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Abstract: A scattering process can be a natural process or a process carried out in a laboratory.
The scattering of particles from targets has resulted in important discoveries in physics. We discuss
various scattering theories of electrons and positrons and their applications to elastic scattering,
resonances, photoabsorption, excitation, and solar and stellar atmospheres. Among the most
commonly employed approaches are the Kohn variational principle, close-coupling approximation,
method of polarized orbitals, R-matrix formulation, and hybrid theory. In every formulation,
an attempt is made to include exchange, long-range and short-range correlations, and to make the
approach variationally correct. The present formulation, namely, hybrid theory, which is discussed
in greater detail compared to other approximations, includes exchange, long-range correlations,
and short-range correlations at the same time, and is variationally correct. It was applied to
calculate the phase shifts for elastic scattering, the resonance parameters of two-electron systems,
photoabsorption in two-electron systems, excitation of atomic hydrogen by an electron and
positron impact, and to study the opacity of the Sun’s atmosphere. Calculations of polarizabilities,
Rydberg states, and bound states of atoms are also discussed.

Keywords: scattering; photoabsorption; bound states; resonances; Rydberg states; polarizabilities;
opacity of the Sun’s atmosphere

1. Introduction

In 1897, the electron was discovered by J. J. Thompson, which helped the development of physics
beyond classical physics. In 1911, elastic scattering of alpha particles from a foil led to the discovery of
the nucleus by Rutherford, which further led to the development of a planetary model of the atomic
structure. He called the nucleus of the hydrogen atom a proton, which means “the first one” in the Greek
language (very appropriate). He also deduced the well-known formula for the differential cross-section,
dσ(θ)

dθ ∝
1

sin4(θ/2)
, where θ is the angle of scattering of the alpha particle. Rutherford showed from this

experiment that the number of electrons = A/2, where A is the atomic number. This holds for all atoms.
J. J. Thomson initially thought that the number of electrons = 1000A, as seen in his model of the atom.
In 1912, Bohr proposed a model of the hydrogen atom in which new laws were formulated. He assumed
that the electron in a hydrogen atom moves in a circular orbit due to the Coulomb force between the
electron and the nucleus (Rutherford’s planetary model), and the electron’s angular momentum is
quantized. Radiation is emitted only when a transition from a state of a higher quantum number to a
lower quantum number state takes place. Emission is monochromatic radiation. He also proposed
the correspondence principle, which implies that at large quantum numbers, predictions based on
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quantum concepts must agree with the predictions based on classical concepts. In 1923, an experiment
on the scattering of X-rays by electrons by Compton [1] led to the confirmation of the existence
of photons. This confirmation also came from experiments by Bothe and Geiger [2], who developed
coincidence counters and showed that the electron moved from its position in about 10−7 s. A wave
would have taken much longer to move the electron. We also know that diffraction and interference
are explained by invoking a wave picture of radiation. According to Bohr, the picture ought to be
regarded not as contradictory but as complementary. Further experiments by Compton and Simon [3]
showed that energy is conserved at every step of the process. This brought an end to the theory
of Bohr, Kramers, and Slater (BKS) [4], where they proposed that energy conservation need not hold
in atomic processes. In 1926, Erwin Schrödinger [5] formulated the wave equation to determine
the wave function of a quantum mechanical system. In 1932, Chadwick [6] discovered the neutron
by bombarding beryllium with alpha particles. This brought an end of theories that postulated the
existence of electrons in a nucleus. After this, it was clear that a nucleus consists of a number of
protons and neutrons, depending on the charge of the nucleus. Forces acting in atomic processes are
Coulomb forces, which are well-understood. Therefore, it is possible to infer the various quantities
occurring in most processes accurately. However, there are other forces or potentials (Vdp) due to
the distortion of the target by the incident particle [7]; the attractive potential (1/r2) [8] due to the
degeneracy of the 2s and 2p levels; the potential between neutral atoms, which is proportional to 1/r6

and becomes proportional to 1/r7 when the neutral atoms are separated by distances larger than 137a0,
where a0 is the Bohr radius (Casimir and Polder [9]). It was pointed out by Kelsey and Spruch [10]
that the attractive polarization potential between an electron interacting with a polarizable atom
experiences a repulsive potential (VKS) at distances greater than 137a0. These variations in potentials
were discussed by Lundeen [11]. These potentials are in the ratio:

e2/r : Vdp : VKS = 1011 : 104 : 1.

We see that the Coulomb potential dominates in all cases. We will discuss some of these potentials
in various sections. First, we will discuss interactions of electrons with atoms and ions and then those
of positrons. We use Rydberg units: e2 = 2, me = 1/2, and h̄ = 1.

In this article, we will discuss the scattering of electrons and positrons from various targets,
photoabsorption, resonances, Rydberg states, the relativistic and retardation corrections to such states,
and their polarizabilities. We will compare our results with the results of other calculations,
whenever possible. We use some of the results obtained here to calculate the opacity in the atmosphere
of the Sun and stellar objects due to electrons and positrons.

2. Calculations Involving Electrons

Our aim is to calculate the scattering cross-section for a particle incident on a target. For this purpose,
various approximations or theories have been developed. We mention a few of them. We discuss
scattering by hydrogenic systems only because the target function is known exactly, and therefore,
we can test various approximations. For targets with many electrons, configuration–interaction type
wave functions have to be used, where such functions provide accurate eigenvalues which are, however,
not exact. An easy calculation of phase shifts of electron–hydrogen scattering can be carried out by
using a simple wave function of the form:

ψ(
→
r 1,
→
r 2) = u(

→
r 1)φ0(

→
r 2). (1)

In the above equation, u(
→
r 1) is the scattering function and φ0(

→
r 2) is the target function. However,

the exchange between the two electrons must be included (due to the Pauli exclusionprinciple). Such a
calculation was carried out by Morse and Allis [12] in 1933. The wave function is of the form:

ψ(
→
r 1,
→
r 2) = u(

→
r 1)φ0(

→
r 2) ± (1↔ 2). (2)
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The plus sign refers to singlet states and the minus sign refers to triplet states. In Equation (2):

u(
→
r 1) =

ul(r1)

r1
Yl0(Ω1), (3)

where the angle Ω1, measured in steradians, is the solid angle defined in terms of the spherical polar
angles θ1 and ϕ1. The ground state wave function is given by:

φ0(
→
r 2) = (

Z3

π
)

0.5

e−Zr2 . (4)

The scattering function u(
→
r 1) of the incident electron is obtained from:∫

φ0(
→
r 2)

∣∣∣∣H − E
∣∣∣∣ψ(→r 1,

→
r 2)d

→
r 2 = 0 , (5)

where
→
r 1 and

→
r 2 are the distances of the incident and bound electrons, respectively. H is the

Hamiltonian of electron–hydrogen system and E is the energy of the system. We assume that the target
is of infinite mass compared to the mass of the electron; therefore, it is assumed fixed.

H = −∇2
1 −∇

2
2 −

2Z
r1
−

2Z
r2

+
2

r12
, E = k2

−Z2 (6)

k2 is the kinetic energy of the incident electron and Z is the nuclear charge. Equation (5) gives the
following equation to determine the scattering function ul(r1):

[
d2

dr2
1

−
l(l + 1)

r2
1

+ vd(r1) + k2]ul(r1) ± 4Z2e−Zr1 [(Z2 + k2)δl0r1Vl −
2

(2l + 1)
yl(r1)] = 0, (7)

where δlo= 1 for l = 0 only. The direct or Hartree potential is:

vd(r) =
2(Z− 1)

r
+ 2e−2Zr(1 +

1
r
), (8)

and the nonlocal potentials are:

Vl =

∞∫
0

e−Zxxul(x)dx, yl(r) =
1
rl

r∫
0

xl+1φ0(x)ul(x)dx + rl+1

∞∫
r

φ0(x)ul(x)
rl

. (9)

The phase shifts ηl(radians) are obtained from the asymptotic value of the scattering function:

limr→∞ul(r) = sin(kr− l
π
2
+ ηl). (10)

The main aim of most approximations is to include various correlations to get accurate results.
We, therefore, try various approximations to infer the scattering parameters. In a target, the orbital of
the electron is distorted when the incident electron creates an electric field Ec, resulting in a change of
energy of the target given by ∆E = − 1

