2.



(44d)







The next step is to calculate the Q-term corrections in time interval [image: there is no content] Each density matrix element in Eqs. (44) produces a Q-term correction. However, the diagonal matrix elements given by Eqs. (44a) and (44b) contain no rapidly oscillating phase factors in momentum space, allowing us to neglect their Q-term corrections. Moreover, Eq. (44d) is already linear in Q and can produce only higher order corrections that we neglect in this work. As a consequence, we need consider only the Q-term correction produced by the coherence in Eq. (44c), which we denote as [image: there is no content] From Eq. (26), we find:


ρQeg′x,p,τ3-=iℏ248∫τ2τ3dtχijl′ξ,t∂πi∂πj∂πl×expik·2Xξ,π,τ2,t-Xξ,π,τ1,t-2δ122τ2+δ121τ1-2ϕ2+ϕ1×fXXξ,π,τ1,t,Pξ,π,τ1,t-ℏk2,0,τ1PXξ,π,τ1,t,Pξ,π,τ1,t-ℏk2,0,τ1ξπ=XPx,p,t,τ3



(45)




where we used the multiplication law (40),


[image: there is no content]



(46)







In Eq. (45), the differentiation over momentum π is carried out only for the Doppler phase factors. After differentiation, we apply the multiplication law two more times to the phase factor and distribution f, namely:


lXPξ,π,τi,tξπ=XPx,p,t,τ3=lXPx,p,τi,τ3



(47)




for [image: there is no content] and find that these terms become t-independent. As a result, one gets for the Q-term [image: there is no content] before the third pulse,


ρQeg′x,p,τ3-=-ℏ248expik·2Xx,p,τ2,τ3-ξ-2δ122τ2+δ121τ1-2ϕ2+ϕ1×fXξ,π,0,τ1,Pξ,π,0,τ1ξ=Xx,p,τ1,τ3,π=Px,p,τ1,τ3-ℏk/2×kukvkw∫τ2τ3dtχijl′ξ,t∂Xuξ,π,τ1,t∂πi-2∂Xuξ,π,τ2,t∂πi×∂Xvξ,π,τ1,t∂πj-2∂Xvξ,π,τ2,t∂πj×∂Xwξ,π,τ1,t∂πl-2∂Xwξ,π,τ2,t∂πlξπ=XPx,p,t,τ3



(48)







The value of [image: there is no content] will depend both on [image: there is no content] and [image: there is no content] In other words, we must also calculate the time evolution of [image: there is no content] and [image: there is no content] between the second and third pulses. Applying Eq. (23), we find:


[image: there is no content]



(49a)






ρggx,p,τ3-=12fXξ,π,0,τ1,Pξ,π,0,τ1ξ=XXx,p,τ2,τ3,Px,p,τ2,τ3+ℏk,τ1,τ2,π=PXx,p,τ2,τ3,Px,p,τ2,τ3+ℏk,τ1,τ2-ℏk



(49b)






ρ0egx,p,τ3-=i2expik·2Xx,p,τ2,τ3-ξ-2δ122τ2+δ121τ1-2ϕ2+ϕ1×fXξ,π,0,τ1,Pξ,π,0,τ1ξ=Xx,p,τ1,τ3,π=Px,p,τ1,τ3-ℏk/2



(49c)






ρQegx,p,τ3-=-ℏ248expik·2Xx,p,τ2,τ3-ξ-2δ122τ2+δ121τ1-2ϕ2+ϕ1×fXξ,π,0,τ1,Pξ,π,0,τ1ξ=Xx,p,τ1,τ3,π=Px,p,τ1,τ3-ℏk/2×kukvkw∫τ1τ2dtχijl′ξ,t∂πiXuξ,π,τ1,t∂πjXvξ,π,τ1,t×∂πlXwξ,π,τ1,tξπ=XPx,p,t,τ3



(49d)




Combining the different contributions to the off diagonal density matrix element given by Eqs. (48), (49c) and (49d) and factoring out a common phase factor, we obtain:


ρegx,p,τ3-=ρ0egx,p,τ3-+ρQegx,p,τ3-+ρQeg′x,p,τ3-=i2expik·2Xx,p,τ2,τ3-ξ-2δ122τ2+δ121τ1-2ϕ2+ϕ1×fXξ,π,0,τ1,Pξ,π,0,τ1ξ=Xx,p,τ1,τ3,π=Px,p,τ1,τ3-ℏk/21-iϕ˜Qx,p



