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Abstract: The role of the geometric phase effect in chemical reaction dynamics has long been a topic of
active experimental and theoretical investigations. The topic has received renewed interest in recent
years in cold and ultracold chemistry where it was shown to play a decisive role in state-to-state
chemical dynamics. We provide a brief review of these developments focusing on recent studies of O
+ OH and hydrogen exchange in the H + H2 and D + HD reactions at cold and ultracold temperatures.
Non-adiabatic effects in ultracold chemical dynamics arising from the conical intersection between
two electronic potential energy surfaces are also briefly discussed. By taking the hydrogen exchange
reaction as an illustrative example it is shown that the inclusion of the geometric phase effect captures
the essential features of non-adiabatic dynamics at collision energies below the conical intersection.

Keywords: ultracold chemistry; ultracold molecules; ultracold reactions; geometric phase effect;
controlled chemistry

1. Introduction

Our description of chemical reactions largely relies on the Born–Oppenheimer (BO) approximation
in which the fast-moving electronic degrees of freedom are separately treated from the slow moving
nuclear coordinates which largely remain unchanged during an electronic transition. In this adiabatic
approximation, the electronic problem is solved for different fixed nuclear configurations and the
nuclei are assumed to evolve in a potential field created by the electrons. This separation is the basis of
the vast majority of electronic structure and quantum dynamics studies and works amazingly well
for many chemical reactions involving electronically ground state atoms and molecules. However,
in many cases, the effect of the excited electronic state cannot be neglected, in particular, when there is
a conical intersection (CI) between two electronic states, e.g., the ground state and an excited electronic
state. In this case, the sign of the electronic wave function changes when the nuclei undergo a closed
loop around the CI, or in other words, when the nuclear motion encircles the CI. This requires a
corresponding sign change for the nuclear motion wave function to keep the sign of the overall
wavefunction unchanged. The sign change is referred to as the geometric phase (GP) and it needs to be
taken into account even when the energy of nuclear motion is well below that of the location of the CI.
The effect, first pointed out by Longuet-Higgins [1] and Herzberg and Longuet-Higgins [2], has been
shown to be important for describing spectra of triatomic molecules [3–7]. However, until recently,
its effect on chemical reaction dynamics and state-to-state chemistry has been less obvious despite
extensive experimental and theoretical investigations.

For chemical reactions occurring on a single BO electronic potential energy surface (PES) Mead and
Truhlar [8] and Mead [9–11] showed that the GP effect can be accounted for by solving a generalized
Schrödinger equation for the nuclear motion with an additional vector potential analogous to that of
a magnetic solenoid centered at the CI [8]. Berry [12] later showed that the appearance of a vector
potential and its associated geometric phase (also known as the Berry phase) is a general consequence

Atoms 2019, 7, 65; doi:10.3390/atoms7030065 www.mdpi.com/journal/atoms

http://www.mdpi.com/journal/atoms
http://www.mdpi.com
https://orcid.org/0000-0003-1806-9172
https://orcid.org/0000-0001-7196-1851
http://www.mdpi.com/2218-2004/7/3/65?type=check_update&version=1
http://dx.doi.org/10.3390/atoms7030065
http://www.mdpi.com/journal/atoms


Atoms 2019, 7, 65 2 of 13

of the adiabatic transport of a quantum state [13]. A number of theoretical studies have been reported
in the literature accounting for the GP effect in both bound state [3–7] and scattering calculations of
triatomic systems [14–26]. While bound state studies of alkali metal trimers such as Li3 [27], Na3 [28]
and transition metal systems like Cu3 [29] showed much better agreement with experimental results
when the GP effect is included, experimental verification of the GP effect in a bimolecular chemical
reaction has remained elusive [30–35], until recently [36]. The GP effect has also been recently discussed
in photochemical processes where GP corrected adiabatic dynamics was shown to yield results in close
agreement with an explicit diabatic treatment [37–41].

