
atoms

Article

CI-MBPT and Intensity-Based Lifetime
Calculations for Th II

Igor M. Savukov

Los Alamos National Laboratory, Los Alamos, NM 87545, USA; isavukov@lanl.gov

Received: 2 October 2020; Accepted: 25 November 2020; Published: 1 December 2020
����������
�������

Abstract: Lifetime calculations of Th II J = 1.5 and 2.5 odd states are performed with
configuration–interaction many-body perturbation theory (CI-MBPT). For many J = 2.5 states,
lifetimes are quite accurate, but two pairs of J = 2.5 odd states and many groups of J = 1.5 states
are strongly mixed, making theoretical predictions unreliable. To solve this problem, a method
based on intensities is used. To relate experimental intensities to lifetimes, two parameters, one an
overall coefficient of proportionality for transition rates and one temperature of the Boltzmann
distribution of populations, are introduced and fitted to minimize the deviation between theoretical
and intensity-derived lifetimes. For strongly mixed groups of states, the averaged lifetimes obtained
from averaged transition rates were used instead of individual lifetimes in the fit. Close agreement
is obtained. Then intensity branching ratios are used to extract individual lifetimes for the strongly
mixed states. The resulting lifetimes are compared to available directly measured lifetimes and
reasonable agreement is found, considering limited accuracy of intensity measurements. The method
of intensity-based lifetime calculations with fit to theoretical lifetimes is quite general and can be
applied to many complex atoms where strong mixing between multiple states exists.
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1. Introduction

The age of the Galaxy can be estimated using a thorium–uranium cosmochronometer [1].
Substantial uncertainty comes from the oscillator strengths of Th II and U II lines used in the abundance
calculations. Oscillator strengths determination usually requires experimental lifetimes, using which
and intensity branching ratios, they can be found with some level of accuracy. Historically, Th II
oscillator strengths initially were obtained by Corliss and Bozman in 1962 from relative intensities in
arc spectra [2]. In 1979, Corliss [3] used a lifetime of one level measured by Andersen and Petkov [4]
with 15% accuracy to correct systematic errors arising from the incorrect population distribution
of the excited levels to obtain oscillator strengths of 35% accuracy derived from 30% accurate
intensity measurements. Lifetime measurements for 18 levels were performed by Simonsen et al.,
in 1988 [5]. In 2002, new measurements of lifetimes and derived oscillator strengths were reported by
Nilsson et al. [6]. These oscillator strengths are considered to be most accurate. Oscillator strength
calculations of Th II were performed very recently using pseudorelativistic Hartree-Fock with core
polarization (HFR-CPOL) method by Gamrath et al. [7], which previously showed promising results
for strong U II lines [8].

Motivated by 229Th nuclear clock search, the method of valence configuration–interaction (CI)
with all-order valence-core corrections was used by M. S. Safronova et al. [9] to calculate energies of Th
I, Th II, and Th III, but unfortunately transition probabilities or lifetimes for Th II were not presented.
This could be due to complexity and strong mixing of Th II levels that require precision beyond
available in ab initio theory. Th II has also been investigated using CI and CI-MBPT approaches.
Flambaum and Dzuba [10] showed that the number of states in Th II, as well as in Th I, grows
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exponentially, which is a useful property for nuclear clocks, while it also indicates the complexity of
the spectrum, making the precise calculations difficult. Another study showed that the nuclear clock
transition can be enhanced through the electronic bridge process [11].

While a large number of Th I and Th II levels are cataloged and included in atlases for calibration,
the lifetimes and oscillator strengths are available only for a small number of states [6], which involve
states with relatively high energies, more difficult for theory. This work focused on how low-energy
states will fill the gap. We present theoretical calculations of lifetimes and most importantly a
method that can replace measurements of lifetimes with lifetime calculations for obtaining transition
probabilities and related properties from intensities. The theoretical framework is parametric relativistic
configuration-interaction many-body perturbation theory (CI-MBPT).

