
atoms

Article

Machine Learning Predictions of Transition Probabilities in
Atomic Spectra

Joshua J. Michalenko * , Christopher M. Murzyn, Joshua D. Zollweg, Lydia Wermer, Alan J. Van Omen
and Michael D. Clemenson

����������
�������

Citation: Michalenko, J.J.; Murzyn,

C.M.; Zollweg, J.D.; Wermer, L.; Van

Omen, A.J.; Clemenson, M.D.

Machine Learning Predictions of

Transition Probabilities in Atomic

Spectra. Atoms 2021, 9, 2.

https://doi.org/10.3390/atoms9010002

Received: 22 October 2020

Accepted: 21 December 2020

Published: 6 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

Sandia National Laboratories, Albuquerque, NM 87123, USA; cmurzyn@sandia.gov (C.M.M.);
jdzollw@sandia.gov (J.D.Z.); lwermer@sandia.gov (L.W.); ajvanom@sandia.gov (A.J.V.O.);
mdcleme@sandia.gov (M.D.C.)
* Correspondence: jjmich@sandia.gov

Abstract: Forward modeling of optical spectra with absolute radiometric intensities requires knowl-
edge of the individual transition probabilities for every transition in the spectrum. In many cases,
these transition probabilities, or Einstein A-coefficients, quickly become practically impossible to
obtain through either theoretical or experimental methods. Complicated electronic orbitals with
higher order effects will reduce the accuracy of theoretical models. Experimental measurements
can be prohibitively expensive and are rarely comprehensive due to physical constraints and sheer
volume of required measurements. Due to these limitations, spectral predictions for many element
transitions are not attainable. In this work, we investigate the efficacy of using machine learning
models, specifically fully connected neural networks (FCNN), to predict Einstein A-coefficients
using data from the NIST Atomic Spectra Database. For simple elements where closed form quan-
tum calculations are possible, the data-driven modeling workflow performs well but can still have
lower precision than theoretical calculations. For more complicated nuclei, deep learning emerged
more comparable to theoretical predictions, such as Hartree–Fock. Unlike experiment or theory, the
deep learning approach scales favorably with the number of transitions in a spectrum, especially
if the transition probabilities are distributed across a wide range of values. It is also capable of
being trained on both theoretical and experimental values simultaneously. In addition, the model
performance improves when training on multiple elements prior to testing. The scalability of the
machine learning approach makes it a potentially promising technique for estimating transition
probabilities in previously inaccessible regions of the spectral and thermal domains on a significantly
reduced timeline.

Keywords: atomic spectroscopy; deep learning; transition probability; neural network

1. Introduction

Spectroscopic techniques can provide useful quantitative measurements across a va-
riety of scientific disciplines. While broadly applicable, spectroscopic methods are often
tailored to achieve a niche measurement. Therefore, data can be collected across a wide
range of spectral resolutions, instrument parameters, excitation sources, temporal sampling
rates, optical depths, and temperature variations. The high dimensional nature of this mea-
surement space presents a challenge for implementing generalized analysis and forward
modeling capability that is effective across all disciplines and experimental methods.

To augment expensive quantitative measurements, methods for simulating optical
spectra are well documented in the scientific literature [1,2]. Utilizing forward modeling
allows a simulated spectrum to be parametrically fit to measured data, thereby accounting
for temperature and instrument effects using closed form equations and modest computa-
tional resources. In many cases, the primary limitation of forward spectral modeling is a
lack of spectral constants available in the literature or spectral databases. These constants
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may not be available due to a lack of resources in the community, complexity in theo-
retical calculations, or the sheer volume of experiments required to produce the needed
fundamental parameters.

Integral to any quantitative optical spectral model is the transition probability. The tran-
sition probability (a.k.a. Einstein coefficient, A-coefficient, oscillator strength, gf-value)
is a temperature independent property representing the spontaneous emission rate in a
two-level energy model. The pedagogy of both theoretical and experimental determina-
tion of transition probabilities is very rich, as the preferred methods of both areas have
changed over time [3–5]. For the simplest nuclei, complete quantum mechanical calcu-
lations can yield nearly exact values more precise than any experiment [6–8]. For light
elements, Hartree–Fock calculations are widely accepted theoretical treatments and yield
accuracies comparable with experimental measurements [9–14]. Transition probabilities for
heavy nuclei are derived almost entirely from experimental data and can have the largest
uncertainties [15–17].

