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Abstract: In this review article, we survey some of our results pertaining to the search for the electric
dipole moment of the electron (eEDM), using heavy polar molecules. In particular, we focus on the
relativistic coupled cluster method (RCCM) and its applications to eEDM searches in YbF, HgX (X = F,
Cl, Br, and I), BaF, HgA (A = Li, Na, and K), and YbOH. Our results are presented in a systematic
manner, by first introducing the eEDM and its measurement using molecules, the importance of
relativistic many-body theory, and finally our results, followed by future prospects.

Keywords: electric dipole moment of the electron; heavy polar molecules; relativistic coupled cluster
method

1. Introduction

The electric dipole moment of the electron (eEDM), which is a parity (P) and time (T) reversal
violating property [1,2], is of immense interest in probing fundamental physics, especially beyond the
Standard Model (BSM) theories. The Standard Model (SM) predicts a small value for eEDM (∼ 10−38

e-cm), as compared to many BSM theories, which predict the eEDM to be several orders of magnitude
larger [3] (see Figure 1). Therefore, by comparing experimental upper bounds on the eEDM (the eEDM
has not been detected yet, in over six decades of ever-improving experiments) with those predicted
by several BSM theories, one can stringently constrain the latter. The general interest in this field is
compounded by the fact that high precision eEDM search experiments are non-accelerator approaches
that complement accelerator searches, but can explore much higher energy scales, as high as PeV [4].
The eEDM can also throw light on the baryon asymmetry in the Universe [5], which attempts to
address why our Universe is matter-dominated, while one may expect an early Universe to be created
with equal amounts of matter and anti-matter. This connection is associated with the fact that both the
not-yet-measured eEDM and the well known value of baryon asymmetry coefficient are CP violating
(T violation implies CP violation, due to the CPT theorem [6]). Further details can be found in Ref. [7].

The current best limits for the eEDM are from heavy polar molecules (all at 90 percent confidence
intervals): ThO (de < 1.1× 10−29 e-cm; de = 4.3± 3.1stat ± 2.6syst × 10−30 e-cm; the subscripts ‘stat’
and ‘sys’ refer to the uncertainties due to statistics and systematics, respectively) [8], followed by HfF+

(de < 1.3× 10−28 e-cm; de = 0.9± 7.7stat ± 1.7syst × 10−29 e-cm) [9], and YbF (de < 1.06× 10−27 e-cm;
de = −2.4± 5.7stat ± 1.7syst × 10−28 e-cm) [10,11]. Two experiments that employ BaF to probe the

Atoms 2019, 7, 58; doi:10.3390/atoms7020058 www.mdpi.com/journal/atoms

http://www.mdpi.com/journal/atoms
http://www.mdpi.com
https://orcid.org/0000-0002-5115-9295
https://orcid.org/0000-0002-3802-680X
https://orcid.org/0000-0003-2752-2442
http://www.mdpi.com/2218-2004/7/2/58?type=check_update&version=1
http://dx.doi.org/10.3390/atoms7020058
http://www.mdpi.com/journal/atoms


Atoms 2019, 7, 58 2 of 20

eEDM are currently underway [12–14]. An eEDM experiment that commenced recently (called the
polyEDM experiment) using YbOH is expected to improve the sensitivity further in the future [15].

(a) Standard Model
(SM) one-loop diagram.

(b) SM three-loop diagram. (c) SM four-loop diagram. (d) SUSY one-loop diagram.

Figure 1. (a) One-loop Standard Model (SM) contribution to the electric dipole moment of the
electron (eEDM). The phases in the two vertices cancel out, leaving behind no charge–parity (CP)
violating contributions, resulting in zero eEDM at the one-loop level. (b) It turns out that there are no
contributions at the two- and three-loop levels either; a sample three-loop diagram has been given
above, and although an individual three-loop diagram itself may not vanish, the non-zero diagrams
eventually cancel out [16], (c) The first non-zero contribution to the SM eEDM occurs at the four-loop
level [17], and (d) supersymmetry (SUSY) contribution to the eEDM. The phases at the two vertices
are different, and therefore, one can obtain a non-zero contribution to the eEDM at the one-loop level
itself. This is also why the eEDMs in most beyond the SM (BSM) are much larger than their SM
counterpart [3].

This article is structured as follows: since the introduction section covers the eEDM, we shall
discuss about eEDM searches in molecules in the next section, followed by a brief discussion
on relativistic many-body theory with focus on the relativistic coupled cluster method (RCCM),
after which we shall present some of our results for YbF, HgX (X = F, Cl, Br, and I), BaF, HgA (A = Li,
Na, and K), and YbOH. We shall use atomic units in this article, unless explicitly stated otherwise.

2. eEDM Searches in Molecules

2.1. The Effective Electric Field

A high precision experiment that directly uses an electron beam, for example, would be extremely
difficult, as the particle would accelerate away in the presence of an electric field. Instead, one uses
atoms or molecules as proxies, and measures the shift in their energy level due to the eEDM. We shall
only consider heavy polar molecules in this article, as molecules are preferred over atoms due to their
higher experimental sensitivity. The shift in the energy of a molecule (∆E) that is prepared in some
state, due to the eEDM (de), is given by

∆E = −deEeff, (1)

where Eeff is called the effective electric field, since it has the same dimensions as an electric field.
The expression for Eeff can be obtained by starting with the eEDM Hamiltonian [18]

ĤeEDM = −de

Ne

∑
i=1

βΣi · Eintl
i . (2)

The above expression is basically the well-known -d · E expression for the interaction potential
for a dipole, d, in an electric field, E, except that the dipole here is the eEDM that lies along the spin
axis [19] (deΣi; Σi is the 4× 4 Pauli matrix), while the field in this case is an internal electric field,
Eintl

i . The internal electric field, Eintl
i , experienced by an electron, is due to the nuclei and all the

other electrons in the molecule. The β Dirac matrix denotes that we work in a relativistic regime.
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A relativistic treatment is necessary, since otherwise, the effective electric field is zero, due to the
Schiff’s theorem [20]. The summation is over the number of electrons, Ne. Because the eEDM is an
extremely small quantity, the shift in energy due to it, to first order in perturbation, can be expressed as