Previously this theory was applied to similar atoms [12,13], and transition probabilities of Si I [14],
La II [15], and La I [16] were found in excellent agreement with experiment, although some pairs of
levels of La I needed to be adjusted to correct the pair-wise mixing. The method for mixing-angle
correction was developed for strong mixing of two pairs of levels, but in general, more levels can
strongly interact, which is the case of Th II. The mixing in La II and La I occurred for quite high-energy
levels, and a large number of levels could be calculated accurately without any problem. Th II has
substantial mixing between levels even at low energy, so it is a more challenging atom than La I,
although the number of valence electrons is the same. The main difference is that the actinide core is
larger, and stronger valence–core interactions lead to larger correlation corrections. Because reliable
experimental lifetimes are available for relatively high energy levels, many of which strongly mixed,
a new method was needed to treat them.

Here we theoretically investigated lifetimes of J = 1.5 and J = 2.5 odd Th II states. These particular
states were chosen for the following reason. First, J = 1.5 odd states were chosen because they have
significant mixing of more than 2 states (see Table 2), so our previous method based on one mixing
angle to improve La I transitions for pairs of mixed states [16] would not work and a more general
method had to be developed and demonstrated. Lifetimes for many J = 1.5 odd Th II states were
precisely measured [6] and constitute a test of the theory. Second, J = 2.5 odd Th II states have
more unmixed states for which the theory without mixing complications should give good accuracy
(see Table 3). Thus it is possible by comparison to attribute inaccuracy of the theory of J = 1.5 odd
states for individual transitions to the mixing problem, and not to the problem of other nature: limited
inclusion of correlations, etc.

2. CI-MBPT Calculations

2.1. CI-MBPT Method

To calculate Th II energies, a CI+MBPT method developed for open-shell atoms with multiple
valence electrons is used (see for example [17]). The effective CI+MBPT Hamiltonian for Th II is split
into two parts:

He f f =
M

∑
i=1

h1i +
M

∑
i 6=j

h2ij. (1)

The one-electron contribution

h1 = cff · p + (β− 1)mc2 − Ze2/r + VN−3 + Σ1 (2)

in addition to the VN−3 Dirac-Hartree-Fock (DHF) potential contains the valence electron self-energy
correction, Σ1 [18]. In the current CI+MBPT program, the self-energy correction is calculated with
the second-order MBPT. The term Σ1 is scaled with seven factors for one-electron relativistic angular
momentum numbers: s1/2, p1/2, p3/2, d3/2, d5/2, f5/2, f7/2. These factors both take into account some
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high-order MBPT corrections and relativistic effects, including the one-particle Hartree–Fock Breit
term. The two-electron Hamiltonian is

h2 = e2/|r1 − r2|+ Σ2, (3)

where Σ2 is the Coulomb interaction screening term arising from the presence of the core [19], which is
calculated in the second order of MBPT. Fitting with three additional scaling factors is introduced
for zero-, first- and second-order multipolarity of the Coulomb interaction. Further details on the
CI+MBPT approach can be found in Ref. [20]. In numerical calculations, first, the DHF VN−3 potential
is calculated (the closed-shell Th V ion). Second, the basis in the frozen VN−3 potential is calculated
using a B-spline subroutine, with a cavity of radius R = 30 a.u. chosen for the ion. In this basis,
the CI+MBPT terms of Equation (1) are evaluated. The final step in the energy states and wavefunctions
calculation is the the solution of eigen-value problem for the effective Hamiltonian matrix.

The program can generate a set of configurations by single-, double-, etc. excitations of the
input configurations limited by a given maximum angular momentum lmax and Nmax. In case of
Th II, we chose single and double excitations limited by: n = 11 for s and p states, n = 10 for
d states, 9 for f states. The effective Hamiltonian matrix generation is repeated multiple times for
different scaling factors and the optimization procedure described below is used until some optimum
is reached. The electric dipole matrix elements are evaluated only. Random-phase approximation
(RPA) corrections are added to take into account core-polarization corrections for the matrix elements.

