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Abstract: Providing ideal conditions for the study of ion-neutral collisions, we investigate here the
properties of the saturated, steady state of a three-dimensional Paul trap, loaded from a magneto-optic
trap. In particular, we study three assumptions that are sometimes made under saturated, steady-
state conditions: (i) The pseudopotential provides a good approximation for the number, Ns, of ions
in the saturation regime, (ii) the maximum of Ns occurs at a loading rate of approximately 1 ion per
rf cycle, and (iii) the ion density is approximately constant. We find that none of these assumptions
are generally valid. However, based on detailed classical molecular dynamics simulations, and as a
function of loading rate and trap control parameter, we show where to find convenient dynamical
regimes for ion-neutral collision experiments, or how to rescale to the pseudo-potential predictions.
We also investigate the fate of the electrons generated during the loading process and present a new
heating mechanism, insertion heating, that in some regimes of trapping and loading may rival and
even exceed the rf-heating power of the trap.

Keywords: hybrid ion-neutral traps; Paul trap; ion-neutral collisions; radio-frequency heating;
saturation capacity; loading rate; nonlinear; molecular-dynamics simulations

1. Introduction

Since its invention, about two decades ago [1,2], the ion-neutral hybrid trap has
developed into a remarkably versatile tool, and excellent reviews are written about it
(see, e.g., [3,4]). Consisting of a nested assembly of a magneto-optic trap (MOT) for
neutrals and a radio-frequency (rf) trap for the charged-ion species, hybrid ion-neutral
traps have been used successfully for the experimental investigation of cold chemistry
and ion-neutral collisions by many national and international collaborations [3–15]. In the
case of ion-neutral collisions, loading the rf ion trap to a saturated steady state [5,13,14]
provides particularly favorable experimental conditions and is thus the focus of attention
here. Previously, interesting non-monotonic dynamical regimes [13], including chaos and
fractals [14], have been found to play important roles in the loading dynamics. Looking
more closely at the saturation regime of a three-dimensional Paul trap (3DPT), we uncover
novel facts, scaling laws, and phenomena that may result in further improvements of
measured collision rates. We focus on the 3DPT, and not on the more ubiquitous linear
Paul trap (LPT) [1–15] since the LPT has more parameters than the 3DPT and we are after
exploring dynamical regimes and new mechanisms and phenomena that are best studied
and explored in a well-defined trap, such as the 3DPT, without the need to explore a vast
multi-dimensional parameter space such as in the LPT. Moreover, the results obtained
are expected to carry over qualitatively to all other types of rf traps under conditions of
steady-state ion loading. This has already been partially verified in [13,14], where it was
shown both experimentally and theoretically with detailed simulations that, for example,
the four predicted dynamical loading regimes [13] can be found in the 3DPT as well as
in the LPT. To cut down even further on the number of free parameters, we focus on the
(approximately) spherical 3DPT, characterized by a = q2/2, where a and q are the two
trap control parameters (see Section 2.1), which results in (approximately) equal pseudo-
oscillator frequencies in all three dimensions. In this case the 3DPT is a one-parameter
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system, and combined with the other free parameter, the loading rate, we are studying the
loading process in a two-dimensional parameter space.

In ion-neutral collision experiments there are three assumptions that are sometimes
made (see, e.g., [13]) and that we formulate here as the following three hypotheses to be
tested with detailed molecular-dynamics simulations (see Section 3) of the ion dynamics in
a 3DPT.

The first hypothesis to be tested is the assumption that in the saturation regime the
pseudo-potential approximation provides a good approximation for the number of ions
present in the trap. In Section 2.4 we show that this is not the case. We find that the actual
saturation number of ions in the trap is (i) substantially smaller than suggested in the
continuous-charge pseudo-potential approximation and (ii) depends on the trap control
parameter q. In particular, the continuous-charge pseudo-potential values are not even
reached in the slow-loading regime.

The second hypothesis to be tested is that the saturation regime, termed “region
II” in [13,14], occurs at loading rates of about one ion per rf cycle [13,14]. In Section 2.4
we show that this is only true for trap control parameters investigated in [13,14], but is
not valid in general. Instead, we show that the maximum of the saturation regime II
reacts extremely sensitively to the trap control parameter q, ranging over several orders of
magnitude in q.

The third hypothesis to be tested is that the density of the trapped ions in the saturation
regime is approximately constant [13]. Again, we find this assumption to be problematic
and show, in Section 2.5, that in most loading regimes the ion density, even in the saturation
regime II, may be vastly different from a constant. The loading process accounts for density
variations in the vicinity of the center of the trap, while the absorption process at the spatial
limits of the trap accounts for deviations close to the maximal trapping radius of the trap.
We find that under conditions of steady-state loading, a constant trapped-ion density is not
even encountered in pseudo-potential approximation, that is, in a situation where there are
no additional complications due to the rf heating process.

In addition to testing the three hypotheses listed above, we identify a new heating
mechanism, insertion heating (see Section 2.3) , that, in some dynamical regimes, rivals, and
may even exceed, the rf heating power in importance.

The paper is structured in the following way. The main results are presented in
Section 2. Our molecular-dynamics simulation methods are defined and explained in
Section 3. We conclude the paper in Section 4.

