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Abstract: The precise estimation of atomic polarizabilities impinges upon a number of areas and
processes in physical science. We calculate precisely the dynamic multipole polarizabilities of the
helium and screened-helium atoms using highly correlated exponential wavefunctions based on
the pseudo-state summation method. For screened environments, we consider the Debye–Hückel
potential (DHP) as the interaction potentials between the charged particles. The dynamic multipole
(quadrupole, octupole, and hexadecapole) polarizabilities for the ground state of the helium atom
and the multipole (quadrupole and octupole) polarizabilities of the screened-helium atom for
different screening parameters are reported along with magic-zero wavelengths. The reported results
for hexadecapole polarizability of the helium atom and dynamic multipole polarizability of the
screened-helium atom are new and would be useful for future investigation on this topic.

Keywords: dynamic multipole polarizability; helium atom; screened-helium atom; Debye–Hückel
potential; correlated exponential wavefunctions; pseudo-state summation method

1. Introduction

Despite the fact that the estimation of atomic polarizability is a challenging task from the
computational side, the atomic and ionic polarizabilities can now be determined precisely with
a reasonable timeframe by exploiting high precision computational techniques [1]. Particularly,
the multipole polarizabilities of two-electron systems can be calculated precisely using highly correlated
wave functions with the help of advanced computational facilities ([1,2], references therein). The main
interest of this work is the precise determination of the dynamic multipole (quadrupole, octupole and
hexadecapole) polarizabilities of the helium and screened-helium atoms, and so we have listed mainly
some references related to the polarizability calculations of the helium atom. The static dipole [3–8],
quadrupole [3–5,7,8], octupole [3–5,7,8] hexadecapole [8] polarizabilities of the helium atom has
been studied independently by different research groups using variational and ab initio methods.
A full list of references can be found from the earlier review articles [1,9,10] and a recent article [2].
The dynamic dipole polarizability of helium has been studied both theoretically and experimentally
([11–18]). The dynamic quadrupole and octupole polarizabilities have also been studied by Bishop and
Lamb [11,12], Caffarel et al. [13], Fowler et al. [14]. The dynamic hexadecapole polarizability obtained
from the present calculations is reported for the first time.

The study of the screened atomic systems or the confined atomic systems is also of great
importance as these atomic systems exhibit unusual behavior with respect to their structure, stability,
interactions and dynamics [19–23]. The static multipole polarizabilities [2,6–8] and the dynamic
dipole polarizability [15,17,18] for the screened-helium atom within the framework of the Debye
screening concept have been reported in the literature. In this work, we calculate the dynamic multipole
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(quadrupole and octupole) polarizabilities of the screened-helium atom under the influence of the
Debye–Hückel potential (DHP) or Yukawa potential (YW). As the screening parameter in DHP is a
function of plasma density and temperature, the wide range of plasma conditions can be simulated
using the different plasma screening parameters. The YW is generally useful in research area of
nuclear physics. It is noteworthy to mention here that the screened coulomb potentials provide wide
applications in different areas of physical sciences [17–23]. So, it is also important to study the structural
properties of the screened atomic systems. The results reported in this paper for the screened atomic
system are new.

2. Theoretical Details

The Hamiltonian (in atomic units) for the helium and screened-helium atoms can be written
together as

H(µ) = T + V(µ), (1)

T = −
1
2

2∑
i=1

∇
2
i , (2)

V(µ) = −2V(µ, r1) − 2V(µ, r2) + V(µ, r12), (3)

where

V(µ, r) =
exp(−µr)

r
, (4)

where (1) and (2) denote the two electrons and r12 is their relative distance. The Hamiltonian represents
the helium atom when the value of the screening parameter µ is equal to zero and it denotes the
screened-helium atom for the non-zero values of µ.

To calculate the quadrupole, octupole, hexadecapole polarizabilities for the helium and
screened-helium atoms, in the first step, it is an important task to determine precisely the energies and
eigen functions for the ground states, and the final D-, F-, and G- states, respectively. The dynamic or
frequency-dependent 2l

−pole polarizability of a two-electron system in the screening medium can be
written as

αl(ω,µ) = α+l (ω,µ) + α−l (−ω,µ) (5)

with

α+l (ω,µ) =
8π

2l + 1

∑
n

fnl

En(µ) − E0(µ) +ω
(in units of a 2l+1

0 ) (6)

where

fnl =

∣∣∣∣∣∣∣
〈(

Ψ0(µ)
∣∣∣ 2∑

i=1

rl
iYlm(ri)

∣∣∣∣∣∣∣Ψn(µ)

〉∣∣∣∣∣∣∣
2

(7)

The summation in the above expression includes all the spectrum having discrete and continuum
eigen states. Ψ0(µ) describes the ground state eigen function with the corresponding energy eigenvalue
E0(µ) whereas, in the similar description, Ψn(µ) represents the nth intermediate eigen function for each
final state with the corresponding eigenvalue, En(µ), respectively. In the limit when ω→ 0 , αl(ω,µ) is
the static polarizability. For precise determination of eigen values and eigen functions variationally
in the initial and final states, one needs to solve the Schrodinger equation, H(µ)Ψ(µ) = E(µ)Ψ(µ),
by diagonalization of the Hamiltonian with the properly chosen basis functions.