(50a)






ρegx,p,τ3-≈i2expik·2Xx,p,τ2,τ3-ξ-ϕ˜Qx,p-2δ122τ2+δ121τ1-2ϕ2+ϕ1×fXξ,π,0,τ1,Pξ,π,0,τ1ξ=Xx,p,τ1,τ3,π=Px,p,τ1,τ3-ℏk/2



(50b)






ϕ˜Qx,p=-ℏ224kukvkw∫τ1τ2dtχijl′ξ′,t∂πi′Xuξ′,π′,τ1,t∂πj′Xvξ′,π′,τ1,t∂πl′Xwξ′,π′,τ1,t+∫τ2τ3dtχijl′ξ′,t∂Xuξ′,π′,τ1,t∂πi′-2∂Xuξ′,π′,τ2,t∂πi′∂Xvξ′,π′,τ1,t∂πj′-2∂Xvξ′,π′,τ2,t∂πj′×∂Xwξ′,π′,τ1,t∂πl′-2∂Xwξ′,π′,τ2,t∂πl′ξ′π′=XPx,p,t,τ3



(50c)




Finally, we use Eqs. (29a), (49a), (49b) and (50) to calculate [image: there is no content] following the [image: there is no content] pulse at time [image: there is no content] as:


ρeex,p,τ3+=14fXξ,π,0,τ2,Pξ,π,0,τ2ξ=Xx,p,τ2,τ3,π=Px,p,τ2,τ3-ℏk+14fXξ,π,0,τ1,Pξ,π,0,τ1ξπ=XXx,p-ℏk,τ2,τ3,Px,p-ℏk,τ2,τ3+ℏk,τ1,τ2PXx,p-ℏk,τ2,τ3,Px,p-ℏk,τ2,τ3+ℏk,τ1,τ2-ℏk-12cosk·x-2Xx,p-ℏk2,τ2,τ3+ξ+ϕ˜Qx,p-ℏk2-δ123τ3+2δ122τ2-δ121τ1-ϕ3+2ϕ2-ϕ1×fXξ,π,0,τ1,Pξ,π,0,τ1ξ=Xx,p-ℏk/2,τ1,τ3,π=Px,p-ℏk/2,τ1,τ3-ℏk/2



(51)




This density matrix element can be used to calculate any physically-measured observable associated with atoms in state e. For example, one could measure the state e population given as:


[image: there is no content]



(52)







The first two terms in Eq. (51) are responsible for the background signal. When substituted into Eq. (52), they yield a background contribution equal to [image: there is no content], allowing us to write:


[image: there is no content]



(53)




where the interferometric term [image: there is no content] is given by:


w˜=∫dxdp{cos[k·x-2Xx,p-ℏk2,τ2,τ3+ξ+ϕ˜Qx,p-ℏk2-δ123τ3+2δ122τ2-δ121τ1-ϕ3+2ϕ2-ϕ1]×fXξ,π,0,τ1,Pξ,π,0,τ1ξ=Xx,p-ℏk/2,τ1,τ3,π=Px,p-ℏk/2,τ1,τ3-ℏk/2



(54)







To carry out the integration, we express all position and momenta in terms of the position and momentum variables at Time 0, denoted by:


[image: there is no content]



(55)







In terms of these variables,


[image: there is no content]



(56a)






x,p=XXx′,p′,τ1,0,Px′,p′,τ1,0+ℏk/2,τ3,τ1,PXx′,p′,τ1,0,Px′,p′,τ1,0+ℏk/2,τ3,τ1+ℏk/2



(56b)






[image: there is no content]



(56c)






[image: there is no content]



(56d)







After redefining [image: there is no content], one finds:


[image: there is no content]



(57)




where the phase [image: there is no content] of the AI is defined as:


[image: there is no content]



(58a)






[image: there is no content]



(58b)






[image: there is no content]



(58c)




with [image: there is no content] given by Eq. (50c).