Machine learning (ML) has recently gained traction as a potential method to perform
a generalized analysis of spectroscopic data [18–22] and there is some work published on
predicting spectra using these methods [23]. Although efforts are being made to generalize
spectral analysis with artificial intelligence [19,24], many approaches still implicitly reduce
the dimensionality. For example, reduced generalization occurs for a model which only
analyzes data collected with a single type of instrument and spectral resolution. Addition-
ally, any variation in temperature or optical depth during an experiment can significantly
alter an optical emission or absorption spectrum which may limit analytical performance
of ML when applied more broadly than the specific training conditions. To overcome these
hindrances to generalization, we hypothesize that neural network (NN) architectures can
predict transition probabilities and can be coupled with closed-form, forward spectral
modeling to more generically analyze and simulate optical spectra.

1.1. Contributions

This work examines a novel application of machine learning to spectroscopic data
by implementing NN architectures trained on fundamental spectroscopic information to
predict Einstein A-coefficients. We investigate if NNs can provide a method to estimate
Einstein A-coefficient constants at a usable accuracy on a significantly shorter time scale
relative to theoretical calculation or direct measurement. The general approach in this
first-of-its-kind efficacy study is to predict Einstein A-coefficients for electronic transitions
in atomic spectra by training NNs on published values of known spectral constants. In this
way, the predictions of the neural network can be directly compared to data that are
widely used by the community. This effort demonstrates a numeric encoding to represent
spectroscopic transitions to be used by machine learning models followed by predictions
of Einstein A-coefficients for various elements on the periodic table. The numeric dataset is
built from the NIST Atomic Spectral Database (ASD) [25] as it is the paragon for tabulations
of transition probabilities with bounded uncertainty, which allows us to assess the variance
in the predictions produced by the neural network. In Section 2, we detail how NIST data
are transformed into a machine-learnable format, followed by Section 3 where we describe
experiment design and metrics used. A discussion of results including intraelement and
interelement experiments, a direct comparison to previous theoretical work and model
feature importance is presented in Section 4, followed by conclusions in Section 5.

2. Data Representation

Data representation in any machine learning model is arguably one of the most
important design criteria. The data which is used to train the machine learning model
must be provided to the model in a way that accurately preserves the most relevant
information within the data [26]. Significant work in the field of cheminformatics has
provided groundwork for presenting chemical and physical structure in representations
interpretable by a NN [27–29]. Care must be taken in order to preserve the statistical
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characteristics (e.g., ordinal, categorical, boundedness) of each feature, or model input
dimension, while providing a feature that can be interpreted by predictive models. The best
possible set of features is the subset which preserves the most statistical information in
the lowest possible dimension while contributing to model learning [30,31]. It is assumed
in this focused work that feature representation of spectroscopic transitions would be
intimately aligned with nuclear and electronic structural parameters as these are the
fundamentals informing theoretical calculations [32]. In this section, we describe how the
NIST tables of spectroscopic transitions are transformed into a ML-ready format.

The NIST ASD [25] contains a tabulated list of known, element-specific spectral
transitions and transition probabilities per each element. For each tabulated spectral
transition for a given element, we extracted from the NIST ASD the transition wavelength,
the upper and lower state energy, the upper and lower state term symbol, the upper
and lower electron configuration, the upper and lower degeneracy, the transition type
(i.e., allowed or forbidden), and the transition probability. For a more detailed description
of these parameters, the reader is directed to the NIST Atomic Spectroscopy compendium
by Martin and Wiese [33].

As a data pre-processing step, we first strip away all transitions that do not have
published A-coefficients since we cannot use them to train and evaluate our models. It is
worth noting that a large set of transitions within each element do not have published
Einstein coefficients but may be directly modeled using our approach subsequent to
model training.

As it is standard in most machine learning pre-processing pipelines, we perform
transformations on the data to create features and regressands that are well distributed [26].
Einstein A-coefficients, transition wavelength, and upper and lower energies typically
range orders of magnitude across the various datasets. Such large variations in model
features can create learning instabilities in the model. One mitigation strategy we employ
is to transform these values with large dynamic ranges using log(x + 1). In this way,
the widely ranging values are transformed to a scale that is more amenable to training
while also avoiding undefined instances in the data. We additionally scale features by
standardizing. Standardization scales model features to provide a data distribution with a
mean of zero and a unit standard deviation. Standardization is a common ML practice as it
is useful for improving algorithm stability [34]. However, standardizing data that is non-
continuous (e.g., binary or categorical, such as the categories of “allowed” or “forbidden”
transitions) must be performed with care. We encode these variables with a one-hot schema
(−1/+1) to encourage symmetry about zero during rescaling. In this way, one category is
designated numerically with a value of −1, while the other category is designated with a
value of +1.