∆E = 〈Ψ|ĤeEDM|Ψ〉

= −de〈Ψ|
Ne

∑
i=1

βΣi · Eintl
i |Ψ〉

= −deEeff. (3)

In the first equation given above, |Ψ〉 is the unperturbed wave function of a molecule. We note
that although the eEDM operator is parity-odd, the resulting expression for ∆E with respect to the
unperturbed wave function is non-zero, unlike an atomic case. This is because one expands the
molecular orbitals (MOs) contained in a molecular wave function as a linear combination of ‘atomic
orbitals’ (AOs; strictly speaking, basis functions), often called the Linear Combination of Atomic
Orbitals-Molecular Orbital (LCAO-MO) approach. This leads to mixing of opposite parity orbitals,
and therefore a non-zero contribution. From Equations (1) and (3), one obtains

Eeff = 〈Ψ|
Ne

∑
i=1

βΣi · Eintl
i |Ψ〉. (4)

As seen earlier, the internal electric field, Eintl
i , experienced by the ith electron, includes

contributions from each of the nuclei as well as from the other electrons. Since the latter leads
to a term containing a two-body operator, directly calculating it is computationally very expensive.
Hence, one employs an effective eEDM Hamiltonian, Ĥeff

eEDM, whose expectation value is same as that
of the original ĤeEDM, when Ψ is the exact eigen function of the unperturbed Hamiltonian. Further
details can be found in Refs. [21,22]. Hence, the effective electric field is given by

Eeff = −2ic〈Ψ|
Ne

∑
i=1

βγ5 p2
i |Ψ〉.. (5)

In the above expression, γ5 is the product of Dirac matrices, while pi is the momentum operator.

2.2. eEDM: A Combination of Experiment and Theory

As seen earlier in Equation (1), an eEDM experiment measures a shift in energy ∆E, due to the
eEDM, of a molecule prepared in a particular state. However, we need to revisit Equation (1) and
slightly modify it, in order to accommodate for the dependence of the sensitivity to an external electric
field that is applied to polarize the molecules. Therefore, one obtains

∆E = −deEeff η(Eextnl, D, ∆Erot). (6)

We see from the above expression that η, which is called the polarizing factor, carries with it the
information pertaining to the applied electric field (Eextnl), the molecular permanent electric dipole
moment (also known as the PDM, denoted by D), and the energy difference between rotational states
of the molecule, ∆Erot. Often, for 2Σ systems, one defines a polarizing field, Epol = 2B/D (where
B is the rotational constant of the molecule, and is related to ∆Erot), which sets the scale for the
required external electric field in order to polarize the molecules. It is desirable to be able to polarize
a molecule with as low an external electric field as possible, or as low an Epol as possible. Therefore,
a molecule with a very low PDM can actually hamper the prospects of an otherwise good eEDM
experiment, and hence, polar molecules are the preferred choices. The shift in energy is measured in
experiment, the polarizing factor can either be calculated or found from experiment, while Eeff can
only be calculated using a relativistic many-body theory. Therefore, an eEDM experiment is one of



Atoms 2019, 7, 58 4 of 20

those branches in physics where experiment and theory go hand in hand. Also, it is worth noting
at this point that the eEDM itself is a particle physics property that answers deep questions such as
the matter-antimatter asymmetry in the universe (which is on a significantly different length scale),
while the property can be measured by a combination of high-precision molecular experiments and
relativistic many-body theory (involving quantum chemistry).

2.3. Choosing a Molecular Candidate

The statistical sensitivity of an eEDM experiment is given by

δde ∼
1

Eeffη
√

NTτ
. (7)

N refers to the number of molecules used per coherence time. T refers to the total interrogation
time, while τ is the coherence time of the state of interest to an eEDM experiment. The importance
of Eeff can be immediately understood from the above expression; it occurs outside the square root,
and therefore plays a significant role in the sensitivity of an eEDM experiment.

The choice of a good eEDM candidate molecule usually relies upon the above mentioned factors
(besides the effects of systematics and the prospects that a molecule offers for rejection of certain
systematic effects). Not all of them can be satisfied in any one system; however, one looks for a suitable
combination of these parameters to propose a new candidate which can potentially set a better bound
on the eEDM. The effective electric field in a reasonably good molecular eEDM candidate is extremely
large, and is usually∼GV/cm (as compared to atoms, whose ‘Eeff’ for a ∼10 kV/cm field is ∼MV/cm).
This is one of the major reasons why molecules are preferred over atoms.

3. Relativistic Many-Body Theory

We need to evaluate the expression given in Equation (5), in order to obtain Eeff. The molecular
wave function in the expression has to be obtained from a relativistic many-body theory. We employ the
relativistic coupled cluster method (RCCM) for our accurate calculations. Solving the RCCM equations
rely upon the relativistic Hartree–Fock (HF) or Dirac–Fock (DF) reference state, and therefore, we shall
briefly explain the DF equations, and then motivate RCCM by drawing parallels with the more intuitive
many-body perturbation theory (MBPT).

3.1. The Dirac–Fock Method

The HF equations and its relativistic counterpart, the DF equations, can be obtained by applying
the variational principle, which guarantees that the energy thus obtained would be an upper bound to
the actual ground state energy (for example, Ref. [23]). The equations are

t̂(1)|ϕi(1)〉
+∑

j
〈ϕj(2)|v̂(1, 2)|ϕj(2)〉|ϕi(1)〉

−∑
j
〈ϕj(2)|v̂(1, 2)|ϕi(2)〉|ϕj(1)〉 = εi|ϕi(1)〉. (8)

There are N such equations for an N-electron system, each corresponding to the ith spin-orbital,
|ϕi(1)〉 (the many-body wave function itself is built from these spin-orbitals, or single particle wave
functions, as a Slater Determinant, |Φ0〉 = Det{ϕ1 ϕ2 · · · }). The operator, t̂(1) contains in it the kinetic
and the electron-nucleus interaction terms, and v̂(1, 2) is the familiar electron-electron interaction term.
The summation j is over the number of electrons in the system. The second and third terms are called
the direct and the exchange terms respectively. Written in this form, the Hd or DF equations reveal
the physical meaning of the direct term. By rearranging the direct term, one can readily see that it
leads to a mean field interpretation, that is, each electron experiences an average potential due to the
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remaining (N − 1) electrons. The exchange term has no classical counterpart. Also, in this form, it is
transparent that the equation has to be solved in a self-consistent way, starting with an initial guess for
the spin-orbitals.