2.2. Optimization of Σ1 and Σ2 Parameters

Seven Σ1 and three Σ2 parameters (the parameter’s definition is provided in the previous section)
were found using a random walk method, with one Σ2 parameter fixed to 0.8, about the average
value of the other Σ2 parameters. The meaning of this procedure is that by scaling the second-order
energy corrections, more accurate single valence electron and screened Coulomb interaction can be
obtained. Value 1 means just ab initio second-order MBPT corrections in CI-MBPT, while 0 means
only valence-valence CI, with core-polarization effects ignored. Values close to 1, such as 0.8, means
that the perturbation theory convergences, and high-order corrections constitute only 20% of the
second-order corrections.

Initially guessed parameters were modified by some small random values at the same time and
the energies and g-factors were compared between old and new sets, with the minimization of error
used as the optimization goal. The g-factor errors were weighted with some factors to regulate how
accurately g-factors need to be improved. If the error between theory and experiment was reduced,
the new set was accepted, or if not, the old set was kept, and the iterations were repeated many times.
The smaller number of configurations was initially used, but then it was increased and the parameters
were re-optimized. The final optimal values of parameters and configurations are shown in Table 1.
The Σ1 parameter for s and p states substantially deviate from unity, meaning significant higher-order
effects, owing to deeper penetration of these valence electrons into the core. Some differences for
different values of J can be observed. This can be partially due to differences in energies of different J
states and hence level of correlations.

In this paper, we focused on lifetimes of J = 1.5 and J = 2.5 odd states, so the optimization was
done for these and the even states to which transitions are allowed. The basic set of configurations
explicitly shown in the table was extended by single and double excitations which included 7s–11s,
7p–11p, 6d–10d, and 5f–9f electrons.
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Table 1. Optimized parameters. Single and double excitations of basic configurations “Basic Conf.”
were limited by 11s,11p,10d,9f. In the basic configurations listed “s” means 7s, “p” means 7p, f means
“5f”, and “d” means 6d. The core states are the same.

JP Basic Conf. Σ1 Σ2

1.5e d2s, ds2, d3, f 2s, f 2d 0.5853, 0.5523, 0.5418 0.8953, 0.6376
p2s, p2d, f ps, f pd 0.7692, 0.8149, 0.9646, 0.9449 0.7744, 0.8000

2.5e d2s, ds2, d3, f 2s, f 2d 0.5708,0.5138,0.5665 1.0708, 0.5326
p2s, p2d, f ps, f pd 0.8420,0.8695,0.9379, 1.0292 0.8433, 0.8000

3.5e d2s, ds2, d3, f 2s, f 2d 0.5264, 0.5086, 0.5888 1.0032, 0.4645
p2s, p2d, f ps, f pd 0.8570, 0.9347, 0.9723, 0.9946 0.8355 0.8000

1.5o f ds, f d2, sdp, d2 p, f s2 0.5579, 0.6261, 0.6466 0.9573, 0.7794
ps2, f 3, f 2 p, f p2, p3 0.7840, 0.8879, 0.9508, 0.9734 0.9180, 0.7700

2.5o f ds, f d2, sdp, d2 p, f s2 0.5560, 0.6124, 0.6537 0.9674, 0.7517
ps2, f 3, f 2 p, f p2, p3 0.7908, 0.9049, 0.9521, 0.9786 0.9517, 0.7700

The energies were found in close agreement with the experiment, with the error on the order
100 cm−1. Table 2 shows J = 1.5 odd states for which experimental and theoretical lifetimes will be
compared in the next section. These states are quite strongly mixed, so despite a close agreement for
energies, g factors show significant differences, which are often due to small distances between levels.
We found that g factors for some mixed states can be added together (or averaged, as in the table),
and then the agreement between theory and experiment becomes much improved. Such addition or
averaging will be used later for lifetimes to show similar significant improvement.

Table 2. Energies (cm−1) and g-factors for optimized parameters presented in Table 1 for J = 1.5 odd
states. The experimental energies and g-factors are taken from NIST database [21].