2. Results

In this section we present the core results of this investigation. It is divided into five
subsections. In Section 2.1, to set the stage, we introduce the notation and present the
equations of motion of the ions in the trap. In Section 2.2 we ask and answer the question
of what happens with the electrons that are generated in the loading process. In Section 2.3
we identify and analyze the new insertion-heating mechanism. In Section 2.4, we present
the results of our molecular-dynamics simulations that show significant differences with
respect to pseudo-potential expectations and variations with the trap control parameter
q. In Section 2.5 we present some typical densities as they exist in the saturation regime,
illustrating significant deviations from the expected constant according to the pseudo-
potential prediction.

2.1. Equations of Motion and Pseudopotential

If the total number of ions in the trap is N, then, in SI units, the equation of motion of
ion number i in an ideal 3DPT in the presence of the other N − 1 ions is [16]

m~̈xi(t) = −Γ~̇xi − 2e

[
U0 + V0 sin(Ωt)

r2
0 + 2z2

0

] x
y
−2z

+

(
e2

4πε0

)
∑
j 6=i

~xi −~xj

|~xi −~xj|3
, (1)
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where Γ is the damping constant, U0 and V0 are the dc and ac voltages applied to the
trap, respectively, r0 and z0 are the radius of the ring-electrode and the distance from
the trap’s center to the end-cap electrodes, respectively, and ε0 is the permittivity of the
vacuum. Damping does not have any visible effect on the shapes of the loading curves
to be discussed in Section 2.4 nor does it alter the shapes of the ion densities discussed in
Section 2.5 (see also [13]). Therefore, we do not consider damping and, in what follows,
set Γ = 0. Collisions with background gas are also not included in our simulations since
experimentally it is always possible to reduce the rate of these collisions to negligible levels.

Introducing the dimensionless trap control parameters [16]

a =
8eU0

mΩ2(r2
0 + 2z2

0)
, q =

4eV0

mΩ2(r2
0 + 2z2

0)
, (2)

the unit of length [17]

l0 =

[
e2

πε0mΩ2

]1/3

, (3)

and the unit of time
t0 = 2/Ω, (4)

turns (1) (with Γ = 0) into the set of dimensionless equations

d2

dt̂2 ~̂xi(t̂) +
[
a + 2q sin(2t̂)

] x̂
ŷ
−2ẑ

 = ∑
j 6=i

~̂xi − ~̂xj

|~̂xi − ~̂xj|3
, (5)

which, together with the loading process, form the basis of our molecular-dynamics simula-
tions (see Section 3). The pseudopotential is obtained by averaging over the fast oscillations
of the rf trap field. It is given approximately, but explicitly, by [16]

Upp(~̂x ) =
1
2

µ2
x(x̂2 + ŷ2) +

1
2

µ2
z ẑ2, (6)

where µx and µz are the dimensionless pseudo-oscillator frequencies

µx =

(
a +

1
2

q2
)1/2

, (7)

µz =
[
2(q2 − a)

]1/2
. (8)

In SI units, we have [16]

ωx = µx
Ω
2

, (9)

ωz = µz
Ω
2

. (10)

We are exclusively focusing on the case of a spherically symmetric pseudopotential,
obtained for

a =
q2

2
, (11)

which results in
µx = µz = q. (12)

We now assume that the trap is filled homogeneously with charge of charge-density
ρpp. In pseudo-potential approximation we compute ρpp in the following way. Denoting



Atoms 2021, 9, 11 4 of 15

by Qencl the enclosed charge, an ion a distance r away from the trap’s center experiences a
repulsive Coulomb force

FCoul =
eQencl

4πε0r2 =

(
e

4πε0r2

)(
4π

3
r3
)

ρpp =
eρppr
3ε0

, (13)

which needs to be counterbalanced by the trap force

Ftrap = mω2
xr = m

(
q

Ω
2

)2
r =

1
4

mΩ2q2r. (14)

Thus, from FCoul = Ftrap, we obtain, in SI units,

ρpp =
3ε0mΩ2q2

4e
. (15)

In dimensionless units, we define ρ̂pp as the number of ions per unit volume, l3
0 , that is,

ρ̂pp =
ρppl3

0
e

=
3q2

4π
. (16)

Since any physical trap is limited in size by electrodes, other absorbing structures or
dynamical processes such as the onset of chaos [14], or higher-order rf multipoles [18], we
define the effective trap radius Rcut in SI units, beyond which ions are considered absorbed,
that is, lost from the trap. Defining the dimensionless trap radius,

R̂cut = Rcut/l0, (17)

the expected number of ions in the trap in the saturated regime is

Npp
s =

4π

3
R̂3

cut ρ̂pp = q2R̂3
cut. (18)

It is convenient to relate the actual number, Ns, of ions in the saturated trap to the
respective number of ions in the corresponding saturated pseudopotential. For this purpose
we define the ratio

νs =
Ns

Npp
s

=
Ns

q2R̂3
cut

. (19)

2.2. Trapped Electrons?

The ionization process in the loading region at r∼0 generates electrons at near zero
kinetic energy inside of the trap. What is their fate? Are they going to be trapped or
expelled from the trap?