In the DF method, one employs a relativistic Hamiltonian, that is, the Dirac–Coulomb Hamiltonian
(DCB), Ĥ0, given by

Ĥ0 = ∑
i
[cα · pi + βc2 −∑

A

ZA
|ri − rA|

]

+ ∑
i 6=j

1
|ri − rj|

. (9)

The summation, i (and j), is over the electrons, while A is over the nuclei. α and β are the Dirac
matrices, while pi is the momentum operator. ZA is the atomic number of the Ath nucleus. ri is the
position vector from the origin to the site of the ith electron, and rA is that from the origin to the site
of the Ath nucleus. In practice, the third term would correspond to a finite nucleus, and we have
given the point nucleus case above for simplicity. We work in the Born–Oppenheimer approximation,
where the nuclei are ‘clamped’, and also in the no-pair approximation [24], where one projects out the
negative energy solutions from the electronic Hamiltonian.

Also, the single particle wave function, for a relativistic case, is built from four-component spinors,
given by

ϕ =


ϕ1

ϕ2

ϕ3

ϕ4

 =

(
v
w

)
; (10)

where v and w are referred to as the large and small components respectively, and in practice, are
related to one another by the kinetic balance condition. The condition guarantees that the expression
for kinetic energy is recovered in the non-relativistic limit, and also aids in avoiding variational
collapse [25,26].

We shall now briefly discuss the matrix formulation of the DF equations, by first rewriting
Equation (8) (we drop the co-ordinate labels for simplicity) as follows

t̂|ϕi〉+ v̂DF|ϕi〉 = εi|ϕi〉; (11)

v̂DF|ϕi〉 = ∑
j
〈ϕj|v̂|ϕj〉|ϕi〉

− ∑
j
〈ϕj|v̂|ϕi〉|ϕj〉. (12)

Here, |ϕi〉 is a general spin-orbital. Let f̂ ≡ t̂ + v̂DF. Then,

f̂ |ϕi〉 = εi|ϕi〉. (13)

Expanding |ϕi〉 as a linear combination of a suitable basis set, that is, |ϕi〉 = ∑n Cin|χn〉,
and projecting from the left with 〈χm|, one obtains.

∑
n
〈χm| f̂ |χn〉Cin = εi ∑

n
Cin〈χm|χn〉 (14)

∑
n

fmnCin = εi ∑
n

SmnCin; (15)

Smn = 〈χm|χn〉. (16)
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The DF coefficients, Cin, are what one solves for. Smn is the overlap integral. It is now
straightforward to recast the above equations in a matrix form as

FC = ESC (17)

FS−1/2S1/2C = ES1/2S1/2C

FS−1/2C′ = ES1/2C′

S−1/2FS−1/2C′ = EC′

F′C′ = EC′; F′ = S−1/2FS−1/2. (18)

After performing the similarity transform shown above, the resulting equation, that is,
Equation (18), is solved iteratively to obtain the coefficients. Note that the choice of basis is one
of the factors that determines the precision of a calculation. The other important factor that determines
the precision is electron correlations, which we shall discuss next.

3.2. Electron Correlation

The HF method (and its relativistic counterpart, the DF method) is a mean field approach,
which ignores the fact that every electron actually interacts with each of the remaining electrons.
The physical effects beyond those embodied in the mean field approximation are subsumed under the
umbrella of electron correlation.

If E is the energy that one obtains by solving the Schroedinger’s equation exactly, and if EDF is the
DF energy for the same system, then the correlation energy, Ecorr, is

Ecorr = E− EHF. (19)

Some well known examples of many-body theories that take into account electron correlation
effects are configuration interaction (CI), multi-configuration Hartree–Fock (MCHF), many-body
perturbation theory (MBPT), coupled cluster Methods (CCM), and their relativistic extensions.

3.3. Many-Body Perturbation Theory: Non-Relativistic and Relativistic

To introduce MBPT, we define zeroth-order Hamiltonian (Ĥ0) as a sum of Fock operators

Ĥ0 = ∑
i

t̂i + ∑
i

v̂HFi . (20)

For this Hamiltonian, the Hartree–Fock determinant (Φ0) and its k-particle k-hole excitation
determinants (Φk) become eigen functions of Ĥ0, and hence

Ĥ0|Φ0〉 = E0|Φ0〉, (21)

Ĥ0|Φk〉 = Ek|Φk〉. (22)

In this picture, a hole refers to an occupied orbital, while a particle to an unoccupied/virtual one.
Electron correlation effects are taken into account by accommodating for such virtual excitations to the
HF wave function. Also, Ek = E0−∆Ek; where the second term contains the orbital energies associated
with a k particle-k hole excitation. For example , for one-particle one-hole and two particle-two hole
cases, we obtain

∆E1 = −εi + εa (23)

∆E2 = −εi − εj + εa + εb, (24)

respectively. In this notation, i, j, k, · · · are holes, and a, b, c, · · · are particles.
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We now introduce a perturbation to the Hamiltonian, which is the difference between the actual
1

|ri−rj |
and the HF potential. Then, the Schroedinger’s equation corresponding to the actual wave

function of the system would be

Ĥ|Ψ〉 = E|Ψ〉; (25)

Ĥ = ∑
i

t̂i + ∑
i>j

1
|ri − rj|

∴ Ĥ′ = Ĥ − Ĥ0

= ∑
i>j

1
|ri − rj|

−∑
i

v̂HF
i (26)

And, |Ψ〉 = |Φ0〉+ |Φ
(1)
0 〉+ |Φ

(2)
0 〉+ · · · (27)

where |Φ(1)
0 〉 contains one order of Ĥ′, |Φ(2)

0 〉 contains two orders of Ĥ′, etc.
This framework is common for both the relativistic (denoted by the subscript, ‘rel’) and non-relativistic

cases (denoted by the subscript, ‘NR’), with the orbitals being different (four-component), and the one-body
part of the Hamiltonian also differing as follows

∑
i

t̂i,NR = −1
2

n

∑
i=1
∇2

i + V̂Nuclear
i (28)

∑
i

t̂i,rel = ∑
i

cαi · pi + βc2 + V̂Nuclear
i , (29)

with V̂Nuclear
i being a shorthand for ∑A

ZA
|ri−rA |

for a point nucleus, or a suitable expression for a finite
nucleus, depending on whether it is a Fermi or a Gaussian one.