Almost all of the experimental studies of GP effects in bimolecular chemical reactions have so
far been limited to H or D atom exchange reactions in H + HD/D + HD systems at energies close
to the CI [30–35]. At these high collision energies, many partial waves contribute and any GP effect
present in a partial wave resolved cross section washes out when a summation over all partial waves
is carried out to evaluate the total differential or integral cross sections [14,18–26]. However, in a
recent experiment on the H + HD→D + H2 reaction [36], it was shown that the GP effect survives
the partial-wave summation in the forward scattering differential cross section (DCS) providing the
most direct evidence of the GP effect in a chemical reaction. In this work, Yuan et al. [36] reported
fast oscillations in the forward scattering state-resolved DCSs for H + HD(v = 0, j = 0) →D +
H2(v′ = 0, j′ = 7) and combined D + H2(v′ = 1, j′ = 9) and D + H2(v′ = 2, j′ = 3) final states.
Only, a theoretical treatment that includes the GP effect or a full-nonadiabatic treatment within a
diabatic framework that implicitly includes the GP effect was able to account for the fine oscillations
in the experimental DCSs [36]. Note that the GP effect is required for a correct treatment within the
adiabatic BO separation of nuclear and electronic degrees of freedom. Yuan et al. also demonstrated
that the GP effect occurs as a result of the interference between scattering amplitudes along two
paths—a direct path that involves one transition state and an indirect path that involves two transition
states. The scattering amplitude (and integral cross section) along the indirect path is negligible for
collision energies below the energy of the CI (2.75 eV total energy) but becomes comparable for forward
scattering at a collision energy of 2.77 eV relative to the v = 0, j = 0 rotational level of HD (total energy
of 2.99 eV).

In contrast to the thermal energy regime where partial wave summation largely masks the
GP effect, the ultracold regime provides a fascinating and fertile ground to investigate the GP
effect. In this regime, scattering is dominated by s- or p-waves depending on the lowest allowed
partial wave (s-waves for bosons and p-waves for fermions) and the effect gets magnified through
interference and resonance effects that are prominent in the single partial wave regime. In the
ultracold limit the pure s-wave regime provides maximum constructive/destructive interference
due to isotropic scattering and an effective quantization of the scattering phase shift as predicted
by the Levinson’s theorem [42]. In a series of papers, Ref. [43–49] we have recently shown that
a significant GP effect occurs in both the differential and integral cross sections for state-to-state
transitions in O + OH(v = 0− 1, j = 0)→H + O2(v′, j′), H + HD(v = 4, j = 0)→HD(v′, j′) + H, D +
HD(v = 4, j = 0)→HD(v′, j′) + D, and H + H2(v = 4, j = 0) →H + p − H2(v′, j′) collisions at cold
and ultracold temperatures. Although the energy of the v = 4 vibrational level of HD (1.905 eV) is
well below the energy of the CI, a favorable encirclement of the CI is possible as the reaction becomes
effectively barrierless for vibrational levels v ≥ 3. The scattering amplitudes along the “direct” and
“indirect” paths reveal comparable magnitudes leading to strong interference between them. In the
following we briefly discuss the mechanism of the GP effect in ultracold chemical reactions taking the
O + OH and the hydrogen exchange reactions as illustrative examples.

2. Mechanism of GP Effect in Ultracold Chemical Reactions

Althorpe and coworkers [24] have previously shown that the GP and NGP (no geometric phase)
scattering amplitudes can be rigorously expressed as a linear combination of the “direct” and “looping”
(or indirect) contributions (see illustration in Figure 1 for the O + OH→H + O2 reaction):
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fNGP/GP =
1√
2
( fdirect ± floop), (1)

where the minus sign for the GP arises from the sign change due to the GP effect. The differential cross
sections are related to the square of the scattering amplitudes. The square modulus of the scattering
amplitudes for the NGP and GP calculations becomes

| fNGP/GP|2 =
1
2

(
| fdirect|2 + | floop|2 ± 2| fdirect| | floop| cos ∆

)
, (2)

where the complex scattering amplitudes fdirect = | fdirect|eiδdirect and floop = | floop|eiδloop and ∆ =