An electron generated inside of the trap is under the influence of the trap field and
the field produced by the space charge of the trapped ions. Assuming a completely filled
psudopotenital (see Section 2.1), the magnitude of the confining force acting on an electron
due to space charge is the same as FCoul in (13), that is,

Fconf =
eρppr
3ε0

. (20)

For electrons, trap fields that confine ions may be considered as very slowly varying.
This is also clear from the fact that the value of the trap control-parameter q for electrons,
qe, is related to the value of the ionic trap control-parameter, q, according to

qe =
mq
me
� 2000× q, (21)
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which corresponds to a strongly de-confining trap. Therefore, we may consider the trap
fields acting on the electrons as quasi static, and consider only the trap field with maximum
amplitude as being relevant for deciding the question of whether electrons are confined
or de-confined in the combined fields of trap and ionic space charge. According to (1) the
maximum trap force acting on an electron in x direction is

Fmax = 2e
U0 + V0

r2
0 + 2z2

0
x =

(
1
4

a +
1
2

q
)

mΩ2x. (22)

The maximal force occurs if x = r. In this case, with a = q2/2, we have

Fmax =

(
1
8

q2 +
1
2

q
)

mΩ2r. (23)

The ratio of the confining force, Fconf, and the de-confining force, Fmax, is

Fconf
Fmax

=
q

2 + 1
2 q

= β < 1, (24)

since for stable 3DPT operation we need q < 1 [16]. This shows that under the assumption
of a filled pseudo-potential, the confining force due to the ionic space charge is always
smaller than the maximum of the de-confining force. This implies that as soon as they are
created, the electrons are swept out of the trap within at most half of a cycle of the applied
rf trap field.

In our derivation of the inequality (24) we considered only the force in x direction.
However, since the force in y direction is the same as the force in x direction, and since,
according to (1), the force in z direction in a 3DPT is twice as strong as the force in x direction,
this does not change the result that the electrons are lost from the trap essentially as fast
as they are created. Thus, in both, actual trap-loading experiments and in our numerical
simulations, it is safe to completely neglect the influence of the electrons generated in the
photoionization process. However, the inequality (24) is not very strong in the sense that an
ion plasma with a density exceeding the pseudopotential equilibrium density by a factor
larger than 2/β = (4/q) + 1, the factor 2 accounting for the twice stronger de-confining
force in z direction, is capable of trapping electrons. As shown in Section 2.5, such densities
may indeed be found in the fast-loading regime in the spatial loading region close to the
center of the trap, in particular for large q. Investigating this possibility further is beyond
the scope of this paper, but is a good topic for future research. It is also possible that the
electrons, on their way out of the trap, have sufficient energy to cause secondary ionizations
by electron-neutral collisions. These events may be exceedingly rare, but may still deserve
some further attention, if only to rule out this ionization process.

2.3. Insertion Heating

Whenever a new ion is created in the loading region of the trap, it is inserted into
an already existing charge distribution formed by the trapped ions. In pseudo-potential
approximation we may assume that the ion charge density is constant [see (15)]. Thus,
inserting an additional ion into this space-charge cloud a distance r away from the trap’s
center costs the insertion energy [19]

V(r) =
eρpp

6ε0
(3R2

cut − r2), r ≤ Rcut. (25)

In the loading zone, that is, r � Rcut, we have

V(r) ≈ eρpp

2ε0
R2

cut, (26)
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which means that each ion insertion adds an amount of energy

∆E =
eρpp

2ε0
R2

cut (27)

to the trapped ion cloud. Defining λ as the number of ions loaded per rf cycle, the insertion
heating rate, η, is given by

η =
λ∆E( 2π

Ω
) =

(
3

4π

)
E0q2ΩλR̂2

cut, (28)

where we introduced the unit of energy

E0 =
ml2

0
t2
0

=
ml2

0Ω2

4
(29)

in order to connect with the unit of energy used in [17]. The rf heating rate H in [17] is
dimensionless, expressed in units of E0/t0. In order to compare our insertion heating
rate with the dimensionless heating rate H in [17], we define the dimensionless insertion
heating rate

η̂ =

(
t0

E0

)
η =

2η

E0Ω
=

(
3

2π

)
q2λR̂2

cut. (30)

In [17], H is graphed for various ion numbers in the trap. Therefore, it is convenient
to express η̂ with the help of the pseudo-potential saturation number Npp

s [defined in (18)]:

η̂ =

(
3λ

2π

)(
qNpp

s

)2/3
. (31)

For the case q = 0.2, shown in Figure 1 of [17], this can be simplified further to

η̂ ≈ 0.163 λ
(

Npp
s

)2/3
. (32)

At q = 0.2, the maximal rf heating rate Hmax in [17] is well approximated by

Hmax = 0.20×
(

Npp
s

50

)5/3

, (33)

resulting in the ratio
η̂

Hmax =
553λ

Npp
s

(34)

of the two heating rates. Assuming λ = 1, a loading rate shown in [13] to be located in the
plateau region II of the loading curve for q = 0.2, we obtain η̂/Hmax = 11.1, 5.5, 2.8, and 1.1
for Npp

s = 50, 100, 200, and 500, respectively. We see that in these cases the insertion heating
rates are systematically larger than their corresponding rf heating counterparts, more than
an order of magnitude on the low ion-number side. We also see that the insertion-heating
advantage is reduced with increasing ion number Npp

s . Nevertheless, for the cases studied
here, insertion heating is certainly the dominant heating mechanism. For Ns = 50, and
reducing the loading rate one order of magnitude to λ ∼ 0.1, the two heating rates are
of the same order of magnitude, and rf heating dominates for λ ∼ 0.01. This range of
loading rates is, in fact, part of the range of loading rates studied in detail in the following
Section 2.4.