4. Relativistic Coupled Cluster Method

The RCCM is a very accurate approach to treat electron correlation effects. To that end, the method
has been referred to as the gold-standard of many-body theory of atoms and molecules. The RCCM
wave function is given by

|Ψ〉 = eT̂ |Φ0〉. (30)

T̂ is called the cluster operator. For an N-electron system, T̂ = T̂1 + T̂2 + · · · + T̂N . Here,
T̂1 = ∑i,a ta

i â† î, where all possible one-particle one-hole excitations are accounted for by the summation,
ta
i is called the t-amplitude, which is like a weight factor for a one-particle one-hole excitation, and â† î

is a shorthand notation for â†
a âi, where a hole ‘i’ is annihilated and a particle ‘a’ is created. Similarly,

T̂2 = ∑i 6=j,a 6=b tab
ij â† b̂† ĵî, etc. One must also include all possible combinations of two independent

one-particle one-hole excitations (given by T̂2
1 ), a one-particle one-hole and a two particle-two hole

occurring independently, but again all such possibilities (that is, T̂1T̂2), and so on. By taking into account
all such options and accounting for over-counting, we naturally obtain an exponential structure, that is,
Equation (30) [27].
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4.1. RCCM and MBPT

We shall now compare RCCM with MBPT. We begin by examining the full MBPT wave function,
and then connecting it with RCCM.

|Ψ〉MBPT = |Φ0〉+ |Φ(1)〉+ |Φ(2)〉+ · · · (31)

|Φ(1)〉 = (∑
S

C(1)
S + ∑

D
C(1)

D + . . . )|Φ0〉, (32)

|Φ(2)〉 = (∑
S

C(2)
S + ∑

D
C(2)

D + . . . )|Φ0〉, · · · (33)

Equations (32) and (33) involve rewriting the corrections to the wave function at a given order of
perturbation, as a summation over single (that is, one-particle one-hole, and denoted by subscript S),
double (D), · · · excitations. If we plug in Equations (32) and (33), and the rest of the corrections to the
wave function to infinite orders, and rearrange, the resulting equation as

|Ψ〉MBPT = |Φ0〉+ ∑
S
(C(1)

S + C(2)
S + . . . )|Φ0〉

+ ∑
D
(C(1)

D + C(2)
D + . . . )|Φ0〉+ · · · (34)

We see that this is actually the coupled cluster wave function. This correspondence is allowed,
as the wave functions obtained from full MBPT and CCM without any truncation have to be the
same. Equation (34) shows that for a given level of particle-hole excitation, CCM contains in it those
excitations to all orders of perturbation in the residual Coulomb interaction. RCCM is also both size
extensive and size consistent. Further details can be found in Ref. [28].

4.2. The Energy and Amplitude Equations

The RCCM equations that are to be solved, in order to obtain the t amplitudes, can be derived
as follows

Ĥ|Ψ〉 = E|Ψ〉 (35)

ĤeT̂ |Φ0〉 = EeT̂ |Φ0〉 (36)

e−T̂ ĤeT̂ |Φ0〉 = E|Φ0〉 (37)

∴ 〈Φ0|e−T̂ ĤeT̂ |Φ0〉 = E (38)

and, 〈Φ∗0 |e−T̂ ĤeT̂ |Φ0〉 = 0. (39)

In Equation (38), we have projected Equation (37) with the DF wave function and in Equation (39),
〈Φ∗0 | could be 〈Φa

i | = 〈Φ0|î† â, 〈Φab
ij | = 〈Φ0|î† ĵ† b̂â, and so on. One can also write e−T̂ ĤeT̂ as (ĤeT̂)c,

according to the linked cluster theorem. We shall briefly outline the derivation of the linked cluster
theorem here. Given an operator Â, e−T̂ ÂeT̂ can be expressed as a sum of nested commutators,
by using the Baker–Campbell–Hausdorff expansion. By using suitable arguments from the second
quantization formalism, one can show that each of the terms in the sum are fully contracted, or in the
diagrammatic approach, fully connected (denoted by the subscript, ‘c’), leading to the final expression
e−T̂ ÂeT̂ = (ÂeT̂)c [29]. Finally, we note that the expression for energy is naturally terminating, as this
shall have important consequences later in this article.
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4.3. The CCSD Approximation

One often works with the coupled cluster singles and doubles approximation (CCSD, or its
relativistic counterpart, RCCSD), where T̂ = T̂1 + T̂2. In such a case, the energy and amplitude
equations are

〈Φ0|e−T̂ ĤeT̂ |Φ0〉 = E (40)

〈Φa
i |e−T̂ ĤeT̂ |Φ0〉 = 0 (41)

〈Φab
ij |e−T̂ ĤeT̂ |Φ0〉 = 0. (42)

After solving the amplitude equations and obtaining the wave function of the system, the next step
would be to obtain the property of interest, for example, Eeff. This can be done in two ways, by either
solving an expectation value problem, or by adopting an energy derivative approach. We shall discuss
both these approaches below.