The variational wave functions for helium in initial and final states can be written, respectively, as

Ψo(µ) =
N∑

i=1

C0
i [φ0(r1, r2, r12) + φ0(r2, r1, r21)] (8)
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and

Ψn(µ) =
N∑

i = 1
l1 + l2 = L

Cn
i [φn(r1, r2, r12)Y

l1,,l2
LM (r1, r2) + φn(r2, r1, r21)Y

l1,,l2
LM (r2, r1)] (9)

with
φ0(r1, r2, r12) = exp(−α0

i r1 − β
0
i r2 − γ

0
i r12) (10)

and
φn(r1, r2, r12) = exp(−αn

i r1 − β
n
i r2 − γ

n
i r12) (11)

A well-known expression for the bipolar harmonics Yl1,l2
LM (r1, r2):

Yl1,l2
LM (r1, r2) = rl1

1 rl2
2

∑
m1,m2

(
l1 l2 L

m1 m2 −M

)
Yl1m1(r̂1)Yl2m2(r̂2) (12)

l1 = i− (L + 1)mod
(

i
L+1

)
, mod

(
i

L+1

)
denotes the remainder of the integer division i

L+1 , N is the
number of basis terms. A convenient way to generate the non-linear variational parameters αn

i , βn
i ,γn

i
in the basis functions (10) and (11) is the judicious implementation of a pseudo-random technique of
the following form

Xn
i =

〈〈1
2

i(i + 1)
√

qX

〉〉
(R2,X −R1,X) + R1,X (13)

[x] is the fractional part of x, qX assigns a separate prime number for each X, [R1,X, R2,X], X = (α, β,γ)
are real variational intervals which need to be optimized with a proper selection technique.

3. Results and Discussions

To calculate the multipole polarizability precisely, in the first step, it is important to select the
nonlinear variational parameters in the initial and final states’ wave functions for each screening
parameter. We select the optimum values of the non-linear variational parameters in the initial state
wave functions by minimizing the ground state energies (guided by the upper bound principle) for
the different screening parameters. The ground state energies of helium and screened –He have been
reported in our previous works. We select the optimum values of the non-linear variational parameters
in final D-, F-, G- states’ wave functions by maximizing the values of polarizabilities as guided by their
lower bound properties [24].

Results obtained from this study are presented in Tables 1–3 and Figures 1–3. Table 1
shows the multipole (quadrupole, octupole, hexadecapole) polarizabilities of He (1s2 1S) for the
selected values of frequency. From Table 1 and Figure 1, it is clear that the dynamic quadrupole
(or octupole, or hexadecapole) polarizability increases with increasing photon frequency until attaining
a resonance (sharp asymmetric peak) at the frequency which corresponds to the 1s2 1S→ 1s3d 1D
(or 1s2 1S→ 1s4 f 1F , or 1s2 1S→ 1s5g 1G ) transition, respectively. After attaining the first sharp
asymmetric peak, the dynamic quadrupole (or octupole, or hexadecapole) polarizability changes
sign and then starts to increase, approaches the value zero at the crossing point on the x-axis,
and finally arrives at the second resonance at a frequency which corresponds to the 1s2 1S→ 1s4d 1D
(or 1s2 1S→ 1s5 f 1F , or 1s2 1S→ 1s6g 1G ) transition. The dynamic multipole polarizability shows a
similar trend with the increasing photon frequency. In Table 1, we have also compared the available
results by Bishop and Lamb [12]. Figure 1 also points out the position of magic-zero wavelengths,
the wavelengths at which multipole polarizabilities go to zero. From our calculations, the first
magic-zero wavelengths for the quadrupole, octupole, and hexadecapole polarizabilities are 53.430 nm,
52.186 nm, and 51.556 nm, respectively. It should be noted that the first magic-zero wavelength for the
dipole polarizability of helium is 55.4504 nm [17].
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Tables 2 and 3 exhibit, respectively, the quadrupole and octupole polarizabilities of the screened-He
in terms of the screening parameter and frequency. Figures 1 and 2 depict, respectively, the quadrupole
and octupole polarizabilities of the helium atom as functions of the screening parameter and frequency.
Figure 2 shows the dynamic multipole polarizabilities below the respective first excitation energies
increase with increasing screening parameter and with increasing frequency. The wavelength for
which the polarizability goes to zero can be defined as the magic-zero wavelength. From the tables,
it is clear that the magic-zero wavelengths for the quadrupole and octupole polarizabilities, such as
the magic-zero wavelengths for the dipole polarizability [17] of helium in nanometer, increase with
increasing screening parameter. The results presented in the tables and figures are obtained using the
600-term basis functions in the initial and final states for the quadrupole polarizability calculations,
and 500-term basis functions in the initial states and 900-term basis functions in the final states for the
octupole and hexadecapole polarizability calculations. The convergence of the present calculations has
been studied with increasing basis size. In Tables 2 and 3, we compare our previous work on static
multipole polarizabilities. In our earlier work, we have used 500-trem for the initial 1s2 1S state and
600-term for final D-states for the static quadrupole polarizability calculations.