2αE2
c , where α is the polarizability of the target, which is equal to

4.5a3
0 for a hydrogen atom. For a slowly moving incident electron, this distortion can be taken into

account using the method of polarized orbitals of Temkin [7], assuming that the atom follows the
instantaneous motion of the scattered electron (adiabatic hypothesis), and the incident electron is slow.
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He proved that for an incident electron at a distance r1 from the nucleus, the polarized orbital of the
target electron is of the form:

Φpol(
→
r 1,
→
r 2) = φ0(

→
r 2) −

ε(r1, r2)

r2
1

u1s→p(
→
r 2), (11)

u1s→p(
→
r 2) = u1s→p(r2)

cosθ12

(Zπ)0.5 , u1s→p(r2) = e−Zr2(
Z
2

r2
2 + r2), (12)

ψl(
→
r 1,
→
r 2) = u(

→
r 1)Φpol(

→
r 1,
→
r 2) ± (1↔ 2) , u(

→
r 1) =

ul(r1)

r1
Yl0(Ω1), (13)

where θ12 is the angle between
→
r 1 and

→
r 2. The function Φpol depends on both coordinates

→
r 1 and

→
r 2,

ε(r1, r2) is a step function that is equal to 1.0 for r1 greater than r2 and zero otherwise. This gives rise to

an attractive polarization potential α(r)
(Zr)4 . In this method, the scattering function is obtained from:

∫
dΩ1d

→
r 2Yl0(Ω1)φ0(

→
r 2)

∣∣∣∣H − E
∣∣∣∣Ψl(

→
r 1,
→
r 2) = 0 . (14)

The scattering function obtained from Equation (14) is not the same as that obtained from
Equation (5) since the one obtained from Equation (14) includes the effect of the polarization of
the target. The phase shifts obtained from Equations (5) and (14) are not expected to be the same.
The resulting integro-differential equation for ul(r), including corrections for l > 0, is given by Sloan [13],
where the polarizability as a function of x is given by:

α(x) =
9
2
−

2
3

e−2x(x5 +
9
2

x4 + 9x3 +
27
2

x2 +
27
2

x +
27
4
), (15)

where x = Zr and α(x→∞) = 9/2Z4. Singlet and triplet phase shifts for the scattering of electrons
from hydrogen atoms have been calculated using this method. The method of polarized orbitals
has been used extensively for various atomic and molecular targets, even though the method is not
variationally correct. There are other methods to solve for the scattering functions. One of them is
the close-coupling method. Electron–hydrogen scattering calculations were carried out by Burke and
Smith [14]. In 1987, the R-matrix method was introduced in atomic physics by Burke and Robb [15].
Electron–hydrogen scattering phase shifts were calculated by Burke et al. [16]. This method has been
extensively employed in solving problems in atomic and molecular physics. A calculation using
the Kohn variational method was carried out by Schwartz [17]. This method does not provide any
bounds on the phase shifts. However, the scatterings lengths obtained are upper bounds on the exact
scattering lengths. Calculations have been carried out using the projection operator formalism of
Feshbach [18] in which we divide the space into two parts using projection operators P and Q such
that in the limit:

r1 →∞PΨl → sin(kr1 − l
π
2
+ ηl), (16)

where PΨl represents a scattering state and QΨl → 0 for r1 → ∞. These operators are idempotent
(P2 = P,Q2 = Q) and orthogonal (PQ = 0). Phase shifts were calculated by Bhatia and Temkin [19]
for electron–hydrogen scattering. There is another approach, namely, the exterior complex scaling
method [20], which was applied to calculate electron–hydrogen scattering, spin-flip cross-sections
in hydrogen, and the photoionization of helium. We have briefly mentioned some of the methods,
although each one deserves a separate article. Next, we will discuss the hybrid approximation.

3. Hybrid Theory

We want to reduce a many-body Schrödinger equation, with all the correlations, to a one-body
Schrödinger equation. The above method (projection operator formalism) cannot be generalized to
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also include long-range correlations because it is difficult to write a projection operator in terms of
Φpol(

→
r 1,
→
r 2), instead of the ground state function φ0. An improved method, which includes exchange

and long-range and short-range correlations at the same time, is called a hybrid theory [21]. In this
method, the polarization of the target takes place whether the incident electron is outside or inside
the target. The wave function for scattering, including the polarized orbital of the target electron,
as well as short-range correlations, is given by:

ΨL(
→
r 1,
→
r 2) = uL(

→
r 1)Φpol(

→
r 1,
→
r 2) ± (1↔ 2) +

N∑
λ=1

CλΦλ
L(
→
r 1,
→
r 2), (17)

Φpol(
→
r 1,
→
r 2) = φ0(

→
r 1) −

χ(r1)

r2
1

u1s→p(
→
r 2). (18)

The correlation function is of the Hylleraas type and for any angular momentum L, it is given by:

ΦL(
→
r 1,
→
r 2) =

∑
κ

[ f κ+L (r1, r2, r12)Dκ+
L (θ,φ,ψ) + f κ−L (r1, r2, r12)Dκ−

L θ,φ,ψ)]. (19)

The Dκ,ε functions (ε = +1, −1) are the rotational harmonics [22]. The f κ+L (r1, r2, r12) and
f κ−L (r1, r2, r12) are the generalized “radial” functions, which depend upon the three residual coordinates

to define the two vectors
→
r 1 and

→
r 2, where these are Hylleraas-type functions. The function χ(r1) in

Equation (18) is a cutoff function. In order to replace a many-particle Schrödinger equation with a
single-particle equation, we define the correlation term with unknown coefficients Cλ:

ΨL(
→
r 1,
→
r 2) = uL(

→
r 1)Φpol(

→
r 1,
→
r 2) ± (1↔ 2) +

N∑
λ=1

CλΦλ
L(
→
r 1,
→
r 2). (20)

Since ΨL(
→
r 1,
→
r 2) is an eigenfunction of the Hamiltonian, the equation for the scattering function

is obtained from:
〈ϕ0(

→
r 2)

∣∣∣∣H − E
∣∣∣∣ΨL〉 = 0. (21a)

To include the polarization of the target, ϕ0(r2) is replaced by Φpol(
→
r 1,
→
r 2) in Equation (21a).

The equation for the scattering function is now obtained from:∫
d
→
r 2dΩ1Φpol(

→
r 1,
→
r 2)YL0(Ω1)

∣∣∣∣H − E
∣∣∣∣ΨL(

→
r 1,
→
r 2) = 0 . (21b)

Details are given in [21] and various quantities, not given here, are also given in [21]. Definitive
results were obtained using this method. In Tables 1 and 2, we present the singlet and triplet phase shifts
for the scattering of electrons from hydrogen atoms obtained using the above methods. The scattering
length a is defined as:

lim
k→0

k cot η = −1/a. (22)

The scattering length is calculated at a distance R. However, there is a correction due to the
long-range polarization potential [23] and the corrected scattering length is given by:

a = a(R) − α(
1
R
−

a
R2 +

a2

3R3 ). (23)

In the above equation, α is the polarizability of a hydrogen atom. At R = 117.3088, the singlet
S scattering length value is a(R) = 5.96554. The corrected scattering length a, using Equation (23),
is 5.96611. The triplet S scattering length value is 1.781542 at R = 349.0831. Using Equation (23),
the corrected scattering length value is 1.900. These scattering lengths agree with those calculated
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by Schwartz [17]. The scattering lengths are also given in Tables 1 and 2. In the Kohn variational
method [17], the scattering lengths are upper bounds on the exact scattering lengths, while there are no
bounds on the phase shifts.

Table 1. Electron–hydrogen 1S phase shifts (radians) obtained with different methods.

k EA a PO b Kohn c Close-Coupling d R-Matrix e Feshbach Method f Hybrid Theory g

0 8.10 5.8 5.965 5.96554

0.1 2.396 2.553 2.553 2.491 2.550 2.55358 2.55372

0.2 1.870 2.144 2.673 1.9742 2.062 2.06678 2.06699

0.3 1.508 1.750 1.6964 1.519 1.691 1.09816 1.69853

0.4 1.239 1.469 1.4146 1.257 1.410 1.41540 1.41561

0.5 1.031 1.251 1.202 1.082 1.196 1.20094 1.20112

0.6 0.869 1.041 1.035 1.04083 1.04110

0.7 0.744 0.930 0.925 0.93111 0.93094

0.8 0.651 0.854 0.886 0.608 0.88718 0.88768

k = 0 results represent the scattering lengths. a [19], b [7], c [17], d [24], e [16], f [19], g [21].