4.4. The Expectation Value Approach

The expectation value of an operator, Â, in RCCM is given by

〈Â〉 =
〈Ψ|Â|Ψ〉
〈Ψ|Ψ〉 (43)

=
〈Φ0|(eT̂)† ÂeT̂ |Φ0〉
〈Φ0|(eT̂)†eT̂ |Φ0〉

(44)

= 〈Φ0|eT̂† ÂNeT̂ |Φ0〉C + 〈Φ0|Â|Φ0〉. (45)

The last equation was derived by Cizek [30,31]. The subscript ‘N’ means that the operator is
normal ordered [32], while ‘C’ stands for fully connected, as seen earlier. This approach has the
advantage of making the underlying physics more transparent, as one can break an expectation value
expression down into its constituent terms, which in turn can be associated with several many-body
effects, such as Bruckner pair correlation. However, the expectation value expression given above is
an infinite, non-terminating series, and therefore requires that one manually truncate the expression,
for obtaining a result. One such approximation is the linear expectation value approximation (LECC),
which we have adopted. The expectation value in the CCSD approximation is then given by

Eeff = − 1
de
[〈Φ0|(1 + T̂1 + T̂2)

† Ĥeff
eEDM(1 + T̂1 + T̂2)|Φ0〉C

+ 〈Φ0|Ĥeff
eEDM|Φ0〉]. (46)

As we shall see later, this turns out to be a good approximation for computing Eeff, for many
systems with one unpaired electron.

4.5. The Energy Derivative Approach

The second approach relies on evaluating a property as an energy derivative. The derivative is
taken with respect to a perturbation parameter, λ. The total Hamiltonian, Ĥ(λ), is given by

Ĥ(λ) = Ĥ0 + λĤ′. (47)

Then,

Ĥ(λ)|Ψ(λ)〉 = E(λ)|Ψ(λ)〉; (48)

E(λ) = E0 + λE1 + · · · . (49)
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Also,

E(λ) = E0 + λ
dE(λ)

dλ

∣∣∣∣
0
+ · · · (50)

∴ E1 =
dE(λ)

dλ

∣∣∣∣
0
. (51)

From perturbation theory,

E1 = 〈Ψ(0)|Ĥ′|Ψ(0)〉. (52)

Within the RCCM framework, this approach takes advantage of the fact that the expression for
coupled cluster energy naturally terminates. A first order property like Eeff or PDM could be evaluated
as an energy derivative, either analytically (i.e., analytical derivative) or numerically (i.e., the finite
field method). In our work, we have implemented the latter. We note that our discussions are based on
computing first order properties like Eeff and PDM. The approach can be extended in a straightforward
way to higher order properties, such as polarizabilities and hyperpolarizabilities.

We shall now explain some details of our implementation. We use an unrelaxed version of finite
field coupled cluster method (FFCC), that is, we solve the unperturbed DF equations, and add the
perturbation at the CCSD level. We shall derive an expression for CCSD correlation energy (Ecorr) with
the perturbation lambda, as follows.

Ĥ(λ)|Ψ(λ)〉 = E|Ψ(λ)〉 (53)

Ĥ(λ)eT̂(λ)|Φ0〉 = EeT̂(λ)|Φ0〉 (54)

(ĤN(λ) + 〈Φ0|Ĥ(λ)|Φ0〉)eT̂(λ)|Φ0〉 = (EDF + Ecorr)eT̂(λ)|Φ0〉. (55)

Using the fact that 〈Φ0|Ĥ|Φ0〉 = EDF, and operating with e−T̂ on both sides on the left, we obtain

e−T̂(λ)ĤN(λ)eT̂(λ)|Φ0〉 = Ecorr|Φ0〉 (56)

∴ 〈Φ0|e−T̂(λ)ĤN(λ)eT̂(λ)|Φ0〉 = Ecorr. (57)

Using the linked cluster theorem, our correlation energy is

Ecorr = 〈Φ0|(ĤN(λ)eT̂(λ))c|Φ0〉. (58)

We note that the effects associated with orbital relaxation would be recovered at the perturbed
CCSD level; for example, see Ref. [33]. The next step is to evaluate the energy derivative. Depending
on the degree to which we wish to minimize the truncation error in a calculation, we can opt for a
two-point central difference formula or beyond to evaluate the derivative. The two-point and the
six-point formula are, respectively

dEcorr

dλ

∣∣∣∣
0

=
Ecorr(λ/2)− Ecorr(−λ/2)

λ
+ O((λ/2)2) (59)

dEcorr

dλ

∣∣∣∣
0

= 3
Ecorr(λ/4)− Ecorr(−λ/4)

λ

− 3
Ecorr(λ/2)− Ecorr(−λ/2)

5λ

+
Ecorr(3λ/4)− Ecorr(−3λ/4)

15λ
+ O((λ/4)6). (60)
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The property of interest is obtained by adding its DF contribution to the above formula, that is,

〈Â〉 = dEcorr

dλ

∣∣∣∣
0
+ 〈Φ0|Â|Φ0〉. (61)

The above equation can be obtained for a forward difference formula, for example, by starting
with E(λ) and E, and taking the difference. If the perturbation is de, and Â is Ĥeff

eEDM/de, then one
obtains Eeff, or with an electric field as the perturbation, with Â being the dipole operator, one gets
the PDM.

This approach offers the advantage of not having to truncate an infinite series in order to obtain a
property. However, it is extremely time consuming, as one has to carefully choose the right value of λ,
and a two-point central difference formula means that one has to evaluate the CCSD equations twice
for one property.

4.6. Methodology

For all our results, we performed the DF calculations and obtained the property integrals using
the UTChem package [34–36]. The same program was also used for atomic orbital to molecular
orbital integral transformation. We then employed the Dirac08 program [37] to solve the CCSD
equations and obtain the t amplitudes, and finally, we used our expectation value code for the
LECC computations. For a finite field calculation, we introduce the perturbation at the CCSD level.
Therefore, the one-electron integrals as well as the relevant property integrals with a chosen value of the
perturbation parameter are fed to the Dirac08 program to obtain the energies. Further details on LECC
approach can be found in Ref. [21], while Ref. [38] provides more information on the FFCC approach.