2.4. Saturation Curves

So far, we studied the number Ns of ions in the saturation regime in the context
of the static pseudo-potential approximation. We now switch on the rf term in (1) and
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study the steady-state ion capacity, Ns(λ), under saturation conditions for the combined
time-dependent processes of rf drive and ion loading at a loading rate λ, where λ is the
number of ions loaded per rf cycle.

Actual hybrid traps contain of the order of 105, . . . , 106 ions [14]. While it may be
possible to simulate the loading and saturation dynamics of such a trap for a single choice
of trap control parameters and loading rates, detailed simulations for ranges of parameters,
as, for example, presented in this subsection, are impractical to do for more than ∼103

stored ions with the available computer equipment. Therefore, we need to keep the number
of particles down so that extensive simulations can be performed in a reasonable time.
A good compromise was to scale down the actual experimental trap dimensions by about
a factor 10 and define our model trap with a loading-zone radius of R̂L = 3 and a trap
size that we vary in steps of 5 from R̂cut = 15 to R̂cut = 30. In Figure 1 we show examples
of loading curves, similar to the ones obtained in [13,14], for R̂cut = 15 and loading rates
ranging from λ = 0.01 to λ = 100. In contrast to the loading curves in [13,14], which
show ion saturation numbers Ns(λ) as a function of loading rate λ, Figure 1 shows scaled
ion numbers

νs(λ) =
Ns(λ)

Npp
s

, (35)

where Npp
s , the ion number expected in the pseudo-potential approximation, is defined

in (18) and Ns(λ) is the actual number of ions in the trap according to our simulations.
Scaling is convenient since this way we are able to show loading curves for a wide range
of trap parameters (q = 0.1, . . . , 0.4) in the same frame. The scaling also provides us
with the advantage of a direct comparison of the actual ion saturation number with the
pseudo-potential prediction.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.01  0.1  1  10  100

I

II

III

IV

ν
s

λ

Figure 1. Scaled saturation ion number νs(λ) = Ns(λ)/(q2R̂3
cut) for four different values of the

trap control parameter q as a function of loading rate λ. Red squares: q = 0.1; blue circles: q = 0.2;
green triangles: q = 0.3; purple diamonds: q = 0.4. All four loading curves show at least three of
the four dynamical regimes predicted in [13,14] and explicitly marked I, II, III, and IV in the case of
the curve corresponding to q = 0.2 (blue circles). For increasing q we observe that the height of the
plateaus decreases and the maxima of the plateaus shift over several orders of magnitude toward
larger loading rates.

Figure 1 confirms the universal shape of loading curves predicted in [13,14] to occur
for all rf traps. Focusing on the loading curve for q = 0.2, the four dynamical regimes
are marked in Figure 1 with the Roman numerals I, II, III, IV, respectively. Dynamical
regime I corresponds to the slow-loading regime. Ions are loaded from the MOT into the
3DPT with near-zero initial kinetic energy, and are, therefore, initially, trapped deeply in
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the potential well of the trap. Subsequently, they slowly gain energy due to the combined
action of rf- and insertion heating. Having gained enough energy from these two heating
mechanisms, they escape from the trap. The saturation ion number in this regime is
determined by the balance between the rate of newly loaded ions and the rate of escape
dictated by the heating rates. Increasing the loading rate, more ions can simultaneously
undergo this process of loading, heating, and escaping, which explains why the region-I
loading curve rises monotonically with increasing loading rate. At some point, however,
the increase of the number of ions in the trap with increasing loading rate has to stop,
and we enter dynamical region II. In this region, the role of heating is diminished, and
the role of Coulomb-Coulomb interactions is emphasized, roughly resulting in a situation
of a strongly coupled (Coulomb) fluid (plasma), where each new “drop” (ion loaded)
overflows the “bucket” (the trap) such that the total number of fluid (ions) contained in
the bucket (trap) cannot exceed the maximum capacity of fluid in the bucket (ions in the
trap). This situation results in the quasi-stationary behavior (plateau) that characterizes
dynamical region II (see Figure 1). Increasing the loading rate even further corresponds
to a situation where fluid (ions) accumulate with a density larger than the average trap
density in the loading region (MOT region) of the trap, actively pushing ions out of the
trap due to strong Coulomb forces. This results in the dip of the loading curves, marked
as dynamical region III in Figure 1. Further increase of the loading rate piles up so much
inertially confined charge in the loading region that a highly charged “core” develops in the
trap (see Section 2.5), that accelerates all charge outside of the core swiftly and ballistically
out of the trap. This explains the sharp rise of the loading curve in dynamical region IV
(see Figure 1). Dynamical region IV is currently the best understood region and resulted in
an experimentally confirmed behavior of νs ∼ λ2/3 [13].