δloop − δdirect is the phase difference between the two pathways. For H + HD→H + HD and D +
HD→D + HD (or in general, A + AB→ A + AB systems) the direct path refers to purely inelastic
processes with no atom exchange and the looping path refers to the atom-exchange channel ( such
as A + A’B→ A’ + AB and the AB molecule may be in a different ro-vibrational level than A’B).
For comparable values of the two scattering amplitudes, i.e., | floop| ∼ | fdirect| = | f |, Equation (2)
becomes | fNGP/GP|2 ∼ | f |2(1± cos ∆). The criterion for maximum constructive and destructive
interference can be inferred from the sign and magnitude of cos ∆. If cos ∆ = +1 then maximum
(constructive) interference occurs for the NGP case yielding | fNGP|2 ∼ 2| f |2 and | fGP|2 ∼ 0. On the
other hand, if cos ∆ = −1 then maximum (constructive) interference occurs for the GP case leading to
| fGP|2 ∼ 2| f |2 and | fNGP|2 ∼ 0. This maximum constructive/destructive interference can occur in the
ultracold regime because the phase shifts δdirect and δloop are effectively quantized, i.e., δdirect = ndirectπ

and δloop = nloopπ (Levinson’s theorem [42]) where ndirect and nloop are the number of bound states
supported by the potential well along the direct and looping paths. This yields, ∆ = nπ where
n = nloop − ndirect. Thus, the reaction can be turned on or off depending simply on the sign of the
interference term (since | cos ∆| ∼ 1). If one of the scattering amplitudes is much greater than the
other, | floop|2 >> | fdirect|2 or | fdirect|2 >> | floop|2, then Equation (2) becomes | fNGP/GP|2 ∼ | floop|2/2
or | fNGP/GP|2 ∼ | fdirect|2/2. The GP effect vanishes in this case and the interference term containing
| cos ∆| plays no role. In the high partial wave limit (high collision energies), the interference term
averages out to zero (cos ∆ ∼ 0) and there is no GP effect. The interference mechanism of the GP effect
discussed here (where the Levinson’s theorem is applied for the behavior of the scattering phase shift)
is specific to the ultracold s-wave limit.
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Kendrick et al. [43].
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3. Quantum Scattering Method

Reactive scattering calculations are performed in hyperspherical coordinates based on the
formalism developed by Pack and Parker [14,50,51]. These coordinates include three internal
coordinates (ρ, θ, φ) and three external coordinates (three Euler angles α, β, γ). In the approach
based on the adiabatically-adjusting principle axis hyperspherical (APH) coordinates of Pack and
Parker, the hyperradius (ρ) is divided into two regions: an inner region where rearrangement scattering
occurs and an outer region where the coupling between different arrangement channels vanishes.
The APH coordinates are used in the inner region which treat all three atom-diatom arrangement
channels (A + BC, AB + C, AC + B channels in a triatomic molecule ABC) equivalently while the
Delves hyperspherical coordinates are used in the outer region. The APH and Delves coordinates
differ in the choice of the hyperangles (θ, φ) while the hyperradius remains the same. The Delves
coordinates allow convenient mapping to Jacobi coordinates in different arrangement channels in
the asymptotic region. The hyperradius in both regions is divided into a large number of sectors
(typically about 100 sectors in each region) and at each sector the overall nuclear motion wave function
is expanded in terms of hyperspherical surface functions [50,51]. In the inner region, the surface
functions are expanded a hybrid basis set consisting of a discrete variable representation (DVR) for
the hyperangle θ and a finite basis representation (FBR) for the azimuthal angle φ [51]. In the outer
region, the overall wave function at each sector is expanded in terms of asymptotic ro-vibrational
wave functions of the diatomic fragments. The surface function Hamiltonian in the inner region
is diagonalized using a parallel implementation of the implicitly restarted Lanczos algorithm [51].
The hybrid FBR/DVR method is computationally efficient and it permits sequential diagonalization
truncation to dramatically reduce the size of the Hamiltonian matrix. This is particularly important
in keeping the matrix size small for large values of the total angular momentum (vector sum of the
orbital angular momentum of the collision complex and the rotational angular momentum of the
dimer) quantum number J.