5. Results

5.1. First Application of RCCM to YbF

YbF currently holds the third best limit on the eEDM, and improvement in its current sensitivity is
expected in the near future. We performed our first accurate molecular RCCM calculations on YbF, and
using the LECC approach, obtained a value of −23.1 GV/cm for Eeff (see Table 1), with an estimated
error of less than 10 percent [21]. A fairly large quadruple zeta (QZ) basis (primitive Gaussian basis
sets) was used (Yb: (35s,30p,19d,13f,5g,3h,2i), F: (13s,10p,4d,3f)) [39–41]. We used a bond length of
2.0161 Angstroms [42]. Our result was an improvement over the previous ones, as they were based
on the DF approximation [43], MBPT [44], effective core potential methods [45], and the CI method
in the singles and doubles approximation [46]. The latest result on the molecule uses a complex
generalized Hartree–Fock and a complex generalized Kohn-Sham scheme within the zeroth order
regular approximation [47]. We had also systematically investigated the behaviour of Eeff as well as
the PDM with change in the number of virtuals and frozen orbitals. Additionally, we also presented
the individual correlation contributions, from Equation (46), at the QZ level of basis. In conclusion, our
accurate result leads to an increase in the value of the upper bound on the eEDM to 11.8× 10−28 e-cm,
as compared to the earlier result of 10.5× 10−28 e-cm. Further details can be found in Ref. [21].

Table 1. Summary of the calculated linear expectation value approximation (LECC) results in YbF
using a quadruple zeta (QZ) basis.

Method Eeff (GV/cm) PDM (D)

DF −18.2 3.21
CCSD −23.1 3.60
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5.2. Mercury Halides

It was seen from Equation (7) that a large value of Eeff would substantially improve the
statistical sensitivity of an eEDM experiment. We had identified that mercury halides, HgX, possess
Eeff ∼ −100 GV/cm (see Table 2) [48], which is one and a half times larger than that of the current best
candidate, ThO, and about five times that of YbF and HfF+. We estimate the error in our calculations
to be within 5 percent. We employed the Dyall c2v basis sets for Hg [49], and cc-pVDZ (correlation
consistent-polarized valence double zeta) basis for the halides [50], for our computations. We had
chosen the following bond lengths (in Angstroms): HgF (2.00686) [51], HgCl (2.42), HgBr (2.62),
and HgI (2.81) [52]. Our HgF calculation was an improvement over those by Meyer et al. [53,54], and
Yu Yu Dmitriev et al. [55]. These systems also possess favourable experimental features, and ultracold
HgX can be produced in large quantities, for example, by photoassociation of laser-cooled Hg with
magnetically trapped halogen atoms [56]. Anticipating N ≥ 103 molecules/s, and τ ∼ 1 s with a slow
beam or fountain of HgX molecules (for example, Ref. [57]), the eEDM sensitivity, δde ≤ 3× 10−27/

√
N

e-cm. We also found that Epol is less than 10 kV/cm for HgX, and thus one could apply small
lab electric fields to polarize the molecules. We also point out that HgX molecules have sets of
internal comagnetometer states, which can lead to suppression of systematic effects. In a recent work,
Yang et al. explore laser cooling possibilities for HgF, and estimate the statistical sensitivities for an
eEDM experiment to be ∼9× 10−31 e-cm (beam experiment) and ∼10−32 e-cm (trap experiment) [58].
Further details on our calculations and estimates can be found in Ref. [48].

Table 2 also presents our results for HgX, using FFCC [38]. We employed both the two- and
the six-point formula, and the results did match perfectly. We also chose the following values of
λ: 10−3, 10−4, 10−5, and 10−6, and found a smooth convergence in the results. The results show
that LECC is a good approximation, for calculating Eeff. We took HgF as a representative case for
obtaining our error estimates in our calculations, and broadly categorized the errors under three
sources: 1. percentage fraction difference between the TZ (triple zeta) and DZ (double zeta) FFCC
results was 3.02, 2. percentage fraction difference between DZ cases with and without diffuse functions
was 2.4, and 3. percentage fraction difference between FFCCSD(T) and FFCCSD results, at DZ level of
basis was 3.3.

Table 2. Summary of our calculated LECC and finite field coupled cluster method (FFCC) values of
Eeff for HgX and BaF. We used double zeta (DZ) basis sets for HgX, while BaF’s result is using a QZ
basis, with diffuse functions added to Ba. All the units are in GV/cm.

Molecule Basis DF LECC FFCC

HgF DZ −104.25 −115.42 −116.37
HgCl DZ −103.57 −113.56 −114.31
HgBr DZ −97.89 −109.29 −109.56
HgI DZ −96.85 −109.30 −109.56
BaF QZ −4.80 −6.50 −6.46

5.3. BaF

As mentioned earlier, BaF is a promising candidate for an eEDM search experiment, and an
experiment using the system is underway [12]. Also, a second experiment on the same molecule
has commenced, which plans on trapping a large number of BaF molecules in a solid rare-gas
matrix. This approach is expected to drastically improve the statistical sensitivity of an eEDM
experiment [13,14]. We employed the FFCC method, and obtained −6.50 and −6.46 GV/cm, using
LECC and FFCC respectively (see Table 2) [38]. We used QZ basis sets, from Dyall (and appended
diffuse functions to it from Sapporo basis) [41,59] and BSE databases (cc-pV basis sets) [50], for Ba and F
respectively. We used a bond length of 2.16 Angstroms [60,61]. Our calculations were an improvement
over the earlier ones by Kozlov et al. [62], Nayak and Chaudhuri [63], and Meyer et al. [53,54].
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5.4. Mercury Alkalis

We performed LECC calculations on Eeff of mercury alkalis (HgA; A = Li, Na, and K), and found
that their effective fields are comparable with that of YbF’s (see Table 3) [64]. We used Dyall’s cVTZ
basis for all of the molecules [65,66]. The bond lengths (in Angstroms) were: HgLi: 2.92, HgNa: 3.52,
and HgK: 3.90 [67]. In combination with a reasonably large Eeff, we found based on a preliminary
survey that HgA satisfy the criteria of very long τ and a large N. An eEDM experiment with a long
τ can be envisioned with ultracold molecules trapped in optical lattices [68]. We conservatively
estimate that N ∼ 104 ultracold HgA molecules can be produced in an optical lattice, based on what
was demonstrated with isoelectronic YbLi molecules [69,70]. We also find that the values of Epol
are (71,28,17) kV/cm for (HgLi, HgNa, HgK), which implies that it is feasible to polarize trapped,
ultracold, HgA molecules. With an integration time of ∼107 seconds, a preliminary set of estimates for
the sensitivity, δde = (1.3; 2.5; 3.1)× 10−30 e-cm for (HgLi, HgNa, HgK) respectively. Further details
on our calculations and estimates can be found in Ref. [64].