During our pre-processing, the type of transition (e.g., electric dipole, magnetic dipole,
etc.) intuitively represents a valuable feature strongly influencing the transition probability.
We initially labeled each transition type with a one-hot encoding scheme representing the
type of transition covering all of the NIST-reported designations [35]. The NIST datasets are
dominated by electronic dipole transitions to the point where most other transitions showed
up as outliers in our trained models. Because of this, we elected to drop transitions other
than electronic dipoles from the scope of this paper. This is also important as it removes
the differing wavelength dependencies between line strength and A-coefficient across the
various transition types (E1, M1, E2, etc.) [36,37]. We discuss how these transitions could
be more accurately modeled in Section 4.

In the case of multiplet transitions with unresolved fine structure, tabulations include
all of the allowable total angular momentum (J) values. From a data representation
standpoint, those transitions are split up into otherwise identical transitions, each one
having one of the allowable J values in the multiplet. This maintains a constant distribution
over J values instead of introducing outlier features.
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2.1. Electron Configuration

Quantum energy states with a defined electron configuration provide an opportu-
nity to succinctly inform the model regarding wave function of the upper and lower
states. This is arguably the most important feature as the configuration describes the wave
functions which subsequently provide the overlap integral for the transition probability be-
tween two states [11,33,38]. We refer the reader to the text of Martin and Wiese [33] for more
rigorous discussion of atomic states, quantum numbers, and multi-electron configurations.

Our encoding scheme for the electron configuration follows nlk nomenclature and
represents each subshell with the principle quantum number (n) as well as the occupation
number (k). For context in the present work, allowable values of n are positive integers,
and l are integer values spaced by 1, ranging from 0 to n − 1. The variable l is represented
in configurations with letters s, p, d, etc. denoting l = 0, 1, 2, etc. [33]. The reader is
encouraged to find further information regarding electron configurations in the follow-
ing references [33,38]. The orbital angular momentum quantum number (l) is represented
through the feature’s location in the final array. That is to say, the total configuration, once
encoded, is a fixed length array and the first eight entries are reserved for s-type subshells,
the second eight for p-type subshells, and so on. Our representation accommodates mul-
tiple subshells of the same orbital angular momentum quantum number (i.e., s1, s2, etc.).
An example configuration where this is needed is the 3d6(5D)4s(6D)4d state of neutral iron
when there are two d-type subshells that need to be accommodated. An abbreviated exam-
ple encoding of the LS-coupled 19,350.891 cm−1 level of neutral iron is shown in Table 1.
The representation simply illustrates the rules followed in our schema. Actual encoding
schema allows up to four of each subshell type (e.g., s1 through s4), and orbital angular
momentum quantum numbers up to 7 (s-type through k-type subshells). The complete
encoded feature vector including configuration, coupling scheme, and other parameters
for this energy level as an example can be found in Appendix A.

Table 1. Abbreviated example encoding for the excited electronic configuration of the LS-coupled
19,350.891 cm−1 level of iron I. The subshell of the level is encoded through the column number in
the array. The property n represents the principal quantum number and the property k represents
the occupancy of the subshell in the nlk nomenclature.

Electron Configuration 3d6(5D)4s4p(3P◦)

Subshell s1 s2 p1 p2 d1 d2

Property n k n k n k n k n k n k

Encoding 4 1 0 0 4 1 0 0 3 6 0 0

Coupling terms in the configuration were not included in this feature. Term symbol
coupling, however, was included and is discussed in the following section. Additional
functionality was built in to allow selection of filled subshells, or strictly valence shells.

2.2. Term Symbol

NIST ASD contains transitions of several different coupling schemes which can be
inferred from the term symbol notation. The physical meaning of the coupling is summa-
rized by Martin and Wiese of NIST [33] and comprehensively dissected by Cowan [38].
Our representation of the information contained in a term symbol for a given energy state
is reduced to four numerically-encoded features that accommodate LS (Russel–Saunders),
J1 J2, J1L2(→K), and LS1(→K) coupling. Inferred from the term symbol notation, we assign
the first feature for the coupling scheme: [1, −1, −1] for LS, [−1, 1, −1] for J1 J2, and
[−1, −1, 1] for J1L2(→K) and LS1(→K) as the latter share the same notation. The choice
of a −1 or +1 value for these coupling schemes is simply another example of the use of
categorical schema for representing transition data in our framework.

The second and third features become the two quantum numbers for the vectors that
couple to give the total angular momentum quantum number (J). For example, in the case
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of LS coupling, these two numbers are the orbital (L) and spin (S) angular momentum
quantum numbers. The fourth feature extracted from the term symbol is the parity. We
assign a value of −1 for odd parity and +1 for even parity. Examples of each term symbol
representation are shown in Table 2.

Table 2. Examples of numerical representation for term symbol in each distinguishable NIST coupling
notation. Each coupling type is numerically encoded with a unique one-hot scheme. QN 1 and QN 2
represent the two respective quantum numbers that couple to give J.

