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Abstract: A multi-body multi-center quasiclassical model was used to determine doubly- and
triply-differential cross sections following single ionization in 3.6 MeV/amu Au53+ + He collisions.
The present model improved recent calculations, in which free electrons were added in the collision
to reproduce, at least qualitatively, the experimental binary peak. In the present calculations, the
electrons, that were assumed to originate from the collisions of Au53+ with surfaces before colliding
with the He target, were now considered to be in the field of the projectile, with nearly the same
velocity. The agreement between the calculations and the experiment was improved, for both the
doubly- and the triply-differential cross sections and was better than previous calculations based on
quantum mechanics.

Keywords: ion-atom collisions; ionization; classical trajectory Monte Carlo (CTMC) calculations;
fully differential cross sections

1. Introduction

During the last two decades, considerable theoretical work has been performed to analyze
single-ionization (SI) following 3.6 MeV Au53+ + He collisions, for which the strong interaction
between the outgoing projectile, the residual ionized He+ target and the emitted target electron requires
sophisticated treatments. The doubly differential cross sections (DDCS) d2σSI/dq⊥dEe, where

→
q⊥ is

the transverse momentum transfer of Au53+ and Ee is the emitted electron energy, were calculated
using classical [1,2] and quantum [3–5] mechanics methods. Whatever the degree of sophistication,
the theoretical models were not able to reproduce neither the absolute magnitude of the experimental
DDCS that were determined experimentally, nor to reveal the presence of the binary peaks that were
observed at Ee larger than 50 eV and for large values of q⊥ [3]. Similarly, for the triply differential cross
sections (TDCS), the theoretical cross sections [6–12] d3σSI/dq⊥dEedΩp, where dΩp = 2π sinθpdθp and
θp is the scattering angle of the projectile, were also found to deviate noticeably from the experimental
results [6,7].

Recently, we performed new calculations using four-body classical trajectory Monte Carlo
(4B-CTMC) calculations to analyze DDCS following 3.6 MeV Au53+ + He collisions [13]. Even
though our calculations did not reproduce the experimental binary peaks, the overall agreement was
considerably improved by introducing a large amount of electrons as projectiles [13]. That preliminary
calculation was conducted using free electrons, i.e., electrons that do not interact with the ion projectile
or among them. To explain the presence of such electrons, we hypothesized that they may be produced
in collisions between Au53+ and surfaces (for example collimators) before entering the collision zone.

Despite the presence of the magnetic field
→

B in the experimental setup (whose value was of the order
of 20 Gauss) that in principle deviates spurious electrons, convoy electrons with a velocity close to
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the projectile velocity (12 a.u.) remained close to the ion projectile, with an helicoidal trajectory, since
the Coulombic interaction between the electrons and Au53+ was much stronger than that between the

electrons and
→

B .
Firstly, we assumed that the convoy electrons were randomly produced at a distance ze in the

range 0–50 a.u. from the ion projectile. It should be noted that the distance of 50 a.u. was chosen
arbitrarily since no detailed information exists on this distance. However, it was verified, for distances
varying from 20 to 200 a.u., that the shape of the final distributions (presented in the next section)
was quite unchanged. At time t = 0, the distance re between an electron and the projectile axis is at
maximum a few a.u. Therefore, the convoy electrons were assumed to be in a cylinder of length ze and
of base radius re. The time evolution of the re distribution is presented in Figure 1, for a total number
of initial convoy electrons of 10,000 in order to obtain good statistics and assuming no interaction

between the convoy electrons. Due to the presence of
→

B , re increased with time. Nevertheless, even at
t = 108 a.u., i.e., after 60 cm collision distance, the distribution maximum was located between 10−6

cm and 10−2 cm, which was much smaller than the width of the target jet, so that most of the convoy
electrons were able to reach the target within the approximation of independent convoy electrons.
At this point, the question of the interaction between the convoy electrons must be discussed. Since
information was missing about the convoy electron distributions, only an estimation of the possible
influence of this interaction was made. Consider 200 electrons in a cylinder whose volume is of the
order of 1000 a.u.3. In this case, the mean distance between two electrons was about 2 a.u., inducing
a potential of 0.5 a.u. At the largest distance of 50 a.u., the potential between the projectile and the
convoy electron was −53/50, i.e., ~ −1 a.u. The latter potential increased rapidly when decreasing the
distance between the electron and the projectile. Consequently, even though the electron–electron
interaction had an influence on the momentum distributions, it was not expected to largely affect the
fundamental results, i.e., the presence of structures in momentum distributions at large values of q⊥.
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of an Au53+ ion and the magnetic field B of 20 Gauss used in the experiment. Time t = 0 corresponds 

to a situation where the electrons are located at distances re smaller than 10−7 cm. As time increases, B 