Table 1. The dynamic quadrupole, octupole and hexadecapole polarizabilities (in a.u.) of the helium
atom for different frequencies. The numbers in the parentheses denote the uncertainty in the last
quoted digits.

ω.
Quadrupole

ω
Octupole

ω
Hexadecapole

This Work Ref. [12] This Work Ref. [12] This Work

0.00 2.44508308(2) 2.445083 0.00 10.62034(1) 10.620360 0.00 86.905(4)
0.05 2.44977008(1) 0.05 10.6369(1) 0.05 87.024(3)
0.10 2.46396222(1) 2.463962 0.10 10.6871(1) 10.687133 0.10 87.39(1)
0.15 2.48806321(1) 0.15 10.7720(1) 0.15 88.00(1)
0.20 2.52278216(1) 2.522782 0.20 10.8937(1) 10.893691 0.20 88.87(1)
0.25 2.56919426(1) 0.25 11.0551(1) 0.25 90.03(1)
0.30 2.62884037(1) 2.628840 0.30 11.2605(1) 11.260486 0.30 91.49(1)
0.35 2.70388545(1) 0.35 11.5156(1) 0.35 93.29(1)
0.40 2.79737214(2) 2.797372 0.40 11.8284(1) 11.828444 0.40 95.48(1)
0.45 2.91363791(2) 0.45 12.2096(1) 0.45 98.13(1)
0.50 3.05903171(1) 3.059030 0.50 12.6742(1) 12.674231 0.50 101.3(1)
0.55 3.24322138(2) 0.55 13.2434(1) 0.55 105.1(1)
0.60 3.48177946(2) 3.481754 0.60 13.9491(1) 13.949129 0.60 109.8(1)
0.65 3.80189901(3) 0.65 14.8403(1) 0.65 115.5(1)
0.70 4.25724140(2) 4.256678 0.70 16.0000(1) 15.999960 0.70 122.7(1)
0.75 4.9779544(1) 0.75 17.5852(1) 0.75 131.9(1)
0.80 6.4544562(1) 0.80 19.9625(1) 0.80 144.4(1)
0.83 9.30032(1) 0.83 22.2153(1) 0.85 163.6(1)
0.832 9.75794(2) 0.85 24.6398(1) 0.86 169.0(1)
0.833 10.02443(2) 0.855 25.5410(1) 0.87 175.7(1)
0.840 13.4170(1) 0.86 26.7342(1) 0.88 185.4(1)
0.845 24.107(1) 0.865 28.6388(1) 0.881 187.1(1)
0.847 54.553(2) 0.87 34.7148(2) 0.882 189.5(1)
0.848 507.81(1) 0.871 39.960(1) 0.883 195.5(1)
0.849 −50.045(2) 0.872 66.35(1) 0.884 166.1(1)
0.850 −19.441(1) 0.873 −5.49(1) 0.885 185.1(1)
0.854 −0.388(1) 0.874 17.017(1) 0.886 188.8(1)
0.855 1.039(1) 0.875 22.080(1) 0.887 191.4(1)
0.860 5.202(1) 0.876 24.574(1) 0.888 193.9(1)
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Table 2. The dynamic quadrupole polarizability (in a.u.) of the screened-helium for different screening
parameter and frequency. The numbers in the parentheses denote the uncertainty in the last quoted
digits. a Ref. [7].