# Eth Eexpt Eexpt−Eth gth gexpt

1 6691.39 6691.39 0.00 0.4581 0.492
2 11,371.99 11,576.40 204.41 0.8832 0.832
3 12,780.07 12,902.38 122.31 1.0975 1.167
4 15,248.43 15,144.74 −103.69 0.8946 1.366
5 15,855.92 15,710.84 −145.08 1.5732 1.06

2 + 3 + 4 + 5 1.1121 1.1063
6 16,966.64 17,121.62 154.98 1.317 1.277
7 18,210.95 18,214.43 3.48 0.5143 0.876
8 18,922.92 19,050.83 127.91 1.1731 0.888

6 + 7 + 8 1.0015 1.0137
9 21,324.87 21,131.80 −193.07 1.2837 1.24
10 23,140.86 23,012.06 −128.80 0.5783 1.017
11 23,517.78 23,372.58 −145.20 1.4175 1.067
12 23,990.96 24,132.04 141.08 1.4667 1.429
13 24,333.69 24,414.64 80.96 1.5944 1.105
14 25,295.44 25,188.12 −107.32 0.7478 0.937

9 +. . . 14 1.1814 1.1325
15 26,374.78 26,586.27 211.49 0.866 0.76
16 27,068.48 26,965.20 −103.27 0.8003 1.384

15 + 16 0.8332 1.072
17 27,790.41 27,403.17 −387.24 1.1563 1.002
18 28,431.67 28,720.84 289.17 1.0512 1.162

17 + 18 1.1038 1.082

J = 2.5 odd states (Table 3), for which we present lifetime calculations, are less mixed than J = 1.5
odd states, at least for low-energy states. The averaging for g factors is shown only for two mixing
groups. Thus it is expected that theoretical lifetimes will be reliable for most states listed in the table.
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Table 3. Energies (cm−1) and g-factors for optimized parameters presented in Table 1 for J = 2.5 odd
states. The experimental energies and g-factors are taken from NIST database [21].

# Eth Eexpt Eexpt−Eth gth gexpt

1 4490.26 4490.26 0.00 0.8573 0.856
2 7606.79 7331.49 −275.30 1.0434 1.061
3 9386.13 9585.40 199.28 0.5848 0.601
4 10,658.73 10,673.14 14.41 1.1099 1.088
5 12,319.52 12,472.18 152.66 0.9966 0.982
6 14,239.72 14,545.56 305.84 1.3216 1.339
7 16,268.70 16,033.15 −235.56 1.0776 1.07
8 17,728.00 17,460.63 −267.37 1.5491 1.51
9 18,399.89 17,983.38 −416.51 0.9902 0.995

10 19,044.09 19,248.27 204.18 0.9592 0.931
11 19,807.40 20,120.16 312.76 0.9505 0.743
12 20,277.13 20,310.94 33.82 1.0866 1.161
13 20,560.23 20,686.15 125.91 0.6686 0.945

11 + 12 + 13 0.9019 0.950
14 21,002.04 21,297.42 295.38 0.7859 0.767
15 22,830.43 22,513.29 −317.14 1.1921 1.17
16 24,533.60 24,463.79 −69.81 1.0927 1.396
17 25,064.28 24,873.98 −190.30 1.4068 1.081

16 + 17 1.24975 1.2385
18 25,524.96 25,440.23 −84.72 1.2682 1.138
19 26,531.22 26,424.47 −106.75 1.0933 1.169
20 27,702.49 28,243.81 541.33 0.9412 0.922

Mixing for even states is less important for lifetime calculations, which involve summation over
multiple even states. Because the mixing occurs for almost degenerate states, their contributions to
the total radiative decay rate of the upper odd states will be only weakly dependent on the mixing.
The sum of oscillator strengths is an invariant and if energy differences are small, the sum of transition
probabilities becomes invariant, too. In Table 4 CI-MBPT energies and g factors are compared with
experiment for J = 1.5 even states. Many g factors have a good agreement, indicating relatively weak
mixing. A similar situation is in J = 2.5 even states, for which CI-MBPT calculations are shown in
Table 5. In general, we can conclude that the accuracy of even states is sufficient for lifetime calculations
of the odd states.