Term Symbol Coupling Scheme Coupling Encoding QN 1 QN 2 Parity
2P LS 1 −1 −1 0.5 1 −1

(2, 3/2)◦ J1 J2 −1 1 −1 2 1.5 1
2[9/2]◦ J1L2(→K) or LS1(→K) −1 −1 1 0.5 4.5 1

In addition to the previous parameters that describe the electron and orbital in a
radiative transition, we include several features that describe the nucleus to which each
transition belongs. These include protons, neutrons, electrons, nuclear spin, molar mass,
period/group on the periodic table, and ionization state. There is redundancy in some
of these features if all of them are included in a single experiment; however, additional
experiments were conducted with subsets of features focused on optimizing results while
minimizing inputs. In general, we discard columns where features have zero variance.
All the data were originally collected but selectively culled on a per-experiment basis.
The primary motivation behind including features of nuclear properties is to provide
context for the predictive model, such that multi-material experiments can be conducted to
study relational learning ability across different elements and ions thereof.

3. Experiments

We conduct a series of experiments to show the efficacy of using machine learn-
ing models to regress Einstein A-coefficients directly from spectroscopic transition data.
The first set of experiments are labeled as ’intraelement’ and the second we denote as
’interelement’ models. Intraelement models are single element, meaning the training, vali-
dation, and test sets all come from the same element. Interelement models extend a single
model to predict coefficients from multiple elements. That is, the training and validation
sets are a combination of multiple elements, and the model is tested on single element test
sets. We describe the datasets, metrics, and model selection process with more detail in the
following section.

3.1. Datasets

Our experiments were guided by the availability of data within the NIST ASD, where
transitions from elements with atomic number Z > 50 quickly become sparse. We curated
datasets from the first five rows of the periodic table, excluding arsenic (Z = 33), selenium
(Z = 34), zirconium (Z = 40), niobium (Z = 41), and iodine (Z = 53) solely based on data
availability. With a large set of spectroscopic transitions spanning nearly 50 elements, we
intended to compile interesting findings and correlations that could help inform when
models are high and low performing.

More concretely, let E be the set of 49 elements we were able to acquire data from and
can be seen in Table A1. For E ⊂ E , intraelement experiments are based on a data matrix
XE ∈ <n×p and vector yE for a single element (|E| = 1) described by the encoding scheme
in Section 2. n is defined as the number of transitions with published A-coefficients and let p
be the number of features describing each spectroscopic transition of E. We randomly subset
{XE, yE} into train (70%), validation (10%), and test (20%) sets and train a variety of models
for the regression task. The training set is the data used to fit the model, the validation set
is the data used to evaluate the parameters found during training, and the test set is the
data held out to evaluate the model performance on never before seen data.
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3.2. Metrics

Our goal in these experiments is to find a regressive function f E : <p 7→ < which
achieves the best fit to a held out validation set which generalizes to unforeseen data
(the test set). We evaluated model fit with two separate scores. The first is to use the
typical R2 metric for regression, which is the square of the Pearson correlation coefficient
between predicted ŷE and actual yE A-coefficients (note that yi

E ∈ <+). Even though we
optimize our models to reduce Mean Squared Error (MSE) [34], where R2 is a standard
metric, the second score is more relevant to our particular task, which we refer to as the
’within-3x’ score . Within-3x, orW3X(·, ·) refers to the percentage of predicted transitions
that fall within a factor of three of the predicted value and is defined by Equation (1), where
1 is the indicator function and D is the indices of the data set. The within-3x score was
used in previous work [9] when comparing experimental data to the published values in
the Kurucz Atomic Spectral Line Database [10].

W3X(yE, ŷE) =
1
|D| ∑

i∈D
1

(
1
3
<

ŷi
yi

< 3
)

(1)

Interelement experiments are similarly constructed to intraelement models. The major
difference being that the set of elements chosen for a particular dataset is greater than one
|E| > 1. In this experimental setup, we experience the case where the length of features
differs as a function of element pE

i 6= pE
j ∀ i, j ∈ D. To mitigate, we constrain all data

to include the largest common subset of features between all elements of E.

3.3. Model Selection

Our model search spanned the typical set of supervised regression methods found
in most machine learning textbooks [34,37]. Namely, linear methods for regression such
as least squares, ridge regression, and lasso regression, tree methods such as random
forests, support vector machines, and nonlinear fully connected neural networks (FCNN).
During an initial method selection phase, we evaluated these separate methods on a small
set of intraelement datasets. Our model evaluation showed that FCNNs with rectified
linear unit activation functions consistently outperformed the other models inW3X and R2

regardless of feature engineering for nearly every element tested. After this initial candidate
model phase, we used extensive hyperparameter optimization over the FCNN architectures,
permuting the number of neurons, layers, epochs, batch sizes, optimizers, and dropout.
We randomly sample 1000 model configurations for each intra- and interelement model and
optimize each FCNN to minimize a MSE loss function with respect to the training set using
gradient descent based methods. Each model is evaluated against the validation set using
MSE and the lowest error model is selected as our optimal model. Most of the selected
model architectures are 3–5 layers deep with 50 hidden units in each layer. Because the
models architectures are relatively small (low memory usage), fast to train (less than 2 min),
and are constrained to FCNNs, we argue that there is room to improve model performance
with additional architecture complexity.