The GP effect is included only in the inner region (relevant for triatomic configurations) through
the vector potential approach [19,20]. The log-derivative method of Johnson is employed to propagate
the radial equation in ρ subjected to appropriate boundary conditions. At the last sector of the
hyperradius in the inner region, the log-derivative matrix is transformed to Delves coordinates to
continue the propagation to the last sector (ρ = ρmax) where asymptotic boundary conditions are
applied for the different channels to extract the scattering S-matrix. Relevant state-to-state cross
sections are evaluated from the S-matrix using standard formulas.

In the ultracold regime scattering is dominated by s-waves and in this limit Wigner threshold
laws apply for elastic, inelastic and reactive cross sections. Inelastic and reactive cross sections
diverge inversely as the collision velocity leading to a finite value for the limiting zero-temperature
rate coefficients. The limiting rate coefficients can be expressed as kvj = 4πh̄βvj/µ where βvj is the
imaginary part of the complex scattering length, avj = αvj − iβvj [52] and µ is the reduced mass of the
system. This limiting value is equivalent to the non-thermal rate coefficient obtained by multiplying
the cross sections in the Wigner limit with the relative velocity. The rate coefficients presented here
correspond to the non-thermal values.

4. Results

4.1. O + OH→H + O2 Reaction

The O + OH→H + O2 reaction is one of the most important reactions in atmospheric and
combustion chemistry and is believed to play a key role in oxygen chemistry in the interstellar medium.
It is widely used as a benchmark for complex-forming reactions in chemical dynamics and has been the
topic of numerous experimental and theoretical investigations. Previous bound state calculations have
shown significant differences in bound state energies of the HO2 radical when the geometric phase
effect is included [19,20]. Our recent study showed significant GP effects in state-to-state rotationally
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resolved rates for this reaction occurring from the v = 0, j = 0 and v = 1, j = 0 initial states of the OH
molecule [43,44]. In Figure 2 we show state-to-state cross sections for the O + OH(v = 0, j = 0) →
H + O2(v′, j′) reaction for v′ = 0, j′ = 1; v′ = 0, j′ = 3; v′ = 1, j′ = 1; v′ = 1, j′ = 15; v′ = 3, j′ = 1;
and v′ = 3, j′ = 3, respectively, in panels (a)–(f). It is seen that the rate coefficients for the GP and
NGP cases differ by a factor of three to an order of magnitude for different final states in the ultracold
regime but they become nearly identical for collision energies above 1 K. As the contributions from
higher partial waves become important for collision energies above 0.01 K the GP effect gets washed
out due to partial wave summation. The GP effect also becomes less pronounced in the vibrationally
resolved (summed over j′ levels) and total (summed over v′, j′ levels) reaction rates. This is illustrated
in Figure 3 where the J-resolved and J-summed total reactive rates are shown as a function of the
collision energy. Thus, based on these results, a measurement of state-to-state rate coefficients in the
single partial wave regime could provide the most direct evidence of GP effect in this reaction.
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different v′, j′ states of the O2 molecule plotted as functions of the collision energy. The v′, j′ states are
specified in each panel. Reproduced with permission from Hazra et al. [44].
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Atoms 2019, 7, 65 6 of 13