Table 4. Energies (cm−1) and g-factors for optimized parameters presented in Table 1 for J = 1.5 even
states. The experimental energies and g-factors are taken from NIST database [21].

# Eth Eexpt Eexpt−Eth gth gexpt

1 0.00 0 0.00 0.6525 0.639
2 1626.51 1859.93843 233.43 0.5682 0.586
3 6995.23 7001.42117 6.20 0.8465 0.8
4 7729.33 8018.19281 288.86 1.4534 1.608
5 8239.99 8460.35308 220.36 1.1012 0.968
6 12,323.05 12,219.97621 −103.07 0.912 0.977
7 15,087.68 15,236.63833 148.96 1.6448 1.592
8 18,602.65 18,118.70158 −483.95 0.8464 0.93
9 25,640.12 25,381.9224 −258.20 0.51 1.25
10 26,716.40 26,762.27344 45.88 1.258 0.4
11 27,495.23 27,631.22501 135.99 0.4785 0.625
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Table 5. Energies (cm−1) and g-factors for optimized parameters presented in Table 1 for J = 2.5 even
states. The experimental energies and g-factors are taken from NIST database [21].

# Eth Eexpt Eexpt−Eth gth gexpt

1 1521.90 1521.90 0.00 1.0684 1.076
2 4044.44 4113.36 68.91 1.1642 1.163
3 8163.47 8605.84 442.38 1.0297 0.986
4 9035.92 9061.10 25.18 1.3301 1.419
5 9108.32 9400.96 292.64 1.0993 1.034
6 13,597.46 13,250.51 −346.95 1.2256 1.245
7 15,036.05 15,786.99 750.94 1.5759 1.571
8 20,193.84 20,158.74 −35.10 1.1962 1.19
9 23,276.32 22,106.43 −1169.88 0.9241 0.92

10 26,744.96 26,488.65 −256.31 0.8433 0.776
11 27,756.67 27,593.97 −162.70 0.9387 0.963
12 28,359.93 28,026.35 −333.58 0.9396 1.13

2.3. Lifetime of J = 1.5 and 2.5 Odd States

Experimental intensities are proportional to gi Aij, where gi is the upper state degeneracy, and the
populations of the upper levels, which are not known accurately, and this is the major source of error
for the extraction of transition probabilities. So very often experimental lifetimes are used to exclude
the populations:

1/τi = ∑
j

Aij = ki ∑
j

Iij, (4)

and

Aij =
Iij

τi ∑j Iij
. (5)

We assumed that the intensities are normalized, which is approximately true for the same
discharge source and for a calibrated detector. The NIST database contains normalized intensities
when possible and they will be used here for comparison of theoretical lifetimes with lifetimes derived
from intensities.

With the help of LTE level populations for different levels can be related, so only one coefficient
and one temperature are needed to obtain the radiative decay rates for different levels i:

Aexp,I
i = k ∑

j
IijeEi/T . (6)

The radiative decay rate can be related to lifetimes, τi = 1/Ai, so

τ
exp,I
i = 1/(k ∑

j
IijeEi/T). (7)

The fitting parameters k and T can be found from comparison with theoretical lifetimes,

τTh
i = 1/(∑

j
ATh

ij ). (8)

In this work, we test this method, which practically is realized by fitting parameters in Equation (7)
to match theoretical lifetimes, Equation (8).