In Figure 1 all four dynamical regimes are present for q = 0.2 and q = 0.3. However,
in Figure 1 our λ scale does not extend far enough to the left and to the right to see all
four dynamical regimes for q = 0.1 and q = 0.4. But we still see regions II, III, and IV
for q = 0.1, and regions I, II, and the beginnings of region III for q = 0.4. This confirms
expectations. More importantly, however, we see that only in the fast-loading regime,
not currently used for ion-neutral collision experiments, do the loading curves reach the
level of 1 (and beyond) predicted by the pseudo-potential approximation. In all other
dynamical regimes, νs is significantly smaller than 1, indicating that the static pseudo-
potential approximation overestimates the number of ions stored in the trap. So, we have a
first result: The saturation numbers do not agree with the pseudo-potential prediction in
two important ways: (i) Instead of being constant, νs(λ) shows a non-monotonic structure,
already found in [13,14]. (ii) Even at the maximum, νs(λ) is significantly below the pseudo-
potential prediction. We also notice that for increasing q, the maxima of the loading curves
in dynamical regime II shift very quickly toward larger loading rates.

The depression of the saturation ion levels with respect to the pseudo-potential predic-
tion is investigated further in Figure 2. This figure shows the scaled maxima of the loading
curves of Figure 1,

νmax
s =

Nmax
s

q2R̂2
cut

, (36)

for several values of q and R̂cut. Figure 2 confirms that the scaled saturation levels are
substantially below 1 and reach down to ≈ 0.4, that is, a trap capacity of only about 40%
of the pseudo-potential prediction, at q = 0.4. Even for small q, the trap capacity is only
about 80% of the pseudo-potential prediction. However, we also see that the ion capacity
scales ∼R̂3

cut. Therefore, the scaled νmax
s is approximately independent of R̂cut and depends

only on q. A scaling function may be derived from Figure 2, which can be used to calibrate
Ns(λ) with respect to the pseudo-potential prediction.
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ν
s

m
a
x

q

Figure 2. Normalized scaled maxima νmax
s (q) = Nmax

s /(q2R̂3
cut) of the saturated ion numbers as

a function of trap control parameter q. The black dashed line indicates the static, filled-pseudo-
potential expectation of the normalized particle number at saturation. The black stars are the νmax

s (q)
values obtained in the case where the rf-driven trap is replaced with its corresponding static pseudo-
potential. The filled plot symbols are the νmax

s (q) values resulting from full three-dimensional
molecular-dynamics simulations of the trapped ions under the condition of constant-rate loading.
Blue squares, red circles, green triangles, and purple diamonds correspond to R̂cut = 15, 20, 25, 30,
respectively. The approximate overlap of the plot symbols indicates near-perfect 1/R̂3

cut scaling.

The rapid shift of the saturation plateaus to the right as q increases is illustrated in
Figure 3, which shows the loading rate λmax at which the loading-platau maxima occur (see
Figure 1) for several different q values. In the region from 0.1 to 0.3 we see an exponential
dependence of λmax on q, approximately given by (see straight, blue line in Figure 3):

λmax ≈ 0.01× 1016(q−0.1). (37)

In [13] we found that for q = 0.2 the maximum of Ns(λ) occurs at λ ∼ 1. Figure 3
shows that this is not always so. Quite the contrary: Indicated by closely following
the straight blue line in Figure 3, representing the function (37), λmax shows extreme
(exponential) sensitivity to the trap control parameter q in the region 0.1 < q < 0.3. The
deviation from exponential behavior in the region q > 0.3 may be due to the fact that for
increasing q the maximum in region II turns into a shoulder on the region-IV curve (see
Figure 1), masking a possible continuation of the exponential behavior. However, a clearer
understanding of the deviation from exponential behavior has to await further analytical
progress. The deviation of the data point at q = 0.05 has a simpler explanation. It is due to
the fact that our simulations are cut at λ = 0.01 and thus do not extend far enough to the
left to capture the true location of the maximum of the loading curve at q = 0.05.

In this subsection we compared actual steady-state saturation ion numbers obtained
from molecular-dynamics simulations with the ion numbers expected from a model that
assumes that the pseudo-potential is filled with a homogeneously distributed charge. In
reality, however, the ions in the trap are localized, discrete charges, which, in analogy
to spherical Coulomb crystals [20] leads to a reduced ion-number capacity in the trap.
Therefore, it is possible that the agreement between the pseudo-potential approximation
and the simulations may be improved somewhat by taking the discretization of charge into
account. However, even in this improved pseudo-potential model, the decrease of νmax

s
with increasing q, observed in Figure 2, cannot be accounted for.
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Figure 3. λmax as a function of q, illustrating how the loading rate, λmax, at which the number of
the particles in the trap assumes its maximum, shifts toward higher loading rates as a function of
increased q. Indicated by the straight blue line, representing the function λmax = 0.01× 1016(q−0.1),
approximately exponential sensitivity is observed in the range 0.1 < q < 0.3.

2.5. Densities

Because of its quadratic nature, the static pseudopotential discussed in Section 2.1
predicts that the charge density ρ̂pp, given in (16), is constant throughout the trap. A
constant density is important for ion-neutral collision experiments, since only this way we
may assume homogeneous and isotropic conditions throughout the reaction volume.