2.3.1. Atom Trajectories in the Presence of the Test Mass


To calculate the phases in Eqs. (58), we need expressions for the propagation functions [image: there is no content], i.e., atomic position and momentum at time t subject to the initial value [image: there is no content] at time [image: there is no content]. These functions evolve as:


[image: there is no content]



(59a)






[image: there is no content]



(59b)







We neglect in Eqs. (59) the gravity-gradient, centrifugal and Coriolis forces caused by the rotating Earth. When [image: there is no content] is a perturbation, the approximate solutions of Eqs. (59) are [34]:


[image: there is no content]



(60a)






[image: there is no content]



(60b)






[image: there is no content]



(60c)






[image: there is no content]



(60d)






[image: there is no content]



(60e)






[image: there is no content]



(60f)







Each of the functions [image: there is no content] obeys the multiplication law (40):


[image: there is no content]



(61a)






[image: there is no content]



(61b)








2.3.2. Phases


It remains for us to calculate the phases [image: there is no content] and [image: there is no content]. In the following two subsections, we obtain both exact integral and approximate integral and analytic expressions for these phases. In Section 3, the exact expressions are evaluated numerically, and the range of validity of the approximate expressions is established.



[image: there is no content]


The phase [image: there is no content] includes a “classical” part (non-vanishing in the limit [image: there is no content], as well as a quantum correction [image: there is no content]. The contributions to [image: there is no content] resulting from the Earth’s gravitational field and the rotation of the Earth were calculated approximately in [17,29]. The classical component of these contributions to [image: there is no content] has been calculated exactly [31]. In this paper, we concentrate on the additions to [image: there is no content] caused by the test mass’ field. The “classical” part of this addition has been evaluated in [25]. Contributions to the phase from the Earth’s rotation and Earth’s gravity-gradient terms are neglected in this paper.



It is shown in the Appendix how approximate expressions for the propagators needed in Eq. (58b) can be obtained from Eqs. (60). It then follows that the phase [image: there is no content] given in Eq. (58b) can be written as a sum of three terms,


[image: there is no content]



(62a)






[image: there is no content]



(62b)






[image: there is no content]



(62c)






[image: there is no content]



(62d)






ψq=∫τ1τ3dtτ3-t{δgX0x,p,t,0+ℏk2Mat-τ1,t-δgX0x,p,t,0,t}



(62e)






[image: there is no content]



(62f)






[image: there is no content]



(62g)







The term [image: there is no content] is the classical contribution from the Earth’s field; the term [image: there is no content] is the classical contribution from the test mass’ field; and the term [image: there is no content] is the quantum correction arising from the test mass’ field.



To evaluate the classical contribution to the phase given by Eq. (62c), we use Eq. (60e) to arrive at:


[image: there is no content]



(63a)






[image: there is no content]



(64b)







Eqs. (62c) and (63) have been used in [25]. With the simple change of variables, [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content], we find:


[image: there is no content]



(64)







If the test mass moves without rotation and follows a trajectory denoted by [image: there is no content], then:


[image: there is no content]



(65)




and:


[image: there is no content]



(66)







This is the exact expression for ψ that is used in Section 3.



We can arrive at an approximate expression for ψ if we assume that the distance between the atoms and the test mass is sufficiently large to keep only those terms that are linear in the field gradient. In other words, we can evaluate the field of the test mass at some average displacement [image: there is no content] between the test mass and the atoms’ trajectory. If we choose [51]:


[image: there is no content]



(67)




expand:


[image: there is no content]



(68)




where [image: there is no content] is the gravity-gradient tensor having matrix elements:


[image: there is no content]



(69)




and substitute the result back into Eq. (66), we find that the term proportional to [image: there is no content] vanishes ([image: there is no content] was chosen to ensure this). We then obtain an approximate expression [image: there is no content] for the classical contribution to the phase [image: there is no content] given by:


[image: there is no content]



(70a)






[image: there is no content]



(70b)







We now turn our attention to the quantum correction. The vector [image: there is no content] given in Eq. (62g) can be rewritten as:


ψq=∫τ2τ3dtτ3-tδgX0x,p,t,0+ℏk2Mat-τ1,t-δgX0x,p,t,0,t+∫τ1τ2dtt-τ1δgX0x,p,t,0+ℏk2Mat-τ1,t-δgX0x,p,t,0,t



(71)