4. Results and Discussion

We experimentally validated our proposed framework using data from the first five
rows of the periodic table in the section below. We begin with intraelement modeling and
directly compare our results with published theoretical Hartree–Fock calculations for iron.
We then discuss how we can augment model performance for poor performing elements
using interelement models. Lastly, we examine which features of our data translate into
high and low performance of our models for the purposes of informing future modeling
and improved data encoding schemes.
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4.1. Intraelement Model Performance

As described in Section 3, intraelement experiments are defined by a single model
whose data come from a single element. Our hypothesis was that, with a vast collection
of data, we would be able to potentially isolate elemental characteristics that translate
into high/low performance. One method to gain a comprehensive view of the FCNN
predictions for all the modeled elements is to visualize model performance as a function
of color displayed on the periodic table. Figures 1 and 2 display R2 andW3X colored on
the periodic table, respectively. Currently, NN models are constructed for each element
in the first five periods of the table; however, some element models (shown in gray) are
discarded from analysis due to a lack of tabulated transition probabilities in NIST with
the given query parameters, such as selenium. Figure 1 portrays a zero R2 value for some
models (shown in purple); generally, intraelement models with small datasets, such as
copper, have only a few transition probability values closely grouped. A small deviation
from the ŷe = ye line within this grouping easily introduces a model with a negative R2

metric which is clipped at zero for enhanced contrast. To better judge overall performance,
it is preferred to assess the combination of R2 andW3X.

Figure 1. R2 metric applied to modeled elements across the first five periods of the periodic table.

Figure 2. W3X applied to modeled elements across the first five periods of the periodic table.
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A subset of elements that have poor R2 scores in Figure 1 rank relatively high when
looking atW3X scores of Figure 2. For example, copper has 58% of its tested transition
probabilities within a factor of three of the published values even though its R2 metric
is negative. Alternatively, tellurium models score relatively poorly on both R2 andW3X.
Overall, we see a trend that, when models perform relatively high, the R2 andW3X agree
with each other, but poor performing models require another angle to show the more
complete picture.

Figure 2 indicates that 26% of the elements have models with greater than 80% of
their predicted transition probabilities within a factor of three relative to published values.
Figures 1 and 2 also indicate that performance tends to decrease for both metrics as the
period increases. The first three periods appear to have improved performance relative to
periods four and five, with period five having the worst performance when both metrics
are considered. In addition, the S-block elements generally have higher performance than
other element blocks in the table. This is likely due to the reduced complexity in electron
configurations for S-block elements, as well as a lack of tabulated transition probabilities of
higher Z elements relative to the S-block elements.

We apply a finer grained analysis by examining individual predicted transition proba-
bilities from the testing data set compared against actual published values from the NIST
ASD, as demonstrated for iron in Figure 3a. Each point in the scatter plot represents a single
predicted transition. The solid red line represents a perfect predicted transition probability
value relative to the published NIST value and the shaded region represents the within-3x
region. In the example of iron, data are homoskedastically distributed around the linear
regression and the test data for this element is grouped primarily between transition proba-
bilities of 104 and 108. Note in Section 3 that the within-3x region is applied in previous
work [9] when comparing experimental data to the published values in the Kurucz Atomic
Spectral Line Database [10].

Figure 3b shows such a comparison between the full dataset (training, validation,
and testing) of neural network predictions for neutral iron and the Kurucz neutral iron
atomic dataset. The transition probabilities predicted by the neural network relative to
the NIST published values are plotted in comparison to the Kurucz calculated transition
probabilities relative to the NIST published values. The Kurucz and NIST datasets share
some sources for their values and, therefore, have nearly perfect agreement for a subset of
transition probabilities. The spread of neural network predictions is seen to be grouped
well around the Kurucz dataset. Quantitatively, 69% of the predicted testing values lie
within a factor of three of the NIST values while 94% lie within a factor of three for the
Kurucz dataset. The fraction of predictions within this 3x space is explicitly shown in
Figure 3c for the iron neural network dataset. The chart shows the fraction of predicted
values within a factor of the actual published value for the training, validation, and testing
data subsets for iron. A factor of one represents a perfect prediction. The vertical dashed
line indicates the factor of three represented by the shaded region in Figure 3a,b as a
reference. The R2 metric and within-3x score are applied to each independent elemental
model as a method for performance comparisons.
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Figure 3. Performance metrics for iron neural network predictions. (a) comparison of predicted
vs. published NIST transition probability test set; (b) comparison with Kurucz atomic data for Fe I
electric dipole transitions showing spread between FCNN predictions and the Kurucz data relative to
the published NIST values; (c) fraction of predicted values within a factor of the published transition
probability value for the training, validation, and test sets.