One problem with the theory of complex atoms, such as Th II, is that multiple states are
significantly mixed and the mixing coefficients, since they are very sensitive to small corrections,
are not easy to predict. One indication of this problem is a disagreement between theoretical and
experimental g-factors, which in non-relativistic approximation are related to the spin and angular
momentum of the states, or terms, so the disagreement for transition matrix elements is also expected.
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For example, mixing between the second, third, fourth, and fifth J = 1.5 odd states (Table 2)
leads to significant differences between theoretical and experimental g-factors of each state, but the
sum or average, that is the sum divided by the number of mixed states, shows a very close
agreement. This leads us to believe that the theory predicts quite accurately the lifetimes averaged by
transition rates,

τavr =
1

1
N ∑n+N

i=n ∑j,Ej<Ei
Aij

, (9)

while individual lifetimes are not accurate, but they can be improved by using experimental fraction
ratios. The accuracy of the theory is also reduced for smaller values of transition matrix elements due
to cancellation effects. Thus we can recommend the theoretical values of lifetimes for the averaged
values defined above of mixed or individual unmixed states and the experimental branching ratios to
predict mixing and individual lifetimes of the mixed states. The odd J = 1.5 states have many groups
of mixed states, while the lowest even J = 2.5 states are not much mixed.

In Figure 1 we show that lifetimes derived from experimental NIST intensities are closely
correlated with lifetimes derived from theory, with two groups (11–13 and 16–17) of mixed states
averaged. The correlation for independently obtained theoretical and experimental lifetimes is a good
test of theory and experiment, with the error given by the difference.
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Figure 1. Comparison between theory and experiment for lifetimes of J = 2.5 odd states. Because of
strong mixing for the 20,120, 20,310, 20,686 cm−1 states and 24,463 cm−1 and 24,873 cm−1 states,
their average lifetimes were plotted with the average energy used in LTE equation. The lifetimes
derived from experimental intensities “Lifetimes from I” (the sum of intensities given by NIST for a
transitions from a specific level) were scaled with Boltzmann factor Exp[-E/T] and multiplied by a
coefficient for best match: T = 4000 cm−1 and k = 32. The data are also presented in Table 6.
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Table 6. Comparison between lifetimes “τth” calculated with configuration–interaction many-body
perturbation theory (CI-MBPT) and lifetimes τI derived from the sum of intensities for J=2.5 odd Th
II states. The difference allows us to estimate the error of calculations. When strong mixing occurs,
the average lifetimes are compared (below the horizontal line), and the intensities are used to obtain
individual lifetimes (*) from branching ratios. Theoretical lowest-energy lifetimes are expected to be
quite reliable, so the intensities were not used for the recommended value, especially because some
systematic effects can be present. A 10% error is assigned from the analysis of the data at higher energies.
The directly-measured experimental lifetimes are taken from: a [5],b [6], c [4]. In case of mixing, one
averaged experimental lifetime (**) was compared with the averaged recommended lifetime.

E, cm−1 ΣI, ns τI , ns τth, ns τrecom, ns σ τexp

4490 859 130,029 2,392,340 2,392,340 10%
7331 1090 50,367 136,054 136,054 10%
9585 1622 19,266 80,645 80,645 10%

10,673 1321 18,023 71,942 71,942 10%
12,472 1200 12,654 20,325 20,325 10%
14,545 2505 3610 2882 3246 364
16,033 2886 2160 1706 1933 227
17,460 517 8440 6369 7405 1035
17,983 1848 2072 2008 2040 32
19,248 7743 360 282 321 39 453(45) a

20,120 2478 752 ∗ 99
20,311 1436 129 7∗ 154
20,686 4838 385 ∗ 184 502(50) a

20,372 2917 722 554 638 84
21,297 6005 278 219 249 30 315(32) a

22,513 2187 564 199 381 183
24,463 9985 72 63 ∗ 10 94.2(3) a, 95(6) b

24,873 22,817 32 27 ∗ 4 23.0(7) a,21(3) c

24,668 16,401 43.9 32.3 38 6 37(9) a**
25,440 13,412 44.3 58.8 52 7 66.2(2.0) a,66(4) b