Table 2. Electron–hydrogen 3S phase shifts (radians) obtained with different methods.

k EA a PO b Kohn c Close-Coupling d R-Matrix e Feshbach Method f Hybrid Theory g

0 2.35 1.9 1.7686 1.900

0.1 2.908 2.949 2.9388 2.9355 2.939 2.93853 2.93856

0.2 2.679 2.732 2.7171 2.715 2.717 2.71741 2.71751

0.3 2.461 2.519 2.4996 2.461 2.500 2.49975 2.49987

0.4 2.257 2.320 2.2938 2.2575 2.294 2.29408 2.29465

0.5 2.070 2.133 2.1046 2.0956 2.105 2.10454 2.10544

0.6 2.901 1.9329 1.933 1.93272 1.93322

0.7 1.749 1.815 1.7797 1.780 1.77950 1.77998

0.8 1614 1.682 1.643 1.616 1.64379 1.64425

k = 0 results represent the scattering lengths. a [19], b [7], c [17], d [24], e [16], f [19], g [21].

Hybrid theory was also used to calculate phase shifts for e–He+, given in Tables 3 and 4 and
e–Li2+ scattering phase shifts [25], given Table 5.

Table 3. Comparison 1S phase shifts (radians) for electron—He+ scattering with those obtained
using close-coupling (CC) [24], the hybrid theory [25], those obtained by Gien [26,27] using the
Harris–Nesbet method, and Feshbach projection operator formalism (OP) [28].

k Hybrid Theory [25] OP [28] CC [24] Gien [26]

0.4 0.42608 0.42602 4228

0.5 0.41974 0.41964 0.4078

0.6 0.41265 0.41278 0.4111 0.4086

0.7 0.40568 0.40561 0.4046 0.4024

0.8 0.39865 0.39857 0.3974 0.3968

0.9 0.39865 0.39202 0.3906 0.3893

1.0 0.38694 0.38634 0.3850 0.3836

1.1 0.38200 0.38187 0.3805 0.3794

1.2 0.37914 0.37899 0.3780 0.3741

1.3 0.37846 0.37832 0.3774 0.3721

1.4 0.38158 0.38560 0.3786
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Table 4. Comparison 3S phase shifts (radians) for electron—He+ scattering with those obtained using
OP [28], CC [26], and obtained by Gien [26] using the Harris–Nesbet method.

k Hybrid Theory [25] OP CC [24] Gien [26]

0.4 0.91302 0.91300 0.9128

0.5 0.90282 0.90275 0.9019 0.9023

0.6 0.89057 0.89050 0.8910 0.8902

0.7 0.87645 0.87640 0.8777 0.8762

0.8 0.86066 0.86069 0.8617 0.8605

0.9 0.84366 0.84356 0.8440 0.8435

1.0 0.82536 0.82531 0.8253 0.8251

1.1 0.80636 0.80625 0.8062 0.8062

1.2 0.78677 0.78666 0.7868 0.7865

1.3 0.76696 0.76684 0.7672 0.7665

Table 5. Comparison of the 1S and 3S calculated phase shifts (radians) for electron—Li2+ scattering [25]
with those obtained by Gien [27] using the Harris–Nesbet method.

k 1S Hybrid Theory [25] 1S [27] 3S Hybrid Theory [25] 3S [27]

0.5 0.23064 0.2273 0.55435 0.5526

0.6 0.23012 0.2264 0.55142 0.5499

0.7 0.22960 0.2265 0.54799 0.5467

0.8 0.22906 0.2272 0.54413 0.5430

0.9 0.22855 0.2277 0.53925 0.5390

1.0 0.22807 0.2275 0.53514 0.5345

1.1 0.22769 0.2262 0.53000 0.5296

1.2 0.22740 0.2250 0.52456 0.5244

1.3 0.22724 0.2258 0.51880 0.5189

1.4 0.22724 0.2328 0.51276 0.5131

1.5 0.22742 0.2521 0.50646 0.5069

4. Photoabsorption

Wildt [29] suggested that an important source of opacity in the atmosphere of the Sun is the
photodetachment of negative hydrogen ions:

hν+ H− → e + H. (24)

The cross-section for this process in the length form and in the dipole approximation is given by:

σ(a2
0) = 4απk(I + k2)

∣∣∣〈Ψ f
∣∣∣z1 + z2

∣∣∣Φ〉∣∣∣2. (25)

In the above equation, α is the fine structure constant, I is the ionization potential z1 = r1 cos(θ1)

and z2 = r2 cos(θ2) are the dipole transition operators, and k is the momentum of the outgoing electron.
If the target is in the S state, then the outgoing electron is in the P state. The bound S-state wave function
is of the Hylleraas type and the final state wave function is of the form given in Equation (13). An earlier
calculation of the photodetachment cross-section of H− was carried out by Chandrasekhar [30] in 1945.
These were also calculated using the Feshbach formalism [31]. The present results [32] are given in
Table 6 and are compared with those obtained using the Feshbach formalism [31]. The agreement
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is good. They are also compared with those obtained by Wishart [33] using a close-coupling
pseudostate expansion.

Table 6. Photodetachment cross-sections (Mb) of the ground state of H−. The outgoing electron
has momentum k. The number of terms in the Hylleraas wave function for the bound state is 364.
These results are compared with those obtained by Wishart [33].

k Hybrid Theory [32] PHQ [31] Wishart [33]

0.1 15.3024 15.400 15.937

0.2 38.5443 39.411 37.870

0.3 35.2318 36.639 34.239

0.4 24.4774 25.296 23.858

0.5 16.0858 16.473 15.720

0.6 10.7410 11.601 10.431

0.7 7.4862 7.587 7.101

0.8 5.6512 6.456 4.978

Photodetachment cross-sections have a maximum around k = 0.23, which corresponds to a
photon wavelength of 8406.3 Å (using λ = 911.267/ω Å). The calculated cross-sections are close
to the experimental results of Branscomb and Smith [34]. They found a maximum close to 8000 Å.
Ohmura and Ohmura [35], using the effective range theory and the loosely bound structure of a
hydrogen ion, calculated the photodetachment cross-section of H− at the outgoing momentum k:

σ =
6.8475x10−18γk3

(1− γρ)(γ2 + k2)3 cm2, (26)

where γ = 0.2355883 and ρ = 2.646 ± 0.004 is the effective range. The binding energy of the
hydrogen ion is (γ)2. The cross-sections obtained from Equation (26) are in good agreement with those
obtained using the hybrid theory [32]. The cross-sections in various approximations are shown in
Figure 1. The lowest curve is obtained when only long-range correlations are included, the middle
curve is obtained when the short-range correlations are also included. The top curve represents the
cross-sections obtained using Equation (26). We also calculated the photoionization cross-sections [32]
of He using a Hylleraas function with 220 terms in the S-state wave function and compared these with
those obtained using the R-matrix approach [36] and also with experimental results [37].

The photoionization cross-sections of He given in Table 7 and of Li+, given in Table 8,
were calculated using the hybrid theory [32] and also by using the method of polarized orbitals
by Daskhan and Ghosh [38]. These results are also given in Table 8.

It can be seen from Table 6 that as k tends to zero, the photodetachment cross-sections of H−

tend to zero because the final scattering state wave function behaves like the Bessel function j0(kr),
which is finite at k = 0. Equation (25) has k outside the square of the matrix element, which makes the
cross-section equal to zero at k = 0. However, in the case when the remaining target is charged, the
outgoing electron sees a Coulomb field, which makes the scattering function behave like k−0.5, which
cancels the k outside the square of the matrix element. It can be seen from Table 7 that the cross-sections
for He do not go to zero as k goes to zero.

While calculating the photoionization cross-sections of Li+, we [32] also calculated the 3P and 1P
phase shifts for electron–Li2+. Calculations of the photoionization of metastable states (1s2s) 1S and 3S
states of He and Li+ were carried out using the hybrid theory [32].
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approximations. The lowest curve is obtained when only long-range correlations are included,
the middle curve is obtained when the short-range correlations are also included. The top curve
represents the cross-sections obtained using Equation (26).