Figure 1. Convoy electron distributions at different times of a collision. The electrons move in the field
of an Au53+ ion and the magnetic field B of 20 Gauss used in the experiment. Time t = 0 corresponds
to a situation where the electrons are located at distances re smaller than 10−7 cm. As time increases,
B deviates the electrons and the average re distance increases. At the end of the collision (bottom of
Figure 1), most of the electrons can collide with the He target, since re is much smaller than 1 mm.
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To go further with the analysis of SI in the present collision system, improvements of the previous
model were performed. Instead of considering free electrons [13], Coulombic interactions between the
convoy electrons and Au53+ were considered. Nevertheless, to simplify the problem, the interaction
among these electrons was neglected. As discussed previously, the contribution of the magnetic
field in the Hamilton equations was not considered, for reasons mentioned previously. To further
elaborate on the hypothesis of convoy electrons, TDCS were also calculated and compared with
existing experimental and theoretical results. The method used to calculate the DDCS and the TDCS is
briefly described in the next section. The DDCS and the TDCS are presented in Sections 2.2 and 2.3,
respectively. It will be shown that the agreement between our calculations and the experiment was
remarkably good.

2. Results

2.1. CTMC Method

The multi-body classical trajectory Monte Carlo (MB-CTMC) method is based on a numerical
solution of Hamilton’s equations of motion for the many-body system, which includes the Au53+ and
He2+ nuclei, as well as both He electrons and convoy electrons. The total Hamiltonian is HT = HP +He

where:

HP =
4∑

k=1

p2
k

2mk
+

3∑
k=1

4∑
j=k+1

q jqk

r jk
+

2∑
i=1

2∑
β=1

Vβ
H

(
rβi, pβi

)
(1)

and:

He =
N∑

i=1

p2
i

2
+

N∑
i=1

2∑
j=1

1
ri j
−

N∑
i=1

53
riAu
−

N∑
i=1

2
riHe

(2)

are the Hamiltonians describing the collision between Au53+ and He as well as between convoy
electrons and the projectile and the target, respectively. More precisely, the first terms in Equations
(1) and (2) are the kinetic energies of the four main particles (Au53+, He2+ and both He electrons)
and of the convoy electrons, respectively. The second term in Equation (1) is the potential energy
between each of the four main particles cited above, and the three last terms in Equation (2) are
the potential energies between each convoy electron and each He electron, (second term), the Au53+

nucleus (3rd term) and the He2+ nucleus (last term), respectively. The last term of Equation (1) is an
additional phenomenological potential that ensures the stability of the He atom and will be described
in detail below.

In Equation (1),
→
pk, qk and mk are the momentum vector, the charge and the mass of particle

k, respectively. The quantity rjk is the distance between particles j and k, while riAu and riHe are

the distances between one convoy electron and Au and He, respectively. In Equation (2),
→
pi is the

momentum vector of one convoy electron.
The pseudo-potential Vβ

H

(
rβi, pβi

)
, where β denotes each nucleus and i the index for each electron,

was first introduced in nuclear physics [14] and then adapted for atomic structures [15] as well as
ion–atom [16,17] and ion–molecule collisions [18]. Its expression is:

Vβ
H

(
rβi, pβi

)
=

ξ2
H

4αµβr2
βi

exp
[
α

(
1−

( rβi pβi

ξH

)4)]
(3)

where µβ is the reduced mass between each nucleus and one He electron. The quantities ξH = 0.9582
and α = 4 were chosen so that the first and second ionization potentials of He were close to the
experimental ones [16]. With these values, the first and second ionization potentials of He were 1.1
a.u. and 2.3 a.u., respectively, which were quite close to the expected values of 0.9 a.u. and 2 a.u. The
quantities rβi and pβi are the positions and momenta of He electrons, respectively, relative to the He
nucleus or the Au nucleus.
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Initially, the projectile was at a distance zp = –200 a.u., and the orientation of the electron around
the target was randomly chosen. The only initial constraints that insured the stability of the He
atom were

→
rHe1 = −

→
rHe2, and

→
pHe1 = −

→
pHe2 [16], i.e., the electrons were diametrically opposite to each

other and had opposite initial momenta to ensure that they moved in the same direction. The impact
parameter b varied from 0 to 20 a.u. and the angle ϕp which characterized the position of the projectile
in the (xOy) plane, was also randomly chosen. The initial spatial and momentum distributions were
calculated using the method initiated previously by Abrines and Percival [19] and developed in several
cases for the H target or multielectron targets (see for example [20]).