ω µ = 0.01 µ = 0.02 µ = 0.04 µ = 0.06 µ = 0.08

0.00 2.44590791(1)
2.4459080 a

2.44834606(1)
2.4483461 a 2.45787452(1) 2.47335948(1) 2.49458527(1)

0.05 2.45059816(1) 2.45304590(1) 2.46261179(1) 2.47815764(1) 2.49946723(1)
0.10 2.46480019(1) 2.46727712(1) 2.47695698(1) 2.49268827(1) 2.51425307(1)
0.15 2.48891817(1) 2.49144524(1) 2.50132086(1) 2.51737071(1) 2.53937400(1)
0.20 2.52366203(1) 2.52626261(1) 2.53642522(1) 2.55294216(1) 2.57558858(1)
0.25 2.57010824(1) 2.57280949(1) 2.58336511(1) 2.60052184(1) 2.62404956(1)
0.30 2.62979959(1) 2.63263434(1) 2.64371120(1) 2.66171669(1) 2.68641428(1)
0.35 2.70490391(2) 2.70791344(1) 2.71967279(1) 2.73879012(1) 2.76502140(1)
0.40 2.79846816(2) 2.80170652(1) 2.81435951(1) 2.83493353(1) 2.86317637(1)
0.45 2.91483654(2) 2.91837762(1) 2.93221299(1) 2.95471594(1) 2.98562654(2)
0.50 3.06036895(2) 3.06431884(1) 3.07975149(1) 3.10486341(2) 3.13938993(1)
0.55 3.24475208(2) 3.24927255(2) 3.26693568(2) 3.29569742(2) 3.33529838(2)
0.60 3.48359402(3) 3.48895155(2) 3.50988991(2) 3.54402656(2) 3.59113710(2)
0.65 3.80416324(3) 3.81084676(3) 3.83698248(2) 3.87969132(2) 3.93887919(2)
0.70 4.26031373(3) 4.26938080(2) 4.30489442(2) 4.36322594(1) 4.44479075(1)
0.75 4.98286925(2) 4.99737922(3) 5.0545265(1) 5.1498285(1) 5.2866610(1)
0.80 6.46710196(2) 6.5046667(2) 6.657876(1) 6.93825(1) 7.42584(2)
0.82 7.877086(3) 7.96725(1) 8.36882(2) 9.3371(1) 14.899(1)
0.821 7.98575(1) 8.08194(1) 8.51450(2) 9.5946(1) 18.383(2)
0.822 8.10078(1) 8.20372(1) 8.67165(2) 9.8876(1) 28.71(1)
0.823 8.22288(1) 8.33344(1) 8.84199(2) 10.2257(1) −574.6(2)
0.824 8.35286(1) 8.47205(1) 9.02764(2) 10.6225(2) −9.26(1)
0.825 8.49169(1) 8.62071(1) 9.23120(3) 11.0975(1) 0.3067(2)
0.83 9.36666(1) 9.57412(1) 10.6717(1) 16.882(1)
0.833 10.1187(1) 10.4198(1) 12.2186(1) 69.62(1)
0.834 10.4308(1) 10.7790(1) 12.9827(1) −56.76(1)
0.837 11.6676(1) 12.2554(1) 17.199(1) −0.040(2)
0.838 12.2303(1) 12.9585(1) 20.198(1) 2.233(2)
0.84 13.7544(1) 14.9757(1) 39.326(1) 5.058(2)
0.841 14.8341(1) 16.5173(2) 135.29(1)
0.842 16.2740(1) 18.741(1) −54.21(1)
0.845 26.817(1) 45.042(1) −2.884(1)
0.846 38.710(1) 165.50(1) −0.277(1)
0.847 87.506(3) −63.280(3) 1.488(1)
0.848 −134.05(1) −21.060(2) 2.800(1)
0.849 −29.698(2) −10.147(1)
0.850 −13.673(1) −5.077(1)
0.851 −7.111(1) −2.105(1)
0.852 −3.496(1) −0.118(1)
0.853 −1.172(1) 1.332(1)
0.854 0.475(1) 2.462(1)
0.855 1.728(1) 3.391(1)

Table 3. The dynamic octupole polarizability (in a.u.) of the screened-He for different screening
parameters and frequency. The numbers in the parentheses denote the uncertainty in the last quoted
digits. a Ref. [7].

ω. µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.04 µ = 0.05

0.00 10.6261(1)
10.62610 a

10.6431(1)
10.64313 a 10.6710(1) 10.7095(1) 10.7583(1)

10.75832 a

0.05 10.6427(1) 10.6598(1) 10.6878(1) 10.7264(1) 10.7753(1)
0.10 10.6929(1) 10.7102(1) 10.7384(1) 10.7773(1) 10.8267(1)
0.15 10.7779(1) 10.7954(1) 10.8240(1) 10.8635(1) 10.9136(1)
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Table 3. Cont.