4.2. Hydrogen Exchange Reaction

We have carried out extensive analysis of GP effects in H + H2 , H + HD and D + HD
reactions [45–49]. Atom exchange in these systems involves an energy barrier but the barrier decreases
with vibrational excitation of the molecule and the reaction becomes barrierless for vibrational levels
v > 3 for both molecules. Indeed, vibrationally adiabatic potentials for v = 4 and higher vibrational
levels of H2 and HD depict a potential well [48]. These potential wells along the direct and exchange
paths may feature different bound state structure and scattering phase shifts. In H + HD and D +
HD collisions, H or D atom exchange can lead to chemically distinct products (D + H2 and H + D2)
or atom exchange such as H + H’D→H’ + HD. Thus rovibrational level changes of HD can occur
through a purely inelastic channel (no-atom exchange) or a reactive pathway (through atom exchange).
The GP and NGP wave functions can be expressed as a linear combination of this direct and exchange
channels similar to the direct and looping contributions given in Equation (2). The computations can
be separately carried out for even and odd exchange symmetry contributions (exchange of the identical
H or D atoms). Figure 4 shows a comparison of cross sections for the GP and NGP cases for both
even and odd exchange symmetries for the D + HD(v = 4, j = 0)→ D + HD(v′ = 3, j′ = 0) reaction
as a function of the scattering angle and the collision energy. It is seen that constructive/destructive
interference between the direct and exchange pathways leads to complete enhancement (suppression)
of the NGP (GP) cross sections for the even exchange symmetry while just the opposite occurs for the
odd exchange symmetry. The overall cross section is the sum of the even and odd exchange symmetry
contributions weighted by appropriate nuclear spin statistical factors (2/3 for even and 1/3 for odd).
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Atoms 2019, 7, 65 7 of 13

The effect is more dramatic for the H + H2 reaction [47]. Figure 5 shows total and J-resolved rate
coefficients for the H + H2(v = 4, j = 0)→H + p − H2 reaction. It is seen that the GP and NGP rates
summed over all final ro-vibrational levels of para-H2 differ by an order of magnitude with the GP
rates being enhanced by constructive interference in the ultracold regime. Another striking aspect of
the results presented in Figure 5 is the resonant enhancement of the NGP rate near 1–3 K which arises
primarily from J = 1 (partial wave l = 1). Thus, the absence of the l = 1 shape resonance in the GP
results and the enhancement of the GP rates in the ultracold regime provide signatures of GP effect
that may be detectable in an experiment.
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Figure 5. Rate coefficients for the H + H2(v = 4, j = 0)→ H + p − H2 reaction plotted as functions of
the collision energy. Panel (a) summed over the total angular momentum quantum number J = 0− 4,
and (b) contribution from different values of J. Reproduced with permission from Kendrick et al. [47].

5. Non-Adiabatic Effects

For collision energies at or above the CI the effect of the excited electronic state (or states) must be
explicitly taken into account. This requires a treatment that goes beyond the BO approximation and
needs to include non-adiabatic interactions between the lower and upper electronic states. Kendrick has
recently developed the general formalism for non-adiabatic dynamics in hyperspherical coordinates
and applied it to the hydrogen exchange reactions [53]. For a system of two coupled electronic states
with electronic wave functions φ1 and φ2, the Schrödinger equation may be written as[

h̄2

2µ

(
−i∇R −A12

−A21 −i∇R

)(
−i∇R −A12

−A21 −i∇R

)
+

(
V1 0
0 V2

)](
ψ1(R)

ψ2(R)

)
= E

(
ψ1(R)

ψ2(R)

)
, (3)

where V1 and V2 are the adiabatic PESs for the lower and upper electronic states and
A12 = A21 = i〈φ1|∇R|φ2〉 are the derivative couplings (non-adiabatic couplings). The gradient
operator ∇R denotes the derivative with respect to all nuclear coordinates R. Alternatively, one may
define a diabatic representation (strictly, a quasi-diabatic representation since we have restricted to just
two electronic states), with the adiabatic to diabatic transformation given by(