Substituting [image: there is no content] in the first term of Eq. (71) and [image: there is no content] in the second term, we obtain:


ψq=∫0Tdθ{T-θδgX0x,p,τ2+θ,0+ℏk2MaT+θ,τ2+θ-δgX0x,p,τ2+θ,0,τ2+θ+θδgX0x,p,τ1+θ,0+ℏk2Maθ,τ1+θ-δgX0x,p,τ1+θ,0,τ1+θ}



(72)







For translational motion, when the gravitational field of the test mass is given by Eq. (65),


ψq=∫0TdθT-θδgX0x,p,τ2+θ,0+ℏk2MaT+θ-xmτ2+θ-δgX0x,p,τ2+θ,0-xmτ2+θ+θδgX0x,p,τ1+θ,0+ℏk2Maθ-xmτ1+θ-δgX0x,p,τ1+θ,0-xmτ1+θ



(73)




This is the exact expression for [image: there is no content] that is used in Section 3.



There are two approximate expressions we will derive for ψ. When the recoil effect is small,


[image: there is no content]



(74)




we can expand the arguments in Eq. (73) to obtain a first approximation [image: there is no content] given by:


[image: there is no content]



(75a)






ψqn=∫0TdθT2-θ2γ̲X0x,p,τ2+θ,0,τ2+θ+θ2γ̲X0x,p,τ1+θ,0,τ1+θℏk2Ma,



(75b)




where:


[image: there is no content]



(76)







For translational motion of the test mass, [image: there is no content], and Eq. (75b) reduces to:


[image: there is no content]



(77)







The second approximate expression we obtain for [image: there is no content] is the limit of Eq. (77) when the distance between the atoms and the test mass is sufficiently large to keep only those terms that are linear in the field gradient. If we choose:


[image: there is no content]



(78)




and expand:


[image: there is no content]



(79)




where:


[image: there is no content]



(80)




is an element of the gravity curvature tensor, then the contribution from the second term in Eq. (79) vanishes, and we find an approximate expression [image: there is no content] for the phase given by:


[image: there is no content]



(81a)






[image: there is no content]



(81b)








[image: there is no content]


We now consider Q-term quantum corrections to the phase given by Eqs. (58c) and (50c). We first replace [image: there is no content] by [image: there is no content] in Eq. (50c) to obtain:


ξ′π′=XPXξ,π,τ3,τ1,Pξ,π,τ3,τ1,t,τ3=XPξ,π,t,τ1



(82)




allowing us to write [image: there is no content] as:


ϕQx,p=-ℏ224kukvkw∫τ1τ2dtχijl′ξ,t∂πiXuξ,π,τ1,t∂πjXvξ,π,τ1,t∂πlXwξ,π,τ1,t+∫τ2τ3dtχijl′ξ,t∂Xuξ,π,τ1,t∂πi-2∂Xuξ,π,τ2,t∂πi∂Xvξ,π,τ1,t∂πj-2∂Xvξ,π,τ2,t∂πj×∂Xwξ,π,τ1,t∂πl-2∂Xwξ,π,τ2,t∂πlξπ=X,PXx,p,τ1,0,Px,p,τ1,0+ℏk/2,t,τ1



(83)







When atoms move between the Raman pulses under the action of the homogeneous gravitational field [image: there is no content] of the Earth and the inhomogeneous perturbation [image: there is no content] caused by the test mass, the only contribution to [image: there is no content] (defined in Eq. (19)) results from the presence of the test mass,


[image: there is no content]



(84a)




where:


[image: there is no content]



(85)







Since we calculate the AI phase to first order in [image: there is no content], it is sufficient to calculate the atom trajectory in Eq. (83) to zeroth order in [image: there is no content], i.e., to set:


[image: there is no content]



(86)




which results in:


[image: there is no content]



(87)




where [image: there is no content] is a Kronecker delta. Moreover, since we are interested in calculating [image: there is no content] to second order in the recoil momentum [image: there is no content], we can neglect the contribution of the recoil term in the braces of Eq. (83). We then apply the multiplication law (40) and obtain:


[image: there is no content]



(88)







As before, we transform the integral to one from zero to T,


[image: there is no content]



(89)







If the test mass moves without rotation, then:


[image: there is no content]



(90)




and:


[image: there is no content]



(91)







This is the exact expression for [image: there is no content] that is used in Section 3.