ω. µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.04 µ = 0.05

0.20 10.8997(1) 10.9175(1) 10.9468(1) 10.9871(1) 11.0382(1)
0.25 11.0613(1) 11.0796(1) 11.1096(1) 11.1510(1) 11.2036(1)
0.30 11.2669(1) 11.2858(1) 11.3169(1) 11.3598(1) 11.4142(1)
0.35 11.5223(1) 11.5421(1) 11.5745(1) 11.6192(1) 11.6759(1)
0.40 11.8355(1) 11.8563(1) 11.8904(1) 11.9375(1) 11.9971(1)
0.45 12.2171(1) 12.2393(1) 12.2755(1) 12.3256(1) 12.3890(1)
0.50 12.6823(1) 12.7061(1) 12.7451(1) 12.7990(1) 12.8673(1)
0.55 13.2523(1) 13.2784(1) 13.3210(1) 13.3799(1) 13.4545(1)
0.60 13.9589(1) 13.9879(1) 14.0355(1) 14.1010(1) 14.1843(1)
0.65 14.8516(1) 14.8847(1) 14.9391(1) 15.0141(1) 15.1094(1)
0.70 16.0134(1) 16.0528(1) 16.1174(1) 16.2066(1) 16.3200(1)
0.75 17.6021(1) 17.6520(1) 17.7338(1) 17.8470(1) 17.9913(1)
0.80 19.9870(1) 20.0592(1) 20.1780(1) 20.3433(1) 20.5560(1)
0.85 24.7037(1) 24.8967(1) 25.2359(1) 25.7786(1) 26.7796(3)

0.854 25.4219(1) 25.6632(1) 26.1073(1) 26.9178(2) 31.49(1)
0.855 25.6247(1) 25.8832(1) 26.3679(1) 27.3077(2) 15.6(6)
0.856 25.8394(1) 26.1183(1) 26.6535(1) 27.7805(2) 27.2(4)
0.86 26.8622(1) 27.2820(1) 28.2450(1) 34.841(2)

0.861 27.1769(1) 27.6604(1) 28.8723(2) −99.4(2)
0.862 27.5272(1) 28.0977(1) 29.7206(2) 22.041(3)
0.865 28.9268(1) 30.1131(1) 41.300(2)
0.866 29.6004(1) 31.3364(1) −24.99(2)
0.867 30.4797(1) 33.3857(1) 19.660(1)
0.869 33.7326(2) 64.89(1)
0.87 37.8548(3) 4.96(1)

0.871 53.599(2) 19.913(1)
0.872 −21.68(1)
0.873 16.032(1)

1 

 

 Figure 1. The dynamic multipole polarizability, αl(ω, 0) (a.u.) of He for 0.82 ≤ ω ≤ 0.885. DQP, DOP
and DHP denote, respectively, the dynamic quadrupole, octupole and hexadecapole polarizabilities.
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Finally, it is worthwhile to mention that the study of dynamic polarizability theoretically plays
an important role in several areas of physical sciences, e.g., the elastic scattering of an atom or a
molecule in the presence of laser field. So, it is of interest to see the contributions from the continuum
states to the dynamic polarizabilities with increasing screening parameter. We estimate the continuum
contributions to the dynamic quadrupole and octupole polarizabilities of the screened-helium atom
as functions of frequency and screening parameter, and present, respectively, in Figures 4 and 5.



Atoms 2020, 8, 90 8 of 10

It appears from Figures 4 and 5 that the continuum contributions to dynamic quadrupole and octupole
polarizabilities increase with increasing frequency and screening parameter.
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4. Conclusions

We have investigated the dynamic multipole (quadrupole, octupole, hexadecapole) polarizabilities
of the helium atom using correlated exponential wavefunctions in the framework of the pseudo-state
summation method. Exploiting similar techniques and wavefunctions, we have also studied the
dynamic multipole (quadrupole, octupole) polarizabilities of the screened-helium atom based on the
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Debye–Hückel potential. The dynamic quadrupole and octupole polarizabilities beyond the frequency
0.70 a.u., the hexadecapole polarizability of the helium atom, and the dynamic multipole polarizability
of the screened-helium atom obtained from the present calculations are reported for the first time in the
literature. The behavior of the magic-zero or tune-out wavelengths in the multipole polarizability has
also been highlighted. It is expected that our findings will be useful for further studies of the dynamic
multipole polarizability of screened and unscreened atomic systems.
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