ψ̃1(R)

ψ̃2(R)

)
=

[
cos α(R) − sin α(R)

sin α(R) cos α(R)

](
ψ1(R)

ψ2(R)

)
. (4)
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where ψ̃1(R) and ψ̃2(R) are the nuclear wave functions in the diabatic representation and α(R) is the
mixing angle between the two adiabatic electronic states. In the diabatic representation, the derivative
couplings are zero but the potential energy matrix acquires off-diagonal elements. The Schrödinger
equation in the diabatic representation becomes

− h̄2

2µ

(
∇2

R 0
0 ∇2

R

)(
ψ̃1(R)

ψ̃2(R)

)
+

(
V11 V12

V21 V22

)(
ψ̃1(R)

ψ̃2(R)

)
= E

(
ψ̃1(R)

ψ̃2(R)

)
. (5)

The mixing angle α(R) can be chosen as:

− α(R) =
1
2

arctan
2V12

V11 −V22
. (6)

The matrix that transforms the electronic wave functions from the adiabatic to diabatic
representation also transforms the diabatic potential matrix to the adiabatic representation:

V1,2 =
1
2
(V11 + V22)±

1
2

√
(V11 −V22)2 + 4V2

12. (7)

The adiabatic and diabatic representations are formally equivalent, however, the derivative
couplings (Anm) which appear in the adiabatic Hamiltonian are singular at the CI. These singularities
are very difficult to treat numerically, so the smooth non-singular diabatic Hamiltonian is used instead.
The diabatic approach also implicitly accounts for the GP effect.

Figure 6 plots the total rate coefficient as a function of collision energy for the D + HD(v = 4,
j = 0)→ D + HD reaction computed using the two-state diabatic representation (Equation (5)) [53].
For comparison, our previous GP results which were computed using the adiabatic representation
with a vector potential on a single ground electronic state BO PES are also plotted in red [45,48].
The results for even (odd) exchange symmetry are plotted using solid (dashed) curves, respectively.
The total energy of ultracold D + HD(v = 4, j = 0) collisions is approximately 1.9 eV which is well
below the energy of the CI (≈2.7 eV). Thus, the non-adiabatic couplings to the excited electronic
state are expected to be small and the results from the two-state diabatic calculation (which implicitly
includes the GP) are expected to agree with the adiabatic + GP results. From Figure 6 we see that
this is indeed the case, the black and red curves are essentially identical over the entire energy range
(Ec = 1µK− 100 K). The l = 1 and l = 2 shape resonances (bumps) near 2 K and 7 K, respectively,
are also well reproduced by both sets of calculations. However, for total energies which lie above
the energy of the CI, we expect that the couplings with the excited electronic state will become
important and the two-state diabatic results will be different than the adiabatic + GP results. The high
energy regime was recently investigated for the H + H2 reaction with high vibrational excitation of
H2(v = 4− 8) [54]. For the ultracold H + H2(v = 8, j = 0) collisions, the total energy is approximately
3.6 eV which is significantly above the energy of the CI. Figure 7 plots the total rate coefficient as a
function of collision energy for the H + H2(v = 8, j = 0)→ H + p − H2 reaction computed using the
two-state diabatic representation (in black), the adiabatic with GP (in red), and the adiabatic without
GP (in blue). The diabatic and adiabatic + GP are in good agreement at ultracold collision energies
and for energies above 0.2 K. However, for intermediate energies near the l = 1 shape resonance at
0.01 K, we see significant differences between the diabatic and adiabatic + GP results. As expected,
the adiabatic (NGP) rate coefficient is significantly different from both the diabatic and adiabatic + GP
results: it is suppressed by a factor of three at ultracold collision energies, and the shape resonance
near 0.01 K is enhanced while the shape resonance near 0.5 K is suppressed. Figure 7 confirms that a
coupled two-state diabatic calculation is required for total energies which lie significantly above the
energy of the CI and that both GP and other non-adiabatic effects are important.
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j′ states) plotted as functions of collision energy. Reproduced with permission from Kendrick [53].
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Figure 7. Rate coefficients for the H + H2(v = 8,j = 0)→H + p−H2 reaction (summed over all final v′,
j′ states) plotted as functions of the collision energy. Reproduced with permission from Kendrick [54].