Table 7. Photoionization cross-section (Mb) of He.

k Hybrid Theory [32] R-Matrix [36] Experiment [37]

0.1 7.3300 7.295 7.44

0.2 7.1544 7.115 7.13

0.3 6.8716 6.838 6.83

0.4 6.4951 6.474 6.46

0.5 6.0461 6.006 6.02

0.6 5.5925 5.535 5.55

0.7 5.0120 4.995 5.04

0.8 4.4740 4.482 4.51

1.0 3.4654 3.476 3.48

1.1 3.0206 3.023 3.00

1.3 2.2561 2.271 2.19

1.4 1.9821 1.943 1.89
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Table 8. Photoionization cross-section (Mb) of Li+ using 165 terms in the Hylleraas wave function for
the bound state wave function. The outgoing momentum of the electron is k.

k [32] [38]

0.2 2.5677 2.501

0.3 2.5231 2.432

0.4 2.4373 2.355

0.5 2.3970 2.271

0.6 2.2988 2.182

0.7 2.0005 2.087

0.8 2.0925 1.988

0.9 1.9792 1.885

1.0 1.8613 1.780

1.1 1.7396 1.674

1.2 1.6219 1.566

1.3 1.5035 1.459

1.4 1.3879 1.353

1.5 1.2768 1.248

1.6 1.1706 1.146

The photoionization of atoms with more than two electrons was calculated using the method of
polarized orbitals [7]. Phase shifts for the scattering of electrons from Li+ and Na+ were also calculated
at the same time. The photoionization cross-sections of Li and Na are given in [39] and [40], respectively.

5. Recombination Rates

In Equation (24), we provided the photodetachment of H−. There is a reverse process, namely,
radiative attachment or recombination:

e + H→ H− + hν, (27a)

which further helps in the formation of hydrogen molecules:

H− + H→ H2 + e. (28)

Since the process in Equation (27a) is invariant under charge conjugation, the recombination rate
for a positron combining with antihydrogen H:

e+ + H→ H
+
+ hν (27b)

is the same as for Equation (27a).
The radiative attachment plays an important role in solar and astrophysical problems.

The attachment cross-section is σa = ( hν
cpe

)
2 g( f )

g(i) σ, where g(i) and g(f ) are the statistical weights of the
initial and final states. This result follows from the principle of detailed balance. These cross-sections
are much smaller than the photoabsorption cross-sections. The radiative rate coefficients averaged
over the Maxwellian distribution is given by:

aR(T) =
(2S + 1)0.2509x1010

T1.5
×

∞∫
0

dE(E + I)2σe−E/kBT, (29)
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where S is the spin of the final state and kB is the Boltzmann constant. Rate coefficients of (1s1s) 1S
states of H−, He, and Li+ are calculated using the photoabsorption cross-sections given in Tables 6–8,
and the results are given in [32].

6. Photoejection with Excitation

Up to now, we have considered the photoabsorption of two-electron systems when the final state
is (1s) 2S. It is possible to have a final state that is (2p) 2P. This state can decay to the (1s) 2S state,
giving a Lyman-α radiation at 1216 Å in the case of a hydrogen atom:

hν+ H− → e + H(2p)
H(2p)→ H(1s) + 1216A

(30)

Now, the outgoing electron can be in a p state or a d state. The cross-section for this process is
given by:

σ =
4παkω

3(2li + 1)
(|M0|

2 + |M2|
2), (31a)

and for the 2S state:
σ =

4παkω
3(2li + 1)

|M1|
2. (31b)

The matrix M is defined as:

Ml f
= (2l f + 1)1/2

|〈ψ f |z1 + z2|ϕi〉|. (32)

In the above equation, z1 = r1 cos(θ1) and z2 = r2 cos(θ2) are the dipole transition operators.
Bhatia and Drachman [41] calculated the total photoabsorption cross-section for two 2S and two
2P states. Their results are given in [41]. Photoionization with excitation can take place due to
electron–electron correlations only. Therefore, it can test the quality of different approximations.
Recombination rate coefficients at various temperatures are also given in [41]. Cross-section and
recombination rate coefficients are required in the investigation of astrophysical objects, the upper
atmosphere, and laboratory plasmas.

7. Excitation by Electron Impact

The excitation cross-sections of the 2S state of atomic hydrogen at low incident electron energies
(10.30 to 54.5 eV) were calculated using the variational polarized method (hybrid theory) [42].
Nine partial waves were used to get the converged results. The total cross-section, calculated using the
plane waves in the final state wave function, which is simpler than using coupled state approximation, is:

σ(i→ f ) =
k f

ki

∫
|T f i|

2dΩ. (33)

The transition matrix element is given by:

T f i = −
1

4π
〈ψ f |V|Ψi〉, V = −

2Z
r1

+
2

r12
. (34)

The initial wave function, assumed to be exact, is given in Equation (22) and the final state wave
function (plane wave approximation) is given by:

ψ f (
→
r 1,
→
r 2) = eik f ·

→
r 1φ2S(

→
r 2). (35)



Atoms 2020, 8, 78 12 of 30

The excited state wave function of the target is:

φ2S(
→
r 2) = (

z3

32π
)

0.5

(2−Zr2)e−Zr2/2. (36)

The cross-section for the excitation is given by:

σ(a2
0) =

k f

ki

∫
|T f i|

2P2
L(cosθ f i)dΩ. (37)

In the above expression, ki and kf are the initial and final momenta, and θ f i is the angle between
the initial and final electron directions. Callaway [43] calculated the cross-sections for excitation in
the range 12 to 54 eV using an 11-state expansion, including 7 pseudostates. Burke et al. [44] also
carried out a close-coupling calculation to calculate excitation cross-sections. Scott et al. [45] used the
standard R-matrix close-coupling method using a nine-state basis consisting of three eigenstates and
six pseudostates. These results are given in [42]. The excitation cross-sections are shown in Figure 2.
There is a maximum at k = 0.907 and another maximum at k = 1.50.
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8. Resonances

In a scattering experiment, when the measured cross-sections are plotted against the incident
energy of the electron, sometimes there are peaks instead of a smooth curve. In such situations,
the electron is caught by the target for a short time and then the electron is ejected. Such a state
is called an autoionization state, a doubly excited state, or a Feshbach resonance. These states are
formed below the various excited states of the target. The states formed below the n = 2 state of the
hydrogen atom are (2s2s) 1S and 3S. Moreover, resonance states for L > 0 exist below the threshold.
States with an angular momentum of L = 1 can also be formed by photoabsorption. These resonance
states are like bound states; however, they are embedded in the continuum. Therefore, there is an
interaction with the continuum that makes the state short-lived. These states were calculated using
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various approaches, namely, the stabilization method, the complex rotation method, and the Feshbach
projection operator formalism [18]. We calculated the discrete energy of a resonance state using the
Ritz variational principle using bound state projected functions QΦ:

ελ =
〈Φ|QHQ|Φ〉
〈QΦ|QΦ〉

. (38)

The energy of the resonance state is given by Eλ = ελ + ∆λ, where ∆λ is the shift due to the
interaction of the bound state with the continuum. In the narrow region of the width, the scattering
phase shift increases by π radians. There is an upper bound on the calculated discrete energy ελ,
but that bound is lost when the shift is added to it. For the state (2s2s) 1S in He, ε1 = 57.8223 eV,
∆1 = 0.02112 eV, giving E1 = 57.8435 eV for the position of the autoionization state with respect the
ground state of He with a width = 0.125 eV.

An accurate photoabsorption experiment to determine the position and width of the (2s2p) 1P
resonance was carried out by Madden and Codling [46], which obtained a position = 60.186 ± 0.015 eV
relative to the ground state of He and a width = 0.038 ± 0.004 eV. Bhatia et al. [47] carried calculations
for this state using the Feshbach formalism [18] and a pseudostate nonresonant continuum, obtaining
60.1449 eV and 0.0369 eV for the position and width, respectively. The agreement of their calculated
results with the experimental results is good.

Using the hybrid theory [42], phase shifts are calculated in the resonance region and resonance
parameters are calculated by fitting these phase shifts to the Breit–Wigner form:

ηcal(E) = η0 + AE + tan−1 Γ/2
(ER − E)

. (39)

In the above expression, E = k2 is the incident energy; ηcal are the calculated phase shifts; η0, A, Γ,
and ER are the fitting parameters in the resonance region. Fitting the phase shifts to Equation (39),
we find ER = 57.8481 eV relative to the He ground state and a width Γ = 0.1233 eV. These resonance
parameters compare well with those mentioned above. Similarly, for Li+, we find ER = 70.5904 eV and
Γ = 0.1657 eV, which compares well with the ER = 70.5837 eV and Γ = 0.157 eV obtained using the
Feshbach formalism [48].