In [13,14] it was assumed that the best conditions in terms of charge density should
occur at the maxima of the loading curves (see Figure 1). To test this assumption, Figure 4
shows the charge densities ρ̂(r̂) (histograms) obtained as a result of full three-dimensional
molecular-dynamics simulations (see Section 3) for q = 0.1, 0.2, 0.3, 0.4 as a function of the
dimensionless radial position r̂ = |~̂r | =

√
x̂2 + ŷ2 + ẑ2. Also shown, for comparison, is the

constant-density pseudo-potential prediction (red, horizontal line). We see that, while, at
least in some regions, the actual densities are close to the pseudo-potential prediction, the
condition of constant charge density is approximately satisfied over a large range of the
trap volume only for q = 0.1, the smallest of the q values shown in Figure 4. And even
in this case, we see a significant deviation from a constant density, especially toward the
radius of the trap at R̂cut. In fact, the deviation from a constant density at r̂ ≈ R̂cut accounts
for much of the missing ions (see Figure 2) as compared to the pseudo-potential prediction.
We see this in the following way. In a simple model of the density shown in Figure 4a, we
assume that the density is constant and equal to ρ̂pp in 0 ≤ r̂ ≤ R̂1, decreases linearly in
R̂1 ≤ r̂ ≤ R̂2, and reaches 0 at r̂ = R̂2. Thus, in this model, the density is given by

ρ̂(r̂) = ρ̂pp ×
{

1 for 0 ≤ r̂ ≤ R̂1,
R̂2−r̂

R̂2−R̂1
for R̂1 ≤ r̂ ≤ R̂2.

(38)

The number of particles in this model is

Ns = ρ̂pp
(

4π

3

)
R̂3

1 + 4π
∫ R̂2

R̂1

ρ̂(r̂)r̂2 dr̂ =
(π

3

)
(R̂3

1 + R̂2
1R̂2 + R̂1R̂2

2 + R̂3
2) ρ̂pp. (39)
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Therefore, if we now normalize the actual number of stored ions, Ns, to the pseudo-
potential prediction, Npp

s , we obtain

νs =
Ns

Npp
s

=

(
1

4R̂3
2

)
(R̂3

1 + R̂2
1R̂2 + R̂1R̂2

2 + R̂3
2). (40)

Inserting R̂1 = 20 and R̂2 = 25, appropriate for the case of Figure 4a, we obtain
νs = 0.74, close to the actual observed ratio of νs ≈ 0.8, the small hump in the density
occurring before the onset of the decline of the density at R̂1 = 20 accounting for much of
the difference. So, we now have an explanation for the missing ion numbers: For small q,
such as in Figure 4a, the missing ions are due to the behavior of ρ̂(r̂) close to the cut-off at
r̂ = R̂cut.
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Figure 4. Ion densities ρ̂ as a function of distance r̂ from the trap’s center (histograms) for four
different trap parameters, that is, q = 0.1 (a), q = 0.2 (b), q = 0.3 (c), and q = 0.4 (d) at their respective
loading rates λmax (see Figure 3). The red, horizontal line is the pseudo-potential prediction for ρ̂. We
see that the pseudopotential predicts the density approximately only for q = 0.1, while significant
deviations from the pseudo-potential prediction are observed for q > 0.1.

We now turn to the densities corresponding to larger values of q. Figure 4b shows
the case for q = 0.2. Contrary to the case of q = 0.1, where the loading-curve maximum
corresponding to the density shown in Figure 4a occurs at a loading rate of λmax = 0.01,
the loading rate at the maximum of the loading curve in the case of q = 0.2, corresponding
to the density shown in Figure 4b, now occurs at λmax = 2.5. Thus, the loading rate in
the case of Figure 4b is a factor 250 larger than the loading rate in Figure 4a, although
the trap control parameter only doubled. This, of course, is a result of the exponential
sensitivity of the loading rate in q as shown in Figure 3 and quantified in (37). Accordingly,
reflecting the vastly larger loading rate, we now see a pile-up of density in the loading
region 0 ≤ r̂ ≤ R̂L = 3. The pile-up of charge in the loading zone may be explained
in the following way. Charge created in the region r̂ ≤ R̂L needs to be transported
away from the loading zone. One mechanism to ensure this is rf heating, which imparts
kinetic energy on the ions in the loading zone. However, since rf heating results from the
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micro-motion, and the micro-motion amplitude of an ion is proportional to its distance r̂
from the trap’s center [16], rf heating is not very effective close to the trap’s center, that
is, in the loading zone, resulting in the observed pile-up of charge in the loading zone.
Consequently, together with its behavior at the edges of the trap, the ion density in the trap
is now significantly different from the predicted constant both in the vicinity of r̂ ≈ 0 and
around r̂ ≈ R̂cut = 25. As shown in Figure 4c,d, this trend continues for larger q values,
corresponding to ever larger loading rates, according to Figure 3, so that the r̂-interval
of constant density shrinks with increasing q and is near negligible in the case of q = 0.4
[see Figure 4d]. We also see that with increasing q the radius R̂1 in our model above
decreases significantly, explaining the depression of the ion-storage capacity of the trap
down to about 40% of the pseudo-potential prediction at q = 0.4 (see Figure 2). Apparently,
the overshoot of the density in the loading region 0 ≤ r̂ ≤ R̂L = 3 cannot compensate for
the ion loss due to the decline of the density toward r̂ = R̂cut.