Nine intraelement models from across the periodic table are sampled to provide
a more comprehensive view of the actual vs. predicted performance metric of FCNN
intraelement models. Shown in Figure 4 are plots of the predicted Einstein A-coefficients
against the Einstein A-coefficients published in the NIST ASD for these nine elements.
It is evident from Figure 4 that elements such as helium and iron contain more samples
for training and testing than elements such as beryllium and titanium. This is merely a
function of the number of available tabulated transition probabilities for these elements in
the NIST ASD. However, elements that contain many tabulated transitions across a wide
dynamic range of transition probability magnitudes, such as helium and magnesium, tend
to generate models that predict probabilities more accurately. Some models such as iron
have many available transitions in the training set but many of the values only span a
limited range of transition probability values. The limited dynamic range of transition
probabilities that these models have available for training tends to lead to predictions that
have more spread in their prediction distributions. This effect is observed in the relatively
lower performing model outputs for iron, nitrogen, and titanium.
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Figure 4. Predicted vs. published Einstein A-coefficients for intraelement models.

The training, validation, and testing performance is more quantitatively assessed
in Figure 5 which displays the fraction of predicted transition probability values within
a factor of the published value for the same nine intraelement models. A factor of one
indicates that fraction of data are perfectly predicted while the vertical dashed line in the
individual plots, again, indicates the factor of three threshold for which the broader metric
is calculated. The best performing models, such as helium and magnesium, all have a high
fraction of predicted values below the 3x threshold. In addition, the performance of the
training, validation, and test sets for these models do not readily deviate from one another.
The intraelement models with lower performance tend to have training sets that perform
well but show lower performance on the testing set. The full set of tabulated performance
metrics and performance plots for each element can be found in Appendix A.
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Figure 5. Performance of intraelement models showing fraction of transition probability predictions within a factor of the
published value for training, validation, and testing sets.

4.2. Interelement Model Performance

Subsequent to assessing performance of the intraelement models, the next obvious
approach is to determine if training a FCNN model on multiple elements rather than a
single element improves prediction performance. In this method, an interelement model
is trained using the transitions from across the nine elements previously discussed in
Section 4.1. The dataset is constructed such that it encompasses the largest common subset
of features between the nine elements (see Section 3). Upon testing, the interelement model
is tested on a single element to assess its performance relative to the intraelement model.
The prediction performance of the interelement model for the R2 and fraction of predictions
within 3x are plotted in Figures 6 and 7 and the metrics are quantitatively summarized
in Table 3. A 95% confidence interval band is shown for the top 5 models found during
hyperparameter search over the test set in Figure 7. Similarly, sample mean and standard
deviation of R2 andW3X for the top 5 models is given in Table 3.

The data in Table 3 indicate that the interelement model does enable improved predic-
tion performance in the majority of cases. When comparing the R2 values for predicted
vs published regressions, intraelement models that already had reasonably good perfor-
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mance did not significantly benefit from training on additional transitions from other
elements. In some cases, the performance of these models is slightly decreased, as is the
case for beryllium, helium, and aluminum. However, for intraelement models that perform
poorly such as copper, titanium, and iron, the interelement model significantly improved
prediction performance.
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Figure 6. Predicted vs. published Einstein A-coefficients for the interelement model.

In a dramatic case, the titanium R2 and within-3x scores are improved from 0.68 to 0.85
and 51% to 68%, respectively, and can be qualitatively seen by comparing Figures 4 and 6.
Likewise, a similar trend is observed for copper model. Of the nine elements used for
interelement model training and testing, eight of the elements showed improved R2

metrics while six showed improved or approximately unchanged within-3x score. This
improvement in testing performance indicates that information from transitions of one
element can inform the model prediction of transition probabilities for other elements.
For example, a trend we see is that modeling can be improved by using additional training
data across a wider dynamic range of transition probabilities over multiple elements rather
than just a single element being trained on.