We can obtain an approximate expression for [image: there is no content] when the distance between the atoms and the test mass is sufficiently large to keep only those terms that are linear in the field curvature. If we choose:


[image: there is no content]



(92)




and expand:


[image: there is no content]



(93)




the contribution to the Q-term from the second term in Eq. (93) vanishes, and we find an approximate expression [image: there is no content] for the phase given by:


[image: there is no content]



(94)











3. Point Source Test Mass


For a point source test mass M moving along the trajectory [image: there is no content], the gravitational field, gravity-gradient tensor and gravity curvature tensor are given by:


δgx,t=δgx-xmt;δgx=-GMxx3



(95a)






γjlx,t=γjlx-xmt;γjlx=-GMδjlx3-3xjxlx5



(95b)






[image: there is no content]



(95c)






[image: there is no content]



(85d)




where [image: there is no content] m3/kg·s2 is the Newtonian gravitational constant.



We numerically calculated the classical part of the phase given by Eqs. (62c) and (66) (for [image: there is no content]) and the quantum corrections given by Eqs. (62d) and (73) (for [image: there is no content]) and (91) (for [image: there is no content]) and determined when these terms become measurable in the presence of phase noise given by Eq. (7). Moreover, we checked the validity of the approximate expressions given in Eqs. [(70), (67)], (77), [(81),(78)], and [(94),(92)]. The results vary with the test mass’ weight, shape, trajectory, as well as with the operating parameters of the atom interferometer.



The calculations are carried out for a test mass moving with constant velocity [image: there is no content],


[image: there is no content]



(96)




where:


[image: there is no content]



(97)




is the location of the test mass at time [image: there is no content]



We assume that, at [image: there is no content], the atoms are launched from the origin of the north-east-down frame in the vertical direction. That is, it is assumed that [image: there is no content] is in the positive z-direction and that the cloud position is given by:


[image: there is no content]



(98a)






[image: there is no content]



(98b)




where [image: there is no content] is the launch velocity, taken to be along the z-axis. In this case, one finds from Eqs. (60c), (67), (78) and (92) that:


[image: there is no content]



(99a)






[image: there is no content]



(99b)






[image: there is no content]



(99c)







Recall that these values were chosen to ensure that the first order terms vanish in the expansions given in Eqs. (68), (79) and (93). As such, by expanding the expressions for ψ about these points, we obtained approximate expressions with corrections of order [image: there is no content] times derivatives of the gravity gradient tensor, derivatives of the gravity-curvature tensor and second derivatives of the gravity-curvature tensor for [image: there is no content], [image: there is no content] and [image: there is no content], respectively. As such, these choices improve the accuracy of the approximations.



The launch velocity is chosen as:


[image: there is no content]



(100)




corresponding to a symmetric fountain geometry in which the atomic cloud reaches its highest point at time [image: there is no content], when the second pulse is applied. Calculations have been performed for a stationary test mass having:


[image: there is no content]



(101)




and a test mass moving with constant velocity vm=5m/s,0,0 along the x-axis,


xm(2)t=xm0+vmt=xm0,ym0,zm0+5m/s,0,0t



(102)







The parameters characterizing the atom interferometer, the test mass and the Earth’s field are summarized in Table 1. Since the cloud trajectory and the effective wave vectors are vertical, [image: there is no content] can be considered as an “impact parameter” for the test mass relative to the cloud trajectory along the z-axis.



Table 1. Parameters of the atom interferometer and gravitational sources.







	
Earth’s gravitational field

	
g=0,0,9.8m/s2




	
Multiple-[image: there is no content] beam splitter factor

	
[image: there is no content]




	
Effective wave vector

	
k=0,0,-k,k=4.0275×108 m-1




	
Time between launch and first Raman pulse

	
[image: there is no content] ms




	
Time between Raman pulses

	
[image: there is no content] ms




	
Launch velocity

	
[image: there is no content]




	
Error of atom interferometer phase measurement

	
[image: there is no content] rad




	
Test mass

	
[image: there is no content] kg




	
Atomic mass

	
87










Equations (95) can be used either for a point mass or a spherical mass having constant density ρ and radius:


[image: there is no content]



(103)