A recent study of the ultracold H + H2 reaction also revealed a new experimentally detectable
signature of the GP effect which manifests itself in the behavior of the two prominent shape resonances
as a function of increasing H2 vibrational excitation [54]. Figure 8 plots the total rate coefficient for H +
H2(v = 4− 8)→H + p−H2 as a function of the collision energy computed using the two-state diabatic
representation. For initial vibrational quanta v = 4 and 5, we see that the two shape resonances near
1 K and 8 K are relatively suppressed (small bumps). However, for v = 6 the two shape resonances
become significantly pronounced. As the initial vibrational excitation of H2 is increased further to
v = 7 and 8, the shape resonances continue to become more pronounced: their lifetimes increase and
their energies shift significantly lower. For example, the lifetime for the l = 1 shape resonance for
v = 8 is two orders of magnitude larger than that for v = 4 [54]. This behavior is consistent with a
two-body universal collision model [55]. The resonances associated with large v lie deeper behind the
centrigual barrier which results in a lower resonance energy and longer lifetime due to the decreased
tunneling rate through the wider effective barrier. In contrast, for small v the resonances happen
to lie near the top of the centrifugal barrier which results in a higher resonance energy and much
shorter lifetime. Calculations which ignore the GP show an entirely different shape resonance behavior.
Namely, the l = 1 shape resonance dominates for all values of v (e.g., see the blue curve in Figure 7).
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Figure 8. Rate coefficients for the H + H2(v, j = 0)→ H + p − H2 reaction (summed over all final v′, j′

states) plotted as functions of the collision energy for different initial vibrational quantum numbers
v = 4 to 8 computed using the two-state diabatic representation. Reproduced with permission from
Kendrick [54].

6. Conclusions

We have discussed how the geometric phase effect manifests in ultracold atom-diatom chemical
reactions and how it gets magnified or suppressed through constructive and destructive interferences
between wave functions that encircle the conical intersection between two electronic states. Illustrative
results are presented for the O + OH and hydrogen exchange reactions. Explicit scattering calculations
including the excited electronic state show that the geometric phase effect captures essential features
of non-adiabatic dynamics at total energies below the conical intersection. However, for total energies
above the conical intersection, other non-adiabatic effects also become important in addition to the
geometric phase and a coupled two-electronic state calculation is required. Large values of total energy
can be accessible even for ultracold atom–diatom collisions through the vibrational excitation of the
reactant diatomic molecule. As the reactant vibrational excitation is increased, interesting non-adiabatic
and geometric phase effects on the shape resonances are observed in the hydrogen exchange reaction.
Specifically, the resonance energies shift lower and the lifetimes increase dramatically which are
consistent with quasi-bound states which lie more deeply behind the centrifugal energy barrier
associated with non-zero values of total angular momentum.

For ultracold reactions involving alkali metals (i.e., K + KRb, Li + LiNa, Na + NaK, . . . ) the
reactions are typically exoergic, exhibit a deep potential well, and contain a low-lying conical
intersection which is energetically accessible even for ultracold collisions involving ground state
reactants (v = 0, j = 0). Thus, for these ultracold reactions a coupled two-electronic state calculation
is required in order to account for both non-adiabatic and geometric phase effects. Our on going
studies of ultracold chemical reactions will be investigating these systems using the newly developed
non-adiabatic quantum reactive scattering methodology in hyperspherical coordinates [53].
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