Drake [49] carried out extensive calculations using Ritz’s variational principle for such states,
obtaining very accurate results for the 4He atom. However, Drachman [50] showed that it is much
easier if perturbation theory is used, in which all the multipoles are calculated to obtain an asymptotic
expansion for the effective potential, as indicated below:

UHe(x) = − 0.281327131
x4 + 0.26979715

x6 + 0.499111347
x7

−
1.70721477+0.186965322L(L+1)

x8 −
2.64086823

x9 +
7.39082965+2.32188836L(L+1)

x10

(40)

The energy of any (1sNL) state can be calculated using unperturbed He wavefunctions. In Table 9,
we compare the variational method with the asymptotic method for a few values of N and L.
The energies are given in MHz (1 Ry = 3.289 × 109 MHz). We see that the agreement between the
energies obtained using the two methods is very good. An advantage of having Equation (40) is
that once it has been obtained, it can be used for any state (NL), while in a variational calculation,
every state has to be calculated starting from the beginning.
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Table 9. Comparison of the asymptotic expansion obtained by Drachman [50] with the variational
method of Drake [49]. Energies are in megahertz.

N L Asymptotic Variational

5 4 −4677.0562 −4676.93484501

8 −1391.4385 −1391.4401873

10 −741.8875 −741.8935917

8 5 −472.5483 −472.5451674

10 −257.9853 −257.9830286

8 6 −187.82161 −187.821493674

10 −105.82980 −105.829683489

9 7 −63.0915572 −63.0915519990

10 −48.6065203 −48.606514337

Accurate measurements [51] were carried out of the fine-structure intervals in excited
lithium atoms. Using the perturbation theory described above and including relativistic corrections and
the retardation (Casimir) effect, Bhatia and Drachman [52] computed several fine-structure intervals.
The addition of a radiative (Lamb shift) correction [52] produces an essentially exact agreement with
the measurements [51]. We show a comparison with measurements in Table 10. We see that the
perturbation theory, with corrections, gives very accurate results.

Table 10. Comparison level energy difference in megahertz between theory and measurements.

Interval Experiment-Theory Standard Deviation

10G–0H 0.02 0.11

10H–10I 0.0003 0.0048

The polarization model was also used to calculate the fine-structure intervals in C IV, O VI, and Ne
VIII [53].

9. Polarizabilities

In the above calculation, we used the polarizabilities of a Li ion. They are required in scattering
calculations, as well as to calculate the fine-structure intervals in Rydberg states. Polarizabilities for
two-electron systems were calculated by Bhatia and Drachman [54] using the pseudostate method.
They include the effect of finite mass corrections. For Li+, they are given below:

α1 = 0.192453204, β1 = 3.52808304 × 10−2, γ1 = 6.80532625 × 10−3, δ1 = 1.35607948 × 10−3

ε1 = 2.76235884 × 10−4, α2 = 0.113887296, β2 = 1.66786259 × 10−2, γ2 = 2.58385406 × 10−3

α3 = 0.168429083, β3 = 2.199545 × 10−2, γ3 = 3.03349512 × 10−3

δ = 7.32385232, ε = 4.56736366.

(41)

The multipole polarizabilities of other two-electron systems were also calculated in the above
reference [54].

10. Optical Properties of Helium Gas

Bhatia and Drachman [55] calculated the polarizabilities of a He atom as a function of frequency,
including relativistic corrections using the Breit–Pauli operator, to calculate the refractive index n and
Verdet constant, which measures the rotation of the plane of polarization in the Faraday effect.
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The index of refraction is given by:

n− 1 = 34.611527× 10−6 +
8.016511
λ2 +

2.207154× 106

λ4
+

6.564503× 1011

λ6 . (42)

The Verdet constant is given by:

V = −
e

2mc2λ
dn
dλ

=
1.616813× 107

λ2 [1 +
5.506521× 105

λ2 +
2.456618× 1011

λ4 ]µmin/oer cm. (43)

We compared these results at λ = 6329.9 A for the refractive index and Verdet constant at
λ = 8000 A with experimental values and found significant discrepancies. Perhaps, there is a need to
redo the experiment.

11. Lamb Shift

We mentioned above that the Lamb shift was included in the calculation of the fine-structure
intervals in the Rydberg states of Li. It requires a calculation of the Bethe logarithm term given by:

ln(K) =
∑

n 〈0|V|n〉〈n|V|0〉(En − E0)
3 ln(En − E0)∑

n 〈0|V|n〉〈n|V|0〉(En − E0)
3 =

N
D

, (44)

where |n〉 are pseudostates having L = 1, both bound and continuum, of the two-electron
Hamiltonian, and:

V = z1 + z2 = r1 cosθ1 + r2 cosθ2. (45)

Because of the term (En − E0) ln(En − E0), the convergence of the numerator and denominator
in Equation (44) is very slow. Using the pseudostate method of Bhatia and Drachman [56] and also
using the method of Dalgarno and Steward [57], the summation over n could be extended to infinity.
For a two-electron system, results for ln(K) are given in Table 11. These results agree well with those of
Goldman and Drake [58].

Table 11. Results of ln(K) for two-electron systems.

System ln(K) [58]

He 4.367578 4.364

Li+ 5.177763 5.177

Be+2 5.753615 5.754

Ne+8 7.586072 7.585

These results can be fitted to:

ln(K) = ln[19.705541(Z + 1.35x10−5)
2
]. (46)

12. Retardation Correction (Casimir)

In the calculation of Rydberg states of Li that was mentioned above, we needed to take the
retardation corrections into account, which arise when the Rydberg electron is at a distance much
greater than the radius of the core. This is due to the finite time light propagation taken between the
Rydberg electron and the core. By the time the signal from the Rydberg electron arrives at the core,
the electron in the core moves away in time t = a0/v. The effective potential is proportional to x−5.
Au et al. [59] showed that there is an energy shift due to the modification of the potential. Using the
equations given in [59], Bhatia and Drachman [60] evaluated this correction, where the results for
N = 10 are given in Table 12.
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Table 12. Retardation corrections (MHz) for lithium for N = 10.

L = 4 L = 5 L = 6 L = 7 L = 8 L = 9

0.0653658 0.0212477 0.00790948 0.00325464 0.00142682 0.000646286

13. Hyperfine Structure of Li

The hyperfine structure of Li was calculated by Larsson [61] using a 100-term Hylleraas
wavefunction to obtain a hyperfine splitting = 2.906. The hyperfine splitting is proportional to

f = 4π〈ψ|
∑

i

gz(i)|ψ〉, g(i) = σiδ(ri). (47)

Here, ψ is the eigenfunction of the non-relativistic Hamiltonian H =
∑
i

p2

2m + V. We replace δ(ri)

by the global operator Di =
m
2π

dV
dri
−

l2i
2mr2

i
; then, f ′ = 4π〈ψ|

∑
i
σiDi|ψ〉.

We see that improved results are obtained if δ(r) is replaced by a global identity given above,
which was proposed by Hiller et al. [62]. Bhatia and Sucher [63], using a 40-term configuration type
wavefunction (CI) and the global identity for the δ(r) function, obtained a hyperfine splitting of 2.9014,
which compares favorably with the experimental value of 2.9062 [64]. We show the results in Table 13
as the number of terms in the CI functions is increased.

Table 13. Values of the energy and Fermi contact terms for various values of N in the calculation of the
energy of a Li atom.

N Energy (a.u.) fN f′N
3 −7.442225 3.2852 3.1177

6 −7.445404 3.0018 2.8608

10 −7.445413 3.0057 2.8644

16 −7.446614 3.0339 2.8855

20 −7.469530 3.0001 2.8352

24 −7.469904 3.0003 2.8261

34 −7.470761 3.0539 2.8782

40 −7.473393 3.0717 2.9014

100-term a
−7.478025 2.906

Experiment b −7.478069 2.9062
a Larsson [61], b Kusch and Taub [64].