Atoms 2021, 9, 2 13 of 25

1 5 10
Within Factor

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

D
at

a

R2 = 0.979 ± 0.007
Within 3x = 0.94 ± 0.02
Total samples = 2186
Test samples = 414

Helium

Train

Validation

Test

1 5 10
Within Factor

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

D
at

a

R2 = 0.934 ± 0.023
Within 3x = 0.93 ± 0.03
Total samples = 375
Test samples = 78

Beryllium

Train

Validation

Test

1 5 10
Within Factor

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

D
at

a

R2 = 0.859 ± 0.016
Within 3x = 0.66 ± 0.04
Total samples = 1218
Test samples = 238

Nitrogen

Train

Validation

Test

(a) (b) (c)

1 5 10
Within Factor

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

D
at

a

R2 = 0.950 ± 0.006
Within 3x = 0.85 ± 0.03
Total samples = 825
Test samples = 157

Oxygen

Train

Validation

Test

1 5 10
Within Factor

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

D
at

a

R2 = 0.970 ± 0.006
Within 3x = 0.95 ± 0.02
Total samples = 974
Test samples = 198

Magnesium

Train

Validation

Test

1 5 10
Within Factor

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

D
at

a

R2 = 0.953 ± 0.008
Within 3x = 0.83 ± 0.06
Total samples = 308
Test samples = 57

Aluminum

Train

Validation

Test

(d) (e) (f)

1 5 10
Within Factor

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

D
at

a

R2 = 0.857 ± 0.031
Within 3x = 0.68 ± 0.10
Total samples = 484
Test samples = 87

Titanium

Train

Validation

Test

1 5 10
Within Factor

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

D
at

a

R2 = 0.771 ± 0.029
Within 3x = 0.63 ± 0.02
Total samples = 2372
Test samples = 475

Iron

Train

Validation

Test

1 5 10
Within Factor

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

D
at

a

R2 = 0.696 ± 0.052
Within 3x = 0.69 ± 0.09
Total samples = 36
Test samples = 8

Copper

Train

Validation

Test

(g) (h) (i)

Figure 7. Performance of interelement models showing fraction of transition probability predictions within a factor of the
published value for training, validation, and testing sets.

Table 3. Quantitative performance metrics for intraelement and interelement models.

Name Samples Intraelement within 3x Intraelement R2 Interelement within 3x Interelement R2

Aluminum 309 0.84 0.9205 0.83 ± 0.06 0.953 ± 0.008
Beryllium 375 0.82 0.9096 0.93 ± 0.03 0.934 ± 0.023

Copper 37 0.58 −0.0914 0.69 ± 0.09 0.696 ± 0.052
Helium 2218 0.98 0.9865 0.94 ± 0.02 0.979 ± 0.007

Iron 2347 0.69 0.6947 0.63 ± 0.02 0.771 ± 0.029
Magnesium 937 0.95 0.9593 0.95 ± 0.02 0.970 ± 0.006

Nitrogen 1222 0.73 0.793 0.66 ± 0.04 0.859 ± 0.016
Oxygen 828 0.86 0.8719 0.85 ± 0.03 0.950 ± 0.006

Titanium 496 0.51 0.6862 0.68 ± 0.10 0.857 ± 0.031
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4.3. Element Model Feature Importance

An inherent challenge with using a machine learning approach to predict transition
probabilities is the explainability of the model. Shapley values can potentially provide
insight into what features are most significant to the FCNN model, as they estimate
feature importance by describing the marginal contribution of a single feature to each
transition separately. Recent studies have suggested issues with implementing Shapley
values for feature importance measures [39], but the technique is a common tool in the
literature, implemented here to attempt to provide insight into our transition probability
predictions models.

SHAP (Shapley Additive Explanations), a framework developed by Lundberg and
Lee, defines a kernel-based additive feature attribution method for estimating Shapley
values using a linear explanation function [40]. As the Shapley values for our transition
probability models are prohibitively computationally expensive to solve for, this approach
is used to estimate the Shapley values for each transition. For each intraelement model,
the linear explanation function is found using a background of up to 100 samples from
the training set. The feature importance values for an element are estimated using the
mean magnitude of the Shapley values for that feature across all transitions in the test set.
In particular, the SHAP values for each transition were taken as the coefficients of the linear
explanation function:

g(z′) = φ0 +
M

∑
i=1

φiz′i (2)

where φj is the effect of feature j, and z′ ∈ {0, 1}M is a coalition of features where M is
the size of the largest coalition. This linear function was found by optimization using the
SHAP kernel across a sample of the set of all possible coalitions.

In general, trends in the Shapley value analysis suggest that both models and individ-
ual predictions which depend heavily upon the Ritz Wavelength tend to perform far worse
than ones which heavily depend on orbital configuration terms. We come to this conclusion
by comparing two subsets of elements with a relatively large number of available transition
probabilities from the NIST ASD: one set of elements with relatively high-performing
intraelement models (helium, aluminum, magnesium, nitrogen, and oxygen) and one set of
relatively low-performing intraelement models (molybdenum, titanium, vanadium, iron,
and chromium).