From the initial conditions, the Hamiltonian equations were numerically solved using the
Runge–Kutta method of order 4, with an adaptive step defined and described in Ref. [19]. At the
end of the collision, the number of projectiles that ionized one target electrons was determined as a
function of the scattering angle θP, b and electron energy. During the simulation, we followed 5,000,000
primary trajectories.

2.2. Doubly Differential Cross Sections

Figures 2–4 show the projectile transverse momentum q⊥ distributions for the emitted electron
energies Ee of 10 eV, 50 eV, 90 eV and 130 eV when five, 50 and 200 convoy electrons were involved
during the collision, respectively. The present calculations (red curves) were compared with the
experimental DDCS (open circles) [3]. Firstly, we focused on Figure 2. When no convoy electrons
were introduced (blue dashed curves), the binary peaks, that were located at q⊥ larger than 1 a.u.,
were not reproduced by the 4B-CTMC calculations [13]. It should be noted that this result was similar
to that observed in the calculations where the H target was used instead of the He target [21]. The
introduction of only five convoy electrons already qualitatively improved the calculation, especially
for small values of Ee. However, the number of convoy electrons was not enough to reproduce the
maxima observed at large values of q⊥.
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Figure 2. Doubly differential cross sections (DDCS) as a function of the projectile transverse momentum
following the 3.6 MeV/amu Au53+ + He collisions, for the emission electron energies Ee = 10, 50, 90 and
130 eV. Open circles, experiment [3]; the dashed and full curves, the present multi-body classical Monte
Carlo (MB-CTMC) model, convoluted with the experimental resolution of ~0.2 a.u.; the blue dashed
curve, without the inclusion of the convoy electrons, and including 5 convoy electrons, red full curve.
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Figure 4. DDCS as a function of the projectile transverse momentum following the 3.6 MeV/amu Au53+

+ He collisions, for the emission electron energies Ee = 10, 50, 90 and 130 eV. Open circles, experiment;
the red full curves, the present MB-CTMC calculation with the inclusion of 200 convoy electrons that
interact with the projectile; the blue dashed curves, recent four-body classical trajectory Monte Carlo
(4B-CTMC) calculations [13] using 200 free electrons.

When multiplying the number of convoy electrons by a factor of 10 (see Figure 3), the improvement
was remarkable for Ee = 10 eV, and clear maxima appeared at larger energies. However, quantitative
discrepancies remained, especially for Ee = 90 and 130 eV. The good agreement observed at this
emitted electron energy could be explained as follows: small values of Ee correspond to large impact
parameters (of the order of 7 a.u.). In contrast, the impact parameters involved in the SI of He by
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the electron impact were smaller than 2 a.u. For this reason, at small Ee, only the electrons that were
located far from the projectile axis were efficient in ionizing the He target.

Finally, we focused on Figure 4, that represents the DDCS when the 200 convoy electrons were
introduced. The present results were denoted by red curves, while the dashed blue curves were the
previous results of the 4B-CTMC calculations when the convoy electrons were considered to be free (no
interaction with Au53+). At Ee = 10 eV and 50 eV, present theoretical cross sections were in very good
agreement with the experiment and our previous calculations, except for q⊥ larger than 3 a.u. At Ee =

90 eV and 130 eV, the agreement with experiment was quantitatively reasonable, and the present results
were much better that those obtained with the free electrons. The discrepancies observed around q⊥ =

1 a.u. may have several reasons: (i) the CTMC calculations were not well adapted to reproduce the
experimental cross sections when the electron projectiles were involved during a collision (see for
example Ref. [22]); (ii) it must be recalled that the initial distribution in space and in momentum of the
convoy electrons may have influenced the results; (iii) the interaction between the convoy electrons,
that was neglected in the present work, may have also changed the q⊥ distribution.