14. Parity-Violating Electric-Dipole Transitions in Helium

The party-violating transitions [65] between the n =2 levels in He are:

hv + 23S1 → 21S0, hν+ 23P0 → 21P1. (48)

The matrix element for this transition is:

M f i = ω
∑
n

〈Ψ f |Hpv |Ψn〉〈Ψn |i
→
ε ·
→
r 1+i

→
ε ·
→
r 2 |Ψi〉

W f−Wn

+ω
∑
n

〈Ψ f |i
→
ε ·
→
r 1+i

→
ε ·
→
r 2 |Ψn〉〈Ψn |Hpv |Ψi〉

Wi−Wn
.

(49)
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Again, improved results were obtained using simple wave functions instead of Hylleraas functions
when using the global identity in place of the δ function.

15. Positron–Hydrogen Scattering

It might appear that positron calculations should be easier because there is no exchange between
electrons and positrons. However, the possibility of positronium formation makes calculations more
difficult. Furthermore, in electron–hydrogen scattering, electrons arrange themselves on either side
of the nucleus because of the repulsion between them. On the other hand, positrons and electrons
tend to be on the same side of the nucleus because of the attraction between a positron and an electron.
It is clear that correlations are more important in this case. Positron–hydrogen interaction is repulsive
but the polarization of the target produces an attractive potential. The two tend to cancel each other,
making it harder to get meaningful results. In 1971, Bhatia at al. [66] carried out calculations for
positron–hydrogen scattering using the Feshbach formalism [18] and using a generalized Hylleraas
type wave function:

Ψ(
→
r 1,
→
r 2) = exp(−γr1 − δr2 − αr12)

∑
lmn

Clmnrl
1rm

2 rn
12. (50)

The nonlinear parameters are γ, δ, and α, and the Cs are the linear parameters. The component
e−αr12 in the above wave function takes into account the virtual positronium atom contribution.
Phase shifts for this scattering system were calculated by Schwartz [17] using the Kohn variational
principle, which does not have any bounds on the calculated phase shifts. In [66], long-range
interactions could not be added at the same time. Such interactions could be taken into account using
hybrid theory [67] and a shorter expansion of the wave function is enough to obtain converged results.
In the positron scattering, Equation (11) is replaced by:

Φpol(
→
r 1,
→
r 2) = ϕ0(

→
r 2) +

ε(r1, r2)

r2
1

u1s→p(
→
r 2). (51)

It should be noted that we need a plus sign in positron–hydrogen scattering, as indicated above.
A comparison of results obtained using thee different approaches is given in Table 14. A comparison of
the phase shifts for positron–hydrogen scattering using hybrid theory and the Feshbach projection
operator formalism is shown in Figure 3. Fewer terms are needed in the hybrid theory compared to
the 84 terms used in the Feshbach formalism.
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In [67], the scattering length “a” was calculated. Using 56 terms in the Hylleraas wave
function, we found a = −2.10074a0. Correcting for the long-range interaction, namely, Equation
(23), we found a = −2.10158 − 0.002424 = −2.104004a0. This agrees well with the scattering length
of −2.10036 ± 0.0004a0 obtained by Houston and Drachman [68] using the Kohn and Harris methods.
In the Kohn variational method, the scattering length has an upper bound. The scattering length
obtained in [68] can be less than that obtained by them. The result for the scattering length obtained
in [67] is then consistent with their result [68]. Bhatia et al. [69] also carried out P-wave calculations
using the Feshbach formalism [18], while Bhatia [70] used hybrid theory to obtain P-wave phase shifts.
These results are also compared in Table 14.

Table 14. Comparison of S-wave and P-wave phase shifts (radians).

k [67] [66] [17] [70] [69]

S-wave P-wave

0.1 0.14918 0.1483 0.151 0.008871 0.00876

0.2 0.18803 0.1877 0.188 0.032778 0.03251

0.3 0.16831 0.1677 0.168 0.06964 0.06556

0.4 0.12083 0.1201 0.120 0.10047 0.1005

0.5 0.06278 0.0624 0.062 0.13064 0.13027

0.6 0.00903 0.0039 0.007 0.15458 0.15410

0.7 −0.04253 −0.0512 −0.54 0.17806 0.17742

16. Zeff

An atomic electron can annihilate with an incident positron, emitting two gamma rays. Ferrell [71]
calculated the cross-section for this process:

σa(πa2
0) = Ze f fα

3/ki, (52)

where ki is the momentum of the incident positron, and:

Ze f f =

∫
d
→
r 1d
→
r 2|Ψ(

→
r 1,
→
r 2)|

2δ(
→
r 1,
→
r 2). (53)

For L > 1, we used plane wave normalization:

uL(r) = 4π(2L + 1)1/2 jL(kr). (54)

Then, we obtain:

Ze f f (L > 1) = 4π
∑

(2L + 1)

∞∫
0

r2drϕ2
0(r) jL(kir), (55)

Ze f f (L > 1) =
k2

i

1 + k2
i

+
6
k2

i

[
1
k2

i

ln(1 + k2
i ) −

1 + 0.5k2
i

1 + k2
i

]. (56)

Zeff for the partial waves L = 0 and L = 1, obtained in [67,70] using hybrid theory, are given in
Table 15. Zeff was calculated by Humberston and Wallace [72] using the Kohn variational principle,
and by Green and Gribakin [73] using diagrammatic many-body theory.
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Table 15. Zeff(πa2
0) for positron–hydrogen scattering.

k L = 0 L = 1 L > 1 Total

[67] [66] [72] [70]

0.1 7.363 7.5 7.5 0.13008 <0.001 7.494

0.2 5.538 5.7 5.5 0.53994 0.001 6.078

0.3 4.184 4.3 4.1 1.12441 0.004 5.312

0.4 3.327 3.3 3.5 1.76293 0.010 5.100

0.5 2.730 2.7 3.0 2.33910 0.022 5.091

0.6 2.279 2.3 2.8 3.84988 0.039 4.168

0.7 1.850 2.2 3.67030 0.063 5.583

At k = 0, Houston and Drachman [74] find Zeff(0) = 8.868.

17. Positronium Formation

Positronium, the bound state of an electron and a positron, was predicted by Mohorovocic [75] to
explain the spectra of nebulae. Positronium formation takes place when an incident positron captures
an electron in a hydrogen atom before annihilation:

e+ + H(1s)→ Ps + P. (57)

Experimental determination of the cross-section of positronium formation was carried by
Zhou et al. [76]. The differential cross-section for this rearrangement is given by:

dσ
dΩ

=
µi

µ f

kPs

ki
|T(ki, kPs)|

2. (58)

In the above expression, ki and kPs are the momenta of the initial positron and the positronium atom,
µi and µ f are the initial and final reduced masses. T is the transition matrix given by Khan and
Ghosh [77]:

T(ki, kPs) = −
µ f

4π
〈Φ∗Ps(

→
r 1,
→
r 2)|V f |ΨL(

→
r 1,
→
r 2)〉, (59)

where:
Φ∗Ps(

→
r 1,
→
r 2) = η(r12) exp[−

i
2

→

k Ps · (
→
r 1 +

→
r 2)]. (60)

The ground state wave function of the positronium atom is given by:

η(r12) =
e−0.5r12

(8π)0.5 . (61)

The interaction in the final state is given by:

V f = 2(
Z
r1
−

Z
r2
). (62)

We can write:
T(ki, kPs) = gR(ki, kPs) + gPs(ki, kPs), (63)

where the first term represents the matrix element without polarization and the second term is with
polarization n. Such calculations have also been carried out by Cheshire [78]. The function Ψf was
obtained using hybrid theory [70]. The integral occurring in this calculation can be solved using the
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Fourier transforms [77–79]. In Table 16, the cross-sections for the positronium formation are given and
compared with the results obtained in other calculations.

Table 16. Comparison of the cross-sections (πa2
0) obtained using the hybrid theory with those obtained

in other calculations.

k2
i A B C D E

0.5041 0.0010053 0.0066228 0.009037 0.0041 0.0038

0.5476 0.0025753 0.018783

0.5625 0.0026829 0.020249 0.024795 0.0044 0.0041

0.64 0.0025604 0.022566 0.0248 0.0049 0.0047

0.6724 0.002412 0.022350

0.7225 0.0021366 0.021456 0.021164 0.0058

0.75 0.0020034 0.020835 0.019707

0.81 0.0017211 0.019256

0.9025 0.0013698 0.016760

1.00 0.0010916 0.014327

A: Cross-sections without polarization; B: with polarization; C: Khan and Ghosh [77]; D: Humberston [80];
E: Kvitsinsky [81].