For the highest density in nature, [image: there is no content] 22,600 kg/m3, corresponding to osmium [52],


ymin≈0.0808m



(104)







For impact parameters [image: there is no content] Eqs. (95) are valid only for those values of [image: there is no content] for which atom trajectory does not intersect the spherical test mass. In the case of a stationary sphere, this requirement translates into one in which the distance between the cloud and the sphere is always greater than [image: there is no content]; that is, for any [image: there is no content]:


[image: there is no content]



(105)







With [image: there is no content] given by Eq. (98a) and [image: there is no content] given by Eq. (100), we can show that this inequality is satisfied if:


-ymin2-ym02-12gτ1+T2>zm0,orzm0>ymin2-ym02



(106)







For the moving sphere, the range of allowed initial positions [image: there is no content] for the center of the sphere is more difficult to calculate. For this reason, in Case 2, we consider only impact parameters larger than the sphere’s radius, [image: there is no content], for which, evidently, any values of [image: there is no content] are allowed.



For each impact parameter [image: there is no content] and for the parameters given in Table 1, we explore various test mass positions and trajectories. The results of the calculations are illustrated graphically in Figure 2 for a stationary mass and in Figure 3 for a mass moving at constant velocity. Although the various plots may be difficult to read at standard magnification, they can be read easily using the zoom feature when read online in PDF format.


Figure 2. Stationary source. Plot [image: there is no content], maximum of the phase magnitude given in Eqs. (62c) and (66) versus the impact parameter [image: there is no content]; Plot [image: there is no content], the same as Plot [image: there is no content], but for [image: there is no content]; Plot [image: there is no content], dependence of the exact (black curve) and approximate (red curve) phases as a function of the initial z-coordinate ([image: there is no content]) for [image: there is no content], where the phase achieves its maximum magnitude; Plot [image: there is no content], the same as Plot [image: there is no content], but for xm0,ym0=0,4.55m, where the phase passes below the noise threshold [image: there is no content]; Plots [image: there is no content], the same as Plot [image: there is no content], but for the maximum magnitude of the difference between exact and approximate phases given in Eqs. (62c), (66), (70) and (99a); Plot [image: there is no content], the same as Plot [image: there is no content], but for xm0,ym0=0,0.525m, where the magnitude of phase difference shown on Plot [image: there is no content] passes below [image: there is no content]; Plot [image: there is no content], the difference between black and red curves in Plot [image: there is no content]; Plots [image: there is no content], the same as Plots [image: there is no content], but for the magnitude of the quantum correction given in Eqs. (62d) and (73); the values of [image: there is no content] are [image: there is no content] for [image: there is no content] and 0,1.16m for [image: there is no content], where the magnitude of the phase difference shown on Plot [image: there is no content] passes below [image: there is no content]; exact quantum correction [image: there is no content], approximations [image: there is no content] and [image: there is no content] are shown in black, red and blue, respectively. Plots [image: there is no content], the same as Plots [image: there is no content], but for the maximum magnitude of the difference between exact and approximate quantum corrections given in Eqs. (62d), (73), (75a) and (77); xm0,ym0=0,0.473m in Plot [image: there is no content] where the magnitude of the phase difference shown on Plot [image: there is no content] passes below [image: there is no content] Plots [image: there is no content], the same as Plots [image: there is no content], but for the maximum magnitude of the difference between exact and approximate quantum corrections given in Eqs. (62d), (73), (81) and (99b); xm0,ym0=0,0.488m in Plot [image: there is no content], where the magnitude of the phase difference shown on Plot [image: there is no content] passes below [image: there is no content]. Plots [image: there is no content], the same as Plots [image: there is no content], but for the magnitude of the Q-term given in Eq. (91); values of [image: there is no content] are [image: there is no content] for [image: there is no content] and [image: there is no content]0,0.292m for [image: there is no content], where the magnitude of the phase shown on Plot [image: there is no content] passes below [image: there is no content] Plots [image: there is no content], the same as Plots [image: there is no content], but for the maximum magnitude of the difference between exact and approximate Q-terms given in Eqs. (91), (94) and (99c); xm0,ym0=0,0.166m in Plot [image: there is no content], where the magnitude of the difference shown on Plot [image: there is no content] passes below [image: there is no content]
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Figure 3. Test mass moving with constant velocity 5 m/s. Columns 1, 2 and 3 mirror Columns 1,3 and 4 of Figure 2. Values of [image: there is no content] are -1.05m,ymin for Plots [image: there is no content], [image: there is no content], -1.05m,4.53m for Plot [image: there is no content], [image: there is no content] for Plots b2,-1.13m,ymin for Plot [image: there is no content]-1.22m,1.11m for Plot c3,-1.33m,0.407m for Plot [image: there is no content]-1.21m,0.732m for Plot [image: there is no content]-1.05m,0.249m for Plot [image: there is no content] and -1.05m,0.250m for Plot [image: there is no content]
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In the first two columns of Figure 2, we plot:

	(1)

	
maximum of the magnitude of the phase [image: there is no content] obtained from Eqs. (62c) and (66), Plots a1,a2;




	(2)

	
maximum of the magnitude of the phase difference [image: there is no content] obtained from Eqs. (62c), (66), (70), (99a), Plots b1,b2;




	(3)

	
maximum of the magnitude of the quantum correction [image: there is no content] obtained from Eqs. (62d) and (73), Plots c1,c2;




	(4)

	
maximum of the magnitude of the phase difference [image: there is no content] obtained from Eqs. (62d), (73), (75a) and (77), Plots d1,d2;




	(5)

	
maximum of the magnitude of the phase difference [image: there is no content] obtained from Eqs. (62d), (73), (81) and (99b), Plots e1,e2;




	(6)

	
maximum of the magnitude of the quantum correction [image: there is no content] obtained from Eq. (91), Plots f1,f2;




	(7)

	
maximum of the magnitude of the phase difference [image: there is no content] obtained from Eqs. (91), (94), and (99c), Plots g1,g2.









In effect, Column 2 is a blow-up of Column 1 for values of [image: there is no content] Values of [image: there is no content] are allowed provided inequality (106) holds. For the stationary test mass, the maximum values of the various phases and phase differences occur if the mass is positioned as close as possible to the top of the cloud trajectory, without touching it. For the parameters given in Table 1 and the trajectory determined by Eqs. (98a) and (100), the top of the cloud trajectory occurs for [image: there is no content] m. As a consequence, the maximum phases occur for [image: there is no content], [image: there is no content] m. That the maximum phases occur for [image: there is no content] is evident in Column 2. The plots in Column 1 of Figure 3 mirror those of Column 1 of Figure 2, except that Figure 3 is drawn for a test mass moving with constant velocity in Figure 3. The maximum phases in this case occur for [image: there is no content].



Phases [image: there is no content], [image: there is no content] and [image: there is no content] that lie above the dashed lines in these plots are measurable, since they exceed the noise level. On the other hand, phase differences between the exact and approximate results must lie below the dashed lines for the approximations to be good. For example, in Plot a1, we see that the signal exceeds the noise only if [image: there is no content] m, and in Plot b1, we see that the difference between the exact and approximate expressions is below the noise level only if [image: there is no content] m. By examining the plots in Column 1 of Figure 2 and Figure 3, we are able to determine the regions in which the interferometric signal rises above the noise and also to determine the range of validity of the various approximation expressions that we derived. The results are summarized below for the regions of [image: there is no content] listed in Table 2 that were obtained from Column 1 of Figure 2 and Figure 3.



Table 2. Locations of regions of validity of the exact and approximate expressions for the stationary and moving test mass. The regions refer to Regions 1–7 given in the text.







	
Region

	
Stationary Test Mass

	
Test Mass Moving With Constant Velocity






	
1

	
[image: there is no content] m

	
[image: there is no content] m




	
2

	
[image: there is no content] m

	
[image: there is no content] m




	
3

	
[image: there is no content] m

	
[image: there is no content] m




	
4

	
[image: there is no content] m

	
[image: there is no content] m




	
5

	
[image: there is no content] m

	
[image: there is no content] m




	
6

	
[image: there is no content] m

	
[image: there is no content] m




	
7

	
[image: there is no content] m

	
[image: there is no content] m










	Region 1.

	
One should use the exact expression, Eq. (91), for [image: there is no content] in this region; only outside this region are the approximate expressions given by Eqs. (94) and (99c) valid (see Plots [image: there is no content] in the figures);




	Region 2.