Table 3. The calculated values of Eeff (in GV/cm), at the Dirac–Fock (DF) and the LECC levels.

Molecule DF LECC

HgLi −13.74 −37.79
HgNa −7.59 −20.33
HgK −5.73 −16.24

5.5. YbOH

Polyatomic molecules are currently emerging as promising eEDM candidates. The advent of
polyatomic systems was marked by the first fast sisyphus laser cooling of SrOH on the experimental
front [71], followed by a proposal using RaOH for an eEDM experiment [72]. A proposal by Kozyryev
and Hutzler, followed immediately by commencement of the experiment, brought YbOH to the
forefront of eEDM searches [15]. In their work, the authors highlight the importance of YbOH;
the possibility of laser cooling as well as possessing bending modes with closely-spaced parity doublets.
The implications due to the former is that laser-cooled YbOH molecules in an optical lattice would
tremendously improve the coherence time to ∼ 1s on the statistical sensitivity front, while drastically
reducing systematics, such as motional magnetic fields. The latter implies internal co-magnetometer
states, which eliminates the systematics associated with reversing electric fields. Lastly but very
importantly, the spectroscopy of the system is already known. These factors lead the authors to expect
a sensitivity that is four orders better than the current best candidate, ThO. However, the sensitivity
also relies upon a reasonably large Eeff. In our work on YbOH, we calculate Eeff values not only for
a linear geometry, but also for a bent one, as the state of interest is a bent mode. Table 4 shows the
obtained results in a linear geometry, with Dyall’s double (DZ), triple (TZ), and quadruple zeta (QZ)
basis, with the Yb-O bond length being 2.0026 Angstroms, and O-H 0.922 Angstroms [73]. The result is
similar to that of YbF. Also, there were two other works on linear geometry, at about the same time as
ours on YbOH: Gaul and Berger (who used a zeroth order regular approximation) [47,74], and Denis et
al. (who also employ a relativistic coupled cluster method) [75]. For an excited bent mode, specifically
a (010) mode, we do not know beforehand the degree to which the molecule is bent, and therefore,
we estimate the effective electric field at the DF level for various values of Θ, which is the angle formed
by O-Yb, with respect to H-O, as Figure 2 shows. A DF treatment is sufficient for our purposes, as the
dominant contribution to Eeff comes from it. We assume that the correlation contributions would not
vary significantly with change in angle. Contrary to expectation, our results show that the DF effective
electric field could vary significantly in a low-lying bent mode, between about 13 and 18 GV/cm,
and also shows an oscillatory behaviour, for the chosen points. For further details, refer to [76].
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Table 4. The calculated values of Eeff (in GV/cm). The triple zeta (TZ) result is at 800 au virtuals’ cut-off
value, and QZ at 500 au.

Basis DF LECC

DZ −17.78 −23.49
TZ −18.00 −23.85
QZ −18.02 −23.80

Figure 2. The Dirac–Focl (DF) effective electric field vs Θ.

6. Future Prospects

We shall now look at two of the many-body methods that we plan on implementing in the near
future, due to their advantages over the conventional coupled cluster approach.

6.1. The Normal Coupled Cluster Method

In this variant of the coupled cluster method, the bra and the ket are defined on different
footings [77], as

Ĥ|Ψ〉 = E|Ψ〉 (62)

〈Ψ̃|Ĥ = 〈Ψ̃|E, (63)

where

|Ψ〉 = eT̂ |Φ0〉; T̂ = ∑
I 6=0

TIĈ+
I (64)

〈Ψ̃| = 〈Φ0| ˆ̃Te−T̂ ; ˆ̃T = 1 + ∑
I 6=0

T̃IĈ−I . (65)

Here, TIs refer to the t amplitudes, and Ĉ+
I to the operators associated with particle-hole

excitations. Ĉ−I are the set of creation and annihilation operators, which are associated with
de-excitations.

6.1.1. Amplitude Equations by Variational Principle

We can derive the amplitude equations for the normal coupled cluster method (NCCM), starting
from the variational principle. Consider an energy functional, given by

x = 〈Ψ̃|Ĥ|Ψ〉 (66)

= 〈Φ0|(∑
I 6=0

T̃IĈ−I + 1)e−∑I 6=0 TI Ĉ+
I Ĥe∑I 6=0 TI Ĉ+

I |Φ0〉. (67)
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According to the variational principle:

δx
δT̃I

= 0 =⇒ 〈Φ0|Ĉ+
I e−T̂ ĤeT̂ |Φ0〉 = 0 (68)

δx
δTI

= 0 (69)

=⇒ δ

δTI
〈Φ0|(∑

I 6=0
T̃IĈ−I + 1)e−∑I 6=0 TI Ĉ+

I Ĥe∑I 6=0 TI Ĉ+
I |Φ0〉 = 0. (70)

Using ∑I 6=0 T̃IĈ−I = ˆ̃T − 1, we obtain:

δ

δTI
〈Φ0| ˆ̃Te−∑I 6=0 TI Ĉ+

I Ĥe∑I 6=0 TI Ĉ+
I |Φ0〉 = 0

〈Φ0| ˆ̃Te−T̂ ĤĈ+
I eT̂ |Φ0〉 − 〈Φ0| ˆ̃TĈ+

I e−T̂ ĤeT̂ |Φ0〉 = 0. (71)

In the second term on the left hand side, Ĉ+
I and e−T̂ can be switched, since they commute.