18. Resonances in Systems Involving Positrons

Resonances formed with electrons are very common in atomic and molecular systems.
However, this is not so with positrons. Mittleman [8] showed that in the equation for the
positron–hydrogen system, there is an attractive 1/r2 potential due to the degeneracy of the 2s and
2p states of the hydrogen atom. This implies that there should be infinite resonance states in this
case also, as in the electron–hydrogen system. The S-wave resonance of a positron–hydrogen system
was calculated successfully for the first time by Doolen et al. [82] using a sparse matrix technique in
the complex rotation method [83], in which the radial coordinates are rotated by an angle θ,r→ reiθ,
transforming the Hamiltonian:

H = T + V → Te−2iθ + Ve−iθ. (64)

The wave function used in their calculation was:

Φlmn(r1, r2, r12) = e−α(r1+r2)L0
l (u)L

0
m(v)L

0
n(w), (65)

where α is the nonlinear parameter, L0
i is a Laguerre polynomial, and:

u = α(r2 + r12 − r1), v = α(r1 + r12 − r2),w = 2α(r1 + r2 − r12). (66)

Only one resonance was found with complex energy:

E(complex) = Re(E) + Im(E) = Re(E) − iΓ/2. (67)

We look for stationary paths as the angle θ is varied. The resonance parameters converge as the
number of terms in the trial function is increased below the n = 2 threshold of the hydrogen atom,
as indicated in Table 17.
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Table 17. Position and width of the resonance in Rydberg units.

Number of Terms Position Γ/2

286 −0.2573744 0.0000676

364 −0.2573733 0.0000674

455 −0.2573745 0.0000671

560 −0.2573740 0.0000677

680 −0.2573741 0.0000677

We see that the resonance position is at −0.2573741 Ry with a width of 0.00001354 Ry. We also see
that a large number of terms is required to calculate the resonance parameters. This is the reason that
previous attempts failed to calculate resonance parameters.

19. Resonances in Positronium Ion

The positronium ion is obtained by replacing the proton in the hydrogen ion with a positron.
Now that the nucleus has the same mass as an electron, the mass polarization term in the Hamiltonian
becomes important:

H = −2∇2
1 − 2∇2

2 − 2
→

∇1 ·
→

∇2 − 2/r1 − 2/r2 + 2/r12. (68)

Resonances in the singlet and triplet states of Ps− were calculated by Ho [84], where he used
364 terms in the singlet states and 455 terms in the triplet states in the Hylleraas trial wave function.
Using the complex rotation method, he obtained resonances below the n = 2, 3, 4, and 5 thresholds
of Ps. His results are shown in Table 18.

Table 18. Resonance positions (eV) are relative to the ground state of Ps−.

Threshold n Position Width Position Width

Singlet states Triplet states

2 4.7340 0.00117 5.0742 0.000136

5.0709 0.000274

3 7.7646 0.00204 6.0038 0.000272

5.9908 0.00150

4 6.2526 0.00327 6.3383 0.000272

6.3267 0.00408

6.3317 0.00463

5 6.4519 0.00612

6.4723 0.00191

Triplet P even parity doubly-excited states below n = 2, 3, 4, 5, and 6 were calculated by Ho and
Bhatia [85]. The resonance parameters are given in Table 19.

Odd parity triplet and singlet P states were calculated in [86,87]. Their results are given in
Tables 20 and 21. The lowest odd parity P state was observed by Michishio et al. [88] using laser beams
of 2285 and 2297 Å. The observed position and width agree with the calculated values.
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Table 19. Doubly-excited or Feshbach-type 3Pe resonances in Ps−.

Threshold n Position (Ry) Width (Ry)

2 −0.12440 a 0.00054

3 −0.063261 3.58(−4)

−0.0562095 5.78(−5)

4 −0.037789236 3.01(−5)

−0.0033087 1.8(−6)

5 −0.03090972 a 6.4(−5)

−0.02493166 5.09(−5)

−0.0220972 5.24(−5)

−0.021660 2.64(−5)

6 −0.017596 1.06(−4)

−0.015894 1.6(−4)

−0.015811 1.14(−4)

−0.013761 4.0(−5)
a Shape resonances.

Table 20. Odd parity triplet P states of a Ps− ion.

Threshold Position (Ry) Width (Ry)

3 −0.05450 9.20(−4)

5 −0.01971 6.60(−5)

7 −0.01008 4.00(−5)

Table 21. Odd parity singlet P states of a Ps− ion.

Threshold Position (Ry) Width (Ry)

2 −0.12434 9.00(−4)

4 −0.030975 6.00(−5)

6 −0.01375 5.20(−5)

20. Positron Impact Excitation

In Section 7, we described the theory for electron-impact excitation of atomic hydrogen. Using
the details given there, Bhatia [89–91] carried out excitation of nS, nP, and nD (n = 2, 3, 4, 5, and 6)
states of a hydrogen atom due to an impact of a positron. Thirty partial waves were used to get
the converged results. Convergence with partial waves and comparison with the results of other
calculations for the 2S state are given in [89]. The minimum of 2S cross-sections is at k = 0.87 and they
increase smoothly up to k = 1.0, then they start decreasing. Wigner [92] emphasized the importance of
long-range forces in a threshold region, which were included in these calculations. In the threshold

region, the cross-sections (πa2
0) are proportional to

(
ln

(
k f

))2
[93]. The 2S cross-sections in the threshold

region can be fitted to the form:

− 0.03367 +
3.477672

(ln(k f ))
2 −

0.12238

(ln(k f ))
4

. (69)

In [91], we gave the total cross-sections for the n = 2 to 6 states at various positron energies.
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21. High-Energy Cross-Sections

Only the static potential remains at high energies. According to the first Born approximation,
the total cross-sections for electron–He and positron–He scattering should be the same.
Kauppila et al. [94] verified this fact experimentally. We show their results in Table 22. We see that the
cross-sections tend to be equal as the incident energy increases.

Table 22. Measured cross-sections (πa2
0) for e–He and e+–scattering.

E (eV) e–He e+–He

50 1.27 1.97

100 1.16 1.26

150 0.967 0.987

200 0.796 0.812

300 0.614 0.612

500 0.437 0.434

600 0.371 0.381

22. Photodetachment of a Positronium Ion

We mentioned a calculation of the photodetachment of a hydrogen ion by Ohmura and
Ohmura [35] in Section 6. Following Ohmura and Ohmura, Bhatia and Drachman [95] calculated the
photodetachment of the positronium ion in the length and velocity form, obtaining:

σ = 1.32× 10−18 k3

(k2 + γ2)3 cm2. (70)

The binding energy is 1.5γ2, where γ = 0.12651775 and k is the momentum of the outgoing electron.
Photodetachment was observed by Michishio et al. [88].

The Lyman-α radiation at 1216 Å due to the transition of a 2P state to a 2S state in the hydrogen
atom was observed using Voyager measurements [96]. Similarly, it may be possible to observe the
Lyman-α radiation at 2432 Å due to the transition of 2P to 2S in the positronium atom when in the
photodetachment of the Ps−, the remaining positronium is left in a 2P state. Following Ohmura and
Ohmura [37], photodetachment cross-sections were calculated when the remaining atom is in the 2p,
3p, 4p, 5p, 6p, and 7p states [97].

23. Opacity of the Atmosphere of the Sun

The opacity of the atmosphere of the sun is due to various processes, where among them are
bound–bound transitions, Thomson scattering, and photodetachment (bound–free) transitions due to
the absorption of photons in negative hydrogen ions and negative positronium ions. Photodetachment
was suggested by Wildt [29] as an important source of opacity, which is the absorption of photons
(Equation (24)).

Chandrasekhar and Elbert [98] calculated the cross-sections for this process. These transitions
explain the opacity of the atmosphere of the Sun between 4000 to 16,000 Å. Beyond this range,
the opacity is due to free–free transitions involving electrons:

hν+ e + H→ e + H. (71)

In the free–free transition indicated in Equation (71), an electron with energy k2
0 absorbs photon

energy and the final electron energy is k2
1. Both the initial and final states of the electron are in the

continuum. The change in energy is ∆k2 = |k2
0 − k2

1|.
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The cross-sections calculated by Chandrasekhar and Breen [99], when averaged over the Maxwell
distribution of the initial velocities, give the absorption coefficient:

k(∆k2) =
7.25× 1o−27θ5/2(1− e−31.32θ∆k2

)

(∆k2)3

∫
dk2

0
e−31.32θ∆k2

0

k0k1
M(k0, k1) cm4/dyne. (72)

In the above, θ = 5040/T and the multiplying factor (1− e−31.32θ∆k2
) is due to stimulated emission.