What causes the decrease of the density close to R̂cut? Since the 3DPT is an rf trap,
the micro-motion comes to mind as a possible direct explanation. According to [16] the
micro-motion amplitude is given by

∆r̂mm =
qr̂
2

, (41)

and is proportional to both q and r̂. Therefore, if ∆r̂mm would be of the order of R̂cut − R̂1,
one could immediately explain the missing ions in the vicinity of R̂cut as being knocked
out of the trap directly by the micro-motion. Moreover, since ∆r̂mm is proportional to q, this
would even explain why more ions are missing for increasing q. However, according to
the following reasoning, the micro-motion amplitude can be ruled out as the direct cause
for the missing ions. At R̂cut = 25 and q = 0.1, the micro-motion amplitude works out to
be ∆r̂mm = 1.25 and increases only to ∆r̂mm = 5 for q = 0.4. So, while the micro-motion
amplitude is certainly not negligible, and certainly plays a role in carrying ions across the
boundary at r̂ = R̂cut, its magnitude is too small to explain the shape of the density in
Figure 4 via this direct knock-out mechanism. However, the relatively large micro-motion
amplitude in the vicinity of R̂cut indicates that the time-dependence of the trap field may
play a major role in explaining the missing ions. To nail this down, in Figure 2 we compare
the ion saturation numbers for the time-dependent 3DPT with the ion saturation numbers
obtained from fully three-dimensional molecular-dynamics simulations (see Section 3)
where, in addition to ion loading, only the time-independent, static pseudopotential was
switched on (stars in Figure 2). We see that, although even in the dynamically loaded
pseudo-oscillator trap the saturation numbers are smaller than predicted by the static
pseudo-potential approximation without dynamic ion loading, the densities obtained
from the the pseudo-oscillator simulations for large q are significantly above those for
the fully time-dependent 3DPT, and merge with those of the 3DPT only in the small-q
regime, in which the rf heating power is small. This proves conclusively that the main
reason for the missing ions is strong rf heating at large values of r̂ close to R̂cut, and in
addition explains, because of the proportionality of ∆r̂ to both r̂ and q why the effect of
the missing ions increases both with increasing r̂ and increasing q. Thus, the decrease of
the density in R̂1 ≤ r̂ ≤ R̂2 is dynamical in origin, that is, it is caused by the combined
effects of rf heating and the flow of ions generated in the loading zone and absorbed
at r̂ = R̂cut. That the flow itself is an important mechanism is shown by the fact that
inspection of the densities obtained from the simulation of loading the pseudopotential
shows the same linear decrease of the density in the region between R̂1 and R̂2 = R̂cut,
only that in the pseudo-potential case R1 is significantly closer to R̂cut than in the case of
the time-dependent trap, accounting for the significantly larger ion saturation numbers
in the pseudo-potential case (stars in Figure 2). Since the flow is important, a combined
model consisting of heating and hydrodynamic transport components might explain the
different shapes of the charge densities in the different loading regimes. This, however, is
beyond the scope of this paper.
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The temperature is also thought to be constant throughout the trap at saturation.
Again, this may not be true, since the micro-motion amplitude, ∆r̂mm, and therefore the
effectiveness of rf heating, depends on the distance r̂ from the trap’s center. Therefore, the
local temperature may be a function of distance from the center of the trap. This, too, is a
promising topic for future research.

3. Methods

The numerical simulations are performed under the assumption that the ions in the
Paul trap, each of mass m and charge +e, are classical, Newtonian particles, following
Newtonian trajectories, subject to the Paul-trap forces. Given suitable initial conditions of
the ion trajectories, provided by the loading process (see below), the system of Equation (5)
is at the core of our simulations. Since we are looking for qualitatively new phenomena in
the loading process of the Paul trap, speed of the numerical integration of the system (5)
is not as important as robustness and reliability of the results. Therefore, a simple 4th
order Runge-Kutta method [21] with constant step size is chosen to integrate (5), which
has proven in the past to be both sufficiently fast and numerically stable [16,17,22,23].
Higher-order and faster integration methods certainly exist [21]. However, in exploratory
simulations, a robust method, such as the constant step-size 4th order Runge-Kutta method
is preferred.