26,424 4322 107.4 93.5 100 7 151(8) a,140(9) b

28,245 23,407 12.6 15.0 14 1 11.5(7) b

Once the temperature and coefficient of proportionality are found from the fit, the experimental
values can be used to find lifetimes derived from intensities. Table 6 shows the values both theoretical
and those derived from intensities. The graph has already illustrated close agreement for most states.
At very low energies, the agreement becomes worse, but it can be attributed to experimental issues,
since theory, in general, is expected to predict more accurately lifetimes for lowest states. Thus we
list recommended values as theoretical ones. The error of 10% is assigned from the comparison at
higher energies. However, starting with energy 14,545 cm−1, the agreement between theoretical and
intensity-derived lifetimes becomes quite close, and the recommend values are chosen as the average
between the two, with the error taken as the difference between the average and the theory. For high
enough energy levels, directly measured experimental lifetimes are available, and they are compared
with our recommend values. While the agreement is not perfect, nevertheless it is quite acceptable,
considering quite large uncertainties in the intensities from multiple sources. Furthermore, the theory
might not be very accurate for higher excited states, even after mixing corrections.

Figure 2 shows similar comparison for J = 1.5 odd states as Figure 1 for J = 2.5 odd states.
Because more groups of mixed states can be found for these states, fewer points are shown on the
graph since many individual lifetimes are replaced with averaged values. Still enough points exist
that the temperature and the coefficient of proportionality can be extracted. However, the theoretical
uncertainty is expected to be larger. In Table 7 we show theoretical and intensity-derived lifetimes
for J = 1.5 odd states. Because of strong mixing for many levels, the lifetimes derived from intensities
are recommended. We omitted some theoretical values where a very strong mixing is present since
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those values are not accurate. The error of 10% is somewhat arbitrary, estimated from the analysis of
agreement between theory and experiment when mixing is not present or when the averaged values
over the group of strongly mixed states are used. Of course theory does not predict well mixing and
correctness of lifetimes for mixed states relies completely on the accuracy of branching ratios.
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Figure 2. Comparison between theory and experiment for lifetimes of J=1.5 odd states. Because of
strong mixing for many groups of states (#2-5, #6-8, #9-14, #15-16, #17-18), their average lifetimes were
plotted with the average energy used in the LTE equation. The lifetimes derived from experimental
intensities “Lifetimes from I” (the sum of intensities given by NIST for a transition from a specific
level) were scaled with Boltzmann factor Exp[-E/T] and multiplied by a coefficient for the best match:
T = 4500 cm−1 and k = 500. The data are also presented in Table 7.

Table 7. Lifetime calculations for J = 1.5 odd states using CI-MBPT “τth” and comparison with lifetimes
τI derived from the sum of intensities. The difference allows us to estimate the error of calculations.
When strong mixing occurs, the individual lifetimes derived from intensities are recommended instead
of theoretical values, which become incorrect. The lowest-energy lifetime is expected to be more reliable
than that derived from intensities. A 10% error can be assigned to τI from the analysis of the data
(see Figure 2). The directly measured experimental lifetimes are taken from: S—[5], N—[6].

E, cm−1 τI , ns τth, ns S N

6691.39 23,498.7 72,463.8
11,576.4 6873.88 6849.32
12,902.4 2914.78 2958.58
15,144.7 2582.72 1680.67
15,710.8 1137.95 1808.32
17,121.6 1193.03 746.269
18,214.4 345.063 225.734 376(38)
19,050.8 450.892 847.458 579(58)
21,131.8 864.521 1290(323)
23,012.1 222.934
23,372.6 77.8639 137.552 81(5)
24,132 111.264 90.9091 159(8)

24,414.6 59.0976 62.6(1.9)
25,188.1 152.166 284.9 280(28)
26,586.3 185.857 102.145
26,965.2 79.4289 151.515
27,403.2 175.634 69.9301
28,720.8 12.709 13.6799 15.3(5) 12.5(7)
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3. Discussion