Therefore,

〈Φ0| ˆ̃Te−T̂ [Ĥ, Ĉ+
I ]e

T̂ |Φ0〉 = 0. (72)

6.1.2. The Expectation Value

Since the bra and the ket are treated differently, as seen earlier, the resulting NCCM expectation
value expression naturally terminates. For any operator, Â, this can be seen as follows:

〈Â〉 =
〈Ψ̃|Â|Ψ〉
〈Ψ|Ψ〉 (73)

=
〈Φ0| ˆ̃Te−T̂ ÂeT̂ |Φ0〉
〈Φ0| ˆ̃T|Φ0〉

. (74)

For illustration, let us consider NCCM in the singles and doubles approximation, that is, NCCSD.
One can show that

〈Φ0| ˆ̃T|Φ0〉 = 〈Φ0|(1 + ˆ̃T1 +
ˆ̃T2)|Φ0〉

= 1.

Therefore,

〈Â〉 = 〈Φ0| ˆ̃Te−T̂ ÂeT̂ |Φ0〉. (75)

e−T̂ ÂeT̂ terminates depending on the rank of Â, and therefore NCCM expectation value avoids
the issue of truncation.

6.1.3. The Hellmann-Feynman Theorem

An important attribute of NCCM that makes it attractive, besides being variational and having an
expectation value that naturally terminates, is that it satisfies the Hellman-Feynman Theorem (HFT),
that is,

dE(λ)
dλ

= 〈Ψ(λ)|dĤ(λ)

dλ
|Ψ(λ)〉, (76)
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where Ĥ(λ) is the Hamiltonian depending on a continuous parameter λ, |Ψ(λ)〉 is an eigen state of
the Hamiltonian, and Eλ is the energy of the state |Ψ〉.

For NCCM, the Hellmann-Feynman theorem takes the following form:

dE(λ)
dλ

= 〈Ψ̃(λ)|dĤ(λ)

dλ
|Ψ(λ)〉. (77)

This expression can be rigorously proved. Expanding Ĥ(λ), Ψ̃(λ) and Ψ(λ) in the above equation,
with Ĥ(λ) = Ĥ0 + λÂ, and equating the zeroeth powers of λ, we obtain

∂E
∂λ

∣∣∣∣
λ=0

= 〈Ψ̃|Â|Ψ〉 (78)

= 〈Φ0| ˆ̃Te−T̂ ÂeT̂ |Φ0〉. (79)

Here, Ψ̃ and Ψ are the zeroth order or unperturbed parts of the wave functions for the bra and
ket in lambda CC respectively. Therefore, the effective electric field could either be calculated as an
expectation value, as shown earlier, or as an energy derivative, as shown above. For example, in a recent
work, Sahoo and Das calculate the enhancement factors of the Hg atom using spherical symmetry to
probe nuclear EDMs in the expectation value approach [78], while Sasmal et al. compute the effective
electric field of RaF using the energy derivative approach [79]. We are planning on implementing
the former and the extended coupled cluster method (ECCM) for our molecular calculations. In the

ECCM, the same ket is used as in the NCCM, but the ˆ̃T in the bra is replaced with e
ˆ̃T [77].

6.2. The Analytical Derivative Approach

Following the approach by Monkhorst’s [80], we shall begin with the familiar equations from
Section 4.5:

Ĥ(λ)|Ψ(λ)〉 = E(λ)|Ψ(λ)〉; (80)

Ĥ(λ) = Ĥ0 + λĤ′ (81)

E(λ) = E0 + λE1 + · · · . (82)

Also,

|Ψ(λ)〉 = eT̂(λ)|Φ0〉; (83)

T̂(λ) = T̂ + λT̂(1) (84)

∴ |Ψ(λ)〉 = eT̂eλT̂(1) |Φ0〉. (85)

Starting from here, one can show that after some algebra and equating terms of the order lambda,
the energy and amplitude equations can be obtained as

〈Φ0|([Ĥ, T̂(1)] + Ĥ′eT̂)c|Φ0〉 = E1 (86)

〈Φ∗0 |(e−T̂ ĤNeT̂ T̂(1))c|Φ0〉 = 0. (87)

Therefore, one solves the coupled cluster equations, hence obtaining the t amplitudes, followed
by solving for the amplitude equations given above to obtain T̂(1). Finally, from the energy equation,
one can evaluate E1. The effective electric field could thus be obtained, as it is a first order property.

Having introduced the two methods, we shall now compare them with the conventional coupled
cluster approach. As seen earlier, the NCCM expectation value naturally terminates, unlike the CCM
expression. Therefore, one expects NCCM to be more accurate (for a given level of particle-hole
excitation and choice of basis), as it can capture missing correlation effects in CCM that arise as a
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consequence of manually terminating an infinite series. NCCM also satisfies the Hellmann-Feynman
theorem. The analytical derivative approach recasts a property as an energy, and therefore there
is no truncation involved in this method either, hence making this approach more accurate than
CCM. We also note that the analytical derivative approach fares better than FFCC, since the latter
involves running several calculations to obtain a property and also could have numerical issues.
However, both NCCM and analytical derivative are harder to implement, and are computationally
more expensive, as both require us to solve for an additional set of amplitudes. The NCCM treats the
bra and the ket differently, and we need to evaluate the unperturbed bra and ket amplitudes, while in
the analytical derivative approach, we need to solve for unperturbed and perturbed ket amplitudes.
In CCM, one solves only for the unperturbed ket amplitudes. Also, using these methods for polyatomic
systems is expected to be more challenging, and the degree of complexity could vary depending on
factors such as the state of the molecule, and the number of valence electrons in that system.

7. Conclusions and Outlook

Relativistic many-body theory is indispensable in the searches of electron EDM. It is necessary
to determine the upper limit for eEDM and also for identifying promising candidates for eEDM
searches. With new results expected for the electron EDM experiments, improvements in relativistic
many-body calculations in molecules are desirable. Relativistic coupled cluster theory is well suited
for the calculations associated with eEDM searches mentioned above. It would be necessary to develop
different variants of the theory for this purpose: normal CC method, the analytical derivative approach,
ECCM [77,81], and tensor network tailored CC theory for open-shell molecules [82].
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