2.3. Triply Differential Cross Sections

The TDCS measurements and calculations presented a substantial challenge, as they can show
up significant discrepancies which can be hidden in less differential cross sections. In the case of
the Au53+ + He collisions, as mentioned in the introduction, none of the theoretical interpretations
of the experimental results [8] were satisfactory. As shown in Figure 5, the experimental TDCS for
Ee = 4 eV and q⊥ = 0.65 a.u. (open circles and black line) presented a maximum at an emitted electron
angle θe around 0◦. Among all the previous calculations, only a few theoretical results (see [23]
and references inside) were shown (blue curves on top of Figure 5). First Born approximation,
two-Coulomb wave model, three distorted-wave and three distorted-wave–eikonal-initial-state
calculations gave rise to two structures, with a maximum at angles larger than 45◦. On the contrary,
the continuum-distorted-wave–eikonal-initial-state calculation [10] produced a wide structure whose
maximum was located at about −50◦.

The results of the present calculations are presented on the bottom of Figure 5, for 0, 10 and 20
convoy electrons (blue short dashed curve, blue dashed curve and red full curve, respectively). The
region of integration for the angle was 10 degrees, and the energy region was, like in the experiment,
2 eV for the emitted electron energies Ee = 100 eV and 5 eV for Ee = 130 eV. The electron yield from
our calculations was normalized to that obtained experimentally. Without any convoy electrons, the
structure (blue short curve) had a maximum at ~ –50◦, and no electron was emitted at angles larger
than 100◦. For 10 and 20 convoy electrons the structures were shifted to larger angles than those for
no convoy electrons and presented a maximum at ~ 0◦. It was also remarkable that the widths of the
calculated structures reproduced quite well the experimental width. From this result, it appeared that
the hypothesis of the presence of convoy electrons that actively participated to the collision can be
considered as justifiable.

To confirm the validity of our hypothesis, similarly calculated TDCSs were extracted using
20 convoy electrons (red curves in Figure 6) for Ee = 4 eV and q⊥ = 1 a.u. (Figure 6a), Ee = 10 eV and
q⊥ = 0.65 a.u. (Figure 6b) and Ee = 10 eV and q⊥ = 1 a.u. (Figure 6c), for which experimental TDCSs
were available (open circles). Again, the calculated structures, in contrast with previous calculations,
were very close to the experimental results. The maxima were peaked at ~0◦ and the widths were very
close to those observed experimentally. For small values of emitted electron energies and relatively
large values of q⊥, the number of convoy electrons was of the order of 20, while the total number of
convoy electrons was of the order of 200. As mentioned earlier, this was due to the fact that a small
energy of the emitted electron energy corresponds to relatively large impact parameters, so that only
the convoy electrons that were located far from the projectile axis contributed to the He ionization.
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Figure 5. Triply differential cross sections (TDCS) as a function of the emitted electron angle following
the 3.6 MeV/amu Au53+ + He collisions, for Ee = 4 eV and q⊥ = 0.65 a.u. Open Circles, experiment [7];
top of Figure 5: the blue curves, previous theoretical calculations (see [22] and references therein);
bottom of Figure 5: the blue short-dashed curve, blue dashed curve and red full curve, the present
MB-CTMC calculation with 0, 10 and 20 convoy electrons, respectively.
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3. Conclusions

The DDCS and the TDCS following the single ionization of He by Au53+ ions at a projectile energy
of 3.6 MeV/amu were revisited using the MB-CTMC method and compared with previous experiments.
In addition to the Au53+ projectiles, the convoy electrons originating from the collisions with surfaces
and emitted in the same direction as the incident projectile were included in the present calculation.
In contrast with recent 4B-CTMC calculations [13], where free electrons were considered, the convoy
electrons interacted with the projectile. The agreement with the experiment was found to be good, since
the binary contributions observed experimentally were reproduced by the present model. To validate
the hypothesis of the presence of convoy electrons during the collision, the TDCSs were also calculated
and compared with previous measurements and theoretical calculations. The agreement between
our MB-CTMC calculation and the experiment was found to be rather good and tends to confirm the
necessity of introducing electrons originating from primary collisions following the projectile with
nearly the same velocity. As mentioned by previous authors in their conclusions [2], we also suggest
new experiments in which possible convoy electrons, if they exist, are removed without any ambiguity.
Moreover, more sophisticated calculations would be desirable, in which the magnetic field would be
introduced, as well as interactions between convoy electrons. In addition, a discussion concerning the
dependence of the results upon the conditions of creation of convoy electrons would be necessary.
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