The NIST [21] database provides extensive data for intensities of Th II with references to sources
(see for example: [22–26]), but only a small number of transition probabilities, lifetimes or oscillator
strengths [6] are given in the literature, and mostly for quite highly excited states. In order to compare
theory with experiment, it is necessary to analyze highly excited odd parity states where strong mixing
occurs and the results are very sensitive to small theoretical corrections. On the other hand, the theory
is expected to be more accurate for low-energy states, where mixing is not strong. Thus we supplement
lifetime data for high-energy levels with theoretical data for low-energy states. The quality of the data
is evaluated by comparison with lifetimes derived from intensities. The close agreement indicates
that theoretical data are reliable and that the method of extraction of lifetimes from intensities can be
used in the case when experimental lifetimes are not available. Once the lifetimes are found, specific
transition probabilities can be found from branching ratios for a given set of intensities for transitions
starting from a specific level for which the lifetime is known.

The case of odd J = 1.5 state is more problematic due to the fact that the majority of the states
are strongly mixed in groups. Nevertheless, it is still possible to extract the individual lifetimes from
branching ratios of experimental intensities.

While we focused on specific J = 2.5 and J = 1.5 odd states of Th II, the method is quite general and
can be used for many complex atoms where strong mixing is present, including actinides. For reliable
extraction of lifetimes from intensities, it is necessary that the LTE assumption is accurate and intensities
are properly calibrated.

Recently, calculations of oscillator strengths from high-energy excited states to low-energy and
ground state were reported [7]. A graphical comparison shows that the core-polarization effects
are important and HFR+CPOL calculations are compared with MCDF and experiment. Substantial
differences are observed, as expected, since strong mixing makes even strong transitions sensitive to
small corrections. Unfortunately, no theoretical lifetime data are presented for comparison with the
current work.

It is possible to use our lifetimes and intensities to extract oscillator strengths for some transitions
analyzed in [7]. However, the odd states already have lifetimes measured and corresponding oscillator
strengths calculated, so this work does not add much to the accuracy. For example, we have calculated
J = 2.5 odd state with energy 28,245 cm−1 and obtained a quite accurate agreement with the experiment,
14 ns vs. 11.5(7) [6]. Because in some cases the largest contributions come from the transitions to the
ground state or low-energy states which do not have strong mixing, theoretical oscillator strengths
should be more or less adequate. Just as an example, we calculated J = 2.5 odd (28,245 cm−1) to the
ground state transition and obtained gf = 0.225, while Nilsson et al. [6] reported experimental gf of
0.287 and Gamrath et al. [7] HFR+CPOL gf of 0.331. Both theoretical values are in some agreement with
the experiment of [6], although on the opposite sides of deviation. Thus our approach can be also used
for calculations of oscillator strengths of strong lines. However, we did not optimize our parameters
for such high energy levels and we postpone a more rigorous treatment for the future. In passing
we note that it is important not only to have large matrix elements but also minimal mixing with
nearby states for both odd and even states to have reliable theoretical oscillator strengths. Otherwise,
a similar procedure of using intensities can be employed to extract more accurate oscillator strengths
or transition probabilities from experimental intensities. In order to reduce errors in intensities, it is
important to have calibration using for example some known atomic lines.

4. Conclusions

We have presented CI-MBPT parametric calculations of lifetimes for J = 1.5 and J = 2.5 odd states.
Because J = 2.5 odd low-energy states are not strongly mixed, pure theoretical values are expected to
be accurate. The accuracy was demonstrated by comparison with lifetimes derived from intensities
and directly measured. However, because two groups of J = 2.5 odd states and many groups of
J = 1.5 odd states were mixed, a procedure was introduced to extract more accurate lifetimes using
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intensities. The resulting intensity-derived lifetimes are in agreement with measured lifetimes even for
the cases where many states are mixed. We tabulated recommended lifetimes which can be used to
extract oscillator strengths using calibrated intensities. The method of intensity-derived lifetimes is
quite general and can be used for calculations of highly excited states where theory fails to predict
configuration mixing. This method can supplement the approach where experimental lifetimes are
used for the same purpose. An additional issue can be that the observed spectrum can be limited and
not include all strong lines. Th II has an extensive tabulation of lines and in this respect is a perfect
system for the intensity-based lifetime calculations.
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