	
The phase [image: there is no content] is negligible in this region (see Plots [image: there is no content] in the figures);




	Region 3.

	
One should use the exact expressions, Eqs. (62d) and (73), for the quantum correction [image: there is no content] in this region; only outside this region does the approximate expression given by Eqs. (75a) and (77) become valid (see Plots [image: there is no content] in the figures);




	Region 4.

	
One can use the approximate expressions for [image: there is no content] given by Eqs. (81) and (99b) in this region (see Plots [image: there is no content] in the figures);




	Region 5.

	
One should use the exact expressions, Eqs. (62c) and (66), for the classical part of the phase [image: there is no content]; only outside this region does the approximate expression given by Eqs. (70) and (99a) become valid (see Plots [image: there is no content] in the figures);




	Region 6.

	
The phase [image: there is no content] is negligible in this region (see Plots [image: there is no content] in the figures);




	Region 7.

	
The phase [image: there is no content] produced by the test mass falls below the phase noise [image: there is no content], so the effect of the test mass cannot be measured in this region (see Plots [image: there is no content] in the figures).







Column 3 and 4 of Figure 2 and column 2 and 3 of Figure 3 give the dependence of the various phases and phase corrections as a function of the initial test mass z-coordinate, [image: there is no content], for fixed [image: there is no content]. The value of [image: there is no content] is chosen either at a value that gives the maximum phase or at a value where the phase crosses the noise threshold, with the value of [image: there is no content] chosen that gives rise to the largest phase or phase difference. For example, in Plots a 3, c3 and f3, drawn for [image: there is no content], we see that the maximum phases [image: there is no content][image: there is no content] and [image: there is no content] occur [image: there is no content], when the test mass is just above the zenith of the trajectory. Moreover, if [image: there is no content], it follows from Inequality (106) that [image: there is no content] m and [image: there is no content] m. All of these features are seen in Plots a3, c3, and f3. Similar considerations apply for all of the other plots in Columns 3 and 4 of Figure 2 and column 2 and 3 of Figure 3.




4. Conclusion


These numerical calculations show that the approximate expressions that were obtained based on assumptions about the approximate homogeneity of the field in [51] for the classical contributions to the phase or on the approximate homogeneity of the field gradient and curvature for the quantum corrections to the phase become valid only in regions where the phases are smaller by 1–2 orders of magnitude of the maximum values for the phases that occur in regions where the field inhomogeneity plays an important role.



By using an effective wave vector that is 25-times larger than the wave vector of a two-field Raman pulse, we reach a limit where the quantum correction [image: there is no content] is comparable to the classical part of the phase, while the Q-term is still small. Further increase of the effective wave vector or time interval T between the pulses could bring us to a situation when quantum correction dominates over the classical part of the phase.
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Appendix


In this Appendix, we show how we arrive at Eqs. (62) from Eqs. (58b) and (60).



To calculate the phase [image: there is no content], we need an approximate expression for the propagator [image: there is no content] Using Eqs. (60) and (61), we find:


[image: there is no content]



(A1)







From Eqs. (60c) and (61), it follows that:


X0x,p,τs,0=X0X0x,p,τ1,0,P0x,p,τ1,0,τs,τ1=X0x,p,τ1,0+1MaP0x,p,τ1,0τs-τ1+12gτs-τ12



(A2)




allowing us to rewrite:


[image: there is no content]



(A3)







Using the relationship:


[image: there is no content]



(A4)




we can write:


[image: there is no content]



(A5)







The propagator (60e) can be expressed as:


[image: there is no content]



(A6)




which coincides with the sum of the third, fourth and fifth terms on the right-hand side (rhs) of Eq. (A5) and reduces to:


[image: there is no content]



(A7)







The first term on the right-hand side of this equation is responsible for the phase produced by the Earth’s gravitational field. The second term corresponds to the recoil correction to the first term, but this contribution vanishes when Eq. (A7) is substituted into Eq. (58b); there is no quantum correction in a homogeneous field. The third term is responsible for the classical part of the phase produced by the test mass, while the fourth term is the recoil correction to the third term.



Substituting this result in the brackets of Eq. (58b) for the first [image: there is no content] and second [image: there is no content] terms, we arrive at Eq. (62).
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