Dynamical loading of the trap, in particular in the saturated, steady state, is accom-
plished in the following way. We first define the loading zone, which for the current
simulations is a ball of radius R̂L at the center of the trap. At time t̂k an ion is created with
velocity zero inside of the ball. This is a good approximation for MOT-loaded ions [24]. It
was checked previously [13] that loading with an initial velocity, for instance drawn from a
thermal distribution, makes little difference in the results. With t̂k, we also determine the
time t̂k+1 for the next ion to be created in the future. The loading times t̂k, k = 1, 2, . . ., are
assumed to be uncorrelated and drawn from a Poisson distribution such that the expecta-
tion value of ∆t̂, 〈∆t̂〉 = 〈t̂k+1 − t̂k〉 = π/λ, where ∆t̂ is the time interval between loading
events and λ is the loading rate, that is, the number of ions loaded per rf cycle. Concerning
their spatial distribution, we assume that the particles are created at random positions with
a uniform spatial distribution within the loading-ball volume. It was checked that loading
with a Gaussian spatial distribution does not make any qualitative difference in the results.
In the time interval between loading events, that is, from t̂k to t̂k+1, the particles in the trap
are governed by the equations of motion (5). Once arrived at t̂k+1, and before creating the
next ion at t̂ = t̂k+1, the algorithm checks whether one or more particles have crossed the
absorbing boundary of the trap, located at R̂cut. Following instantaneous deletion of all
particles that exceed R̂cut, the next particle is loaded at t̂ = t̂k+1, t̂k+2 is determined, and the
solution algorithm for (5) is restarted with the new, adjusted ion number. This procedure is
followed for as long as it takes to reach a pre-specified simulation time that is long enough
so that the ion number in the trap has settled down to its saturated, asymptotic value.
Following this method, the data in Figures 1–3 was generated.

Concerning Figure 4, the space in the interval 0 ≤ r̂ ≤ R̂cut = 25 was divided into 50
equi-spaced intervals ∆j = [r̂j−1, r̂j], r̂j = j/2, j = 1, . . . , 50. Once the simulation reached
steady state, data was taken for Nd rf cycles in the steady-state regime, where Nd was a
large number of the order of 105. After each rf cycle in the steady-state data-taking regime,
the number of ions in each of the 50 ∆j intervals was accumulated in a corresponding
histogram bin. At the end of the Nd data-taking cycles, the density ρ̂ was then computed
by normalizing the data in the 50 ∆j intervals and displayed in the way of a histogram in
Figure 4.

4. Conclusions

In Section 2.2 we started with a topic that is often overlooked: The fate of the electrons
that are generated when loading an rf trap from a MOT. Since the ions stored in the
rf trap represent a strong positive space charge, and since the electrons in the photo-
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ionization process are generated with essentially zero kinetic energy, the question whether
the electrons are potentially trapped by the positive space charge is not so far-fetched. We
showed in Section 2.2 that in the slow-loading regime we can always safely neglect the
created electrons, since, despite the presence of a substantial positive space charge, the
electrons are pulled out of the trap by the trap’s rf field within at most half an rf cycle.
However, in the fast-loading regime, the space charge built-up, especially in the loading
zone close to the center of the trap, may be strong enough to result in bound electrons. We
did not follow up on this promising line of research. So, the question of whether there may
be loading regimes with bound electrons is still open. This topic broadly falls into the area
of ultra-cold neutral plasmas (see, e.g., [25]) and tools and methods from this field may
eventually be useful to decide this open question. In Section 2.3 we studied a new heating
mechanism, that is, insertion heating. According to this mechanism, each ion generated
from a neutral MOT is inserted into the already existing space charge formed by the sea
of trapped ions and thus contributes Coulomb energy that represents a source of heating
that adds to the well-known rf heating of a Paul trap [16,17]. We saw that, compared to rf
heating, and depending on trap and loading parameters, insertion heating may be very
strong and needs to be taken into account for a full understanding of the loading process.
All conclusions drawn in Section 2.3 are based on approximate analytical arguments. The
next step is to study this mechanism in more detail with molecular-dynamics simulations.
However, before this can meaningfully be accomplished, protocols have to be developed
on how to, computationally, separate insertion heating from rf heating. This is a topic for
future research. In Section 2.4 we investigated saturation curves as a function of loading
rate for several different q values. We scaled the curves to their respective pseudo-potential
predictions to better observe their nonlinear behavior and the changes as a function of
q. In particular, we observed that, contrary to a previous suggestion [14], the region-II
plateau of the saturation curves does not always occur for loading rates of about 1 ion per
rf cycle, but its position as a function of loading rate shifts rapidly over several orders of
magnitude in the loading rate. In Section 2.4 we presented the maximum of scaled ion
numbers in region II as a function of q. We showed that the expected number of ions at
saturation is significantly smaller than its pseudo-potential expectation. A clue of where
this may come from was presented in Section 2.5, where we studied the shapes of the
ion density distributions in the trap as a function of distance from the trap’s center. Far
from being constant, as expected on the basis of the static pseudo-potential approximation,
the densities show an inhomogeneous shape, which even persists in the slow-loading
regime. Therefore, corroborated by detailed, microscopic molecular-dynamics calculations,
we conclude that the pseudo-potential approximation to the saturation properties of a
Paul trap, while a good starting point, needs to be corrected by the use of appropriate
re-normalization functions. While we focused on the loading dynamics of the 3DPT with
spatially uniform loading, it was found in [13] that the ion dynamics and consequently the
predicted collective phenomena, such as, for example, the existence of the four dynamical
regimes (see Figure 1), are independent of the particularities of the loading process, the
shape of the loading region, and the type of trap in use (both 3DPT and LPT were studied).
Therefore, we are confident that the observations and conclusions drawn will carry over
qualitatively to all other types of hybrid traps in use for the study of ion-neutral collisions.
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Abbreviations
The following abbreviations are used in this manuscript:

3DPT three-dimensional Paul trap
LPT linear Paul trap
rf radio frequency
MOT magneto-optic trap
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