Ohmura and Ohmura [100] showed that:

M(k0, k1) = |M(0, k2
0|1, k2

1)|
2 + |M(0, k2

1|1, k2
0|)|

2. (73)

Ohmura and Ohmura [100] also showed that the Ms depend only on S-wave scattering phase shifts:

M(0, k2
|1, k2

1) =
k2

1

16
(3 sin2(δ−k ) + sin2(δ+k )). (74)

Phase shifts δ
−

k and δ+k are the triplet and singlet phase shifts, respectively, for the scattering of
an electron with momentum k from a hydrogen atom. They were accurately calculated in the hybrid
theory and are given in Tables 1 and 2, respectively. Free–free transitions involving positrons are:

hν+ e+ + H→ e+ + H. (75)

The S-wave positron hydrogen scattering phase shifts are given in Table 14. Equation (74)
now becomes:

M(0, k2
|1, k2

1) =
k2

1

4
(sin2(δk)). (76)

In Table 23, we give the Maxwellian averaged absorption coefficients (cm4/dyne) for free–free
transitions involving electrons and hydrogen atoms, as well as for positrons and hydrogen atoms.
The wavelength is given by 911.3/∆k2.

Table 23. Maxwellian averaged absorption coefficients (cm4/dyne) for free–free transitions involving
electrons and hydrogen atoms, and positrons and hydrogen atoms.

∆k2
0 λ(Å)\θ 0.6 0.8 0.6 0.8

Electrons Positrons

0.001 911,300 2.71(−23) 3.64(−23) 1.30(−24) 2.27(−24)

0.003 303,766.7 3.01(−24) 4.05(−24) 1.44(−25) 2.52(−25)

0.005 182,260 7.51(−25) 1.46(−24) 5.19(−26) 9.06(−26)

0.01 91,130 2.71(−25) 3.64(−25) 1.30(−26) 2.27(−26)

0.02 45,565 6.77(−26) 9.09(−26) 3.33(−27) 1.02(−26)

0.03 30,376.7 3.01(−26) 4.04(−26) 1.52(−27) 2.65(−27)

0.04 22,782.5 1.70(−26) 2.27(−26) 8.89(−28) 1.53(−27)

0.05 18,226 1.34(−26) 1.45(−26) 5.90(−28) 1.01(−27)

0.06 15,188.3 7.56(−27) 1.01(−26) 4.25(−28) 7.26(−28)

0.08 1,1391.3 4.27(−27) 6.44(−27) 2.56(−28) 4.32(−28)

0.10 9113 2.74(−27) 3.63(−27) 1.48(−28) 3.50(−28)

In Table 24, we compare the present results for the absorption coefficients with those obtained
by Ohmura and Ohmura [100] and with those obtained by Chandrasekhar and Breen [99]. It should
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be noted that at the time of Chandrasekhar and Breen, only the Hartree potential could be used
when carrying out the numerical calculations precisely because of the non-availability of computers at
that time. The resulting absorption coefficients were overestimated. Nevertheless, Chandrasekhar set
the stage for further investigations.

Table 24. Comparison of the presently calculated absorption coefficients (1025 cm4/dyne) with those
obtained in [99] and [100].

θ→ 0.5 0.6 0.7 0.8 0.9 1.0 1.4 1.6 1.8 2.0

∆k2 = 0.01

Present 2.22 2.71 3.18 3.64 4.09 4.53 6.19 6.95 7.68 8.36

[99] 2.28 2.78 3.25 3.70 4.15 4.59 6.30 7.10 7.90 8.70

[100] 20.2 22.4 24.4 26.1 27.8 29.4 35.0 37.6 40.8 42.3

∆k2 = 0.02

Present 0.56 0.68 0.79 0.91 1.02 1.13 1.57 1.10 1.97 2.17

[99] 0.57 0.69 0.81 0.92 1.03 1.15 1.57 1.10 1.97 2.17

[100] 2.77 3.12 3.45 3.76 4.06 4.36 5.49 6.05 6.60 7.14

In Table 25, we compare the photodetachment cross-sections for H− and Ps−. The photoabsorption
cross-sections are not averaged over the Maxwellian distribution because the emitted electron has
a definite velocity. We also compare the free–free transition coefficients for electrons and positrons.
From this table, we conclude that at longer wavelengths, the photodetachment cross-sections do not
contribute to the opacity, while free–free transitions contribute at longer wavelengths. Furthermore,
positrons almost contribute equally. Free–free transitions involving a positron and Ps are also possible.
The phase shifts for e+–Ps were calculated by Ward et al. [101].

hν+ e+ + Ps→ e+ + Ps (77)

hν+ e + Ps→ e + Ps (78)

Table 25. Comparison of bound–free (σb f ) and free–free (Cf.) absorption coefficients for electrons and
positrons and hydrogen atoms at T = 6300 K.

∆k2 λ σbf of H− Cf. of Electron + H Cf. of Positron + H σbfof Ps− Cf. of Positron + Ps

0.10 9113 4.13(−17) 3.63(−27) 2.90(−28) 4.17(−17) 7.41(−27)

0.08 11,391.25 3.34(−17) 5.66(−27) 4.32(−28) 5.82(−17) 1.13(−26)

0.07 13,018.57 2.32(−17) 7.34(−27) 5.49(−28) 7.12(−17) 1.46(−26)

0.065 14,020 1.57(−17) 8.58(−27) 6.28(−28) 7.95(−17) 1.68(−26)

0.06 15,188.33 7.05(−18) 1.01(−26) 7.26(−28) 8.96(−17) 1.96(−26)

0.05 18,226 0.00 1.45(−26) 1.01(−27) 1.18(−16) 2.78(−26)

0.04 22,782.5 0.00 2.27(−26) 1.53(−27) 1.65(−16) 4.29(−26)

0.03 30,376.67 0.00 4.04(−26) 2.65(−27) 2.53(−16) 7.54(−26)

0.02 45,565 0.00 9.09(−26) 5.80(−27) 4.64(−16) 1.68(−25)

0.015 60,753.33 0.00 1.62(−25) 1.02(−26) 7.13(−16) 2.97(−25)

0.01 91,130 0.00 3.64(−25) 2.27(−26) 1.30(−15) 6.66(−25)

0.005 182,260 0.00 1.01(−25) 6.30(−26) 3.63(−15) 2.66(−24)

0.003 303,766.7 0.00 4.05(−24) 2.52(−25) 7.69(−15) 7.39(−24)

0.001 911,300 0.00 3.64(−23) 2.27(−24) 3.55(−14) 6.66(−23)
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From the charge conjugation theorem, these two processes have the same absorption coefficient.
The absorption coefficients for Equation (77) are also given in Table 25 at a temperature of 6300 K, where
the temperatures of typical cool stars range between 3000 K and 7000 K. Furthermore, this temperature
was used in previous publications on this subject.

All the processes mentioned above are also possible with He, He+, Li+, Li2+, etc.
However, their abundance decreases as we consider elements beyond hydrogen atoms. Long ago,
it was pointed out by Cecilia Payne Goposchkin (student of Eddington) that hydrogen is the most
abundant in the universe.

24. Conclusions

The interactions of electrons, positrons, the radiation field, atoms, and ions have been discussed in
this article. Scattering functions were calculated using different approaches. We described in detail the
calculations for various processes using the hybrid theory because it is the most recent one and we have
used it extensively. We have discussed scattering from hydrogenic targets because the wave functions
for them are known exactly. This allowed us to judge the approach and accuracy of results. The present
theory described above takes into account exchange and short-range and long-range interactions at
the same time and is variationally correct. Accurate resonance parameters were obtained using the
hybrid theory and these were compared with those obtained using the Feshbach formalism, where the
shifts and widths have to be calculated separately. The photoabsorption cross-sections obtained using
the present theory agree well with the results obtained using other theories and experimental results.
We have calculated the photodetachment of a Ps− ion leaving Ps in various excited states, pointing out
the possibility of observing positronium Lyman-α radiation at 2432 Å. Phase shifts and photoabsorption
cross-sections were used to calculate the opacity of the atmosphere of the Sun and also of stellar
atmospheres, pointing out that the contribution of positrons is comparable to that of electrons.
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