Quantitatively shown in Figure 8 are the top 20 most important features between each
subset. A clear distinction shows that high performing models rely on a different subset of
features than the low performing models. From Section 4.1 experiments, we saw that even
the worst predictions made by high performing models such as helium and magnesium
are reasonable by the standards set by low performing models such as iron. We then
asked the question of whether high and low performing predictions within each subset
rely on a similar set of features. Figures 9 and 10 show the collective mean Shapley values
for the top and bottom 10% of predictions (by absolute error) for the high performing
and low performing sets, respectively. To our surprise, we saw the poor performing
subset of models, regardless of high and low error predictions (Figure 10), heavily rely
on the Ritz Wavelength feature more than any other feature. More notably, the highest
error predictions from the high performing models also showed a large reliance on Ritz
Wavelength. A finer grained analysis showed that most predictions from the subset of low
performing intraelement models heavily rely on the Ritz Wavelength. From the predictive
model perspective, it’s difficult to answer why a heavy reliance upon this feature seems to
imply poor performance, but, from the atomic spectroscopy viewpoint, it’s an interesting
finding. We see a similar finding for non-configuration features such as upper/lower
multiplicity and upper/lower energy, but the Shapely strengths are much weaker. Our
intention is that these types of finding can further help in developing higher performing
predictive models by the community.
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(a) (b)

Figure 8. SHAP feature importance results. (a) high performing models (helium, aluminum, magne-
sium, nitrogen, and oxygen); (b) low performing models (molybdenum, titanium, vanadium, iron,
and chromium). The configuration parameter labels are in the format {n,k}-L#-{UP,LO}, where n and
k denote if the feature is principle quantum number (n) or occupation number (k), L is the orbital
angular momentum with the indexed (#) occurrence in the total configuration, and UP/LO associates
it with the upper or lower energy level in a transition.

(a) (b)

Figure 9. SHAP feature importance results for subsets of transitions for high-performing models (he-
lium, aluminum, magnesium, nitrogen, and oxygen) (a) Top 10% of transition predictions; (b) Bottom
10% of transition predictions. The configuration parameter labels are in the format {n,k}-L#-{UP,LO}
where n and k denote if the feature is principle quantum number (n) or occupation number (k), L is
the orbital angular momentum with the indexed (#) occurrence in the total configuration, and UP/LO
associates it with the upper or lower energy level in a transition.

(a) (b)

Figure 10. SHAP feature importance results for subsets of transitions for low-performing models
(molybdenum, titanium, vanadium, iron, and chromium) (a) Top 10% of transition predictions;
(b) Bottom 10% of transition predictions. The configuration parameter labels are in the format {n,k}-L#-
{UP,LO}, where n and k denote if the feature is principle quantum number (n) or occupation number
(k), L is the orbital angular momentum with the indexed (#) occurrence in the total configuration,
and UP/LO associates it with the upper or lower energy level in a transition.
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Earlier in Section 2, it was assumed that feature representation of spectroscopic transi-
tions would be intimately aligned with nuclear and electronic structural configurations as
these are the fundamental parameters informing theoretical calculations. The configuration
describes the wavefunction, which subsequently provides the overlap integral for the
transition probability. Energy states with a defined configuration provide an opportunity to
inform the model during training about the orbital distribution of the electrons in the upper
and lower energy states for a given transition. Our analysis suggests the configuration
features are indeed some of the most important features to high performing models.

5. Conclusions

As machine learning becomes more prevalent in physical science, it is critical that
communities investigate which problem types are amenable to its application and the
accuracy machine learning tools offer in these problem spaces. In this investigation, we
tested the feasibility of using machine learning and ultimately FCNNs to predict funda-
mental spectroscopic constants based on the electronic structure of atoms, particularly
prediction of transition probabilities. In contrast to analyzing raw spectral data with ma-
chine learning, our approach implemented neural networks to predict broadly applicable
spectral constants which inform forward models removing the temperature and instru-
ment dependence of spectral information that may otherwise limit the scope of machine
learning analysis.

Our results show that NNs are capable of predicting atomic transition probabilities
and learning from the feature set of novel electronic orbital encodings we developed.
The absolute accuracy of the predicted transition probabilities is typically observed to be
lower than can be calculated with modern theoretical methods or experiments for elements
with lower atomic numbers (see Section 4.1). However, the value proposition of increased
speed (a few minutes for training and seconds for inference) and reduced resources to
acquire transition probability values via neural network prediction is appealing for many
applications based on the accuracy that was achieved.

Overall, our experiments showed that S-Block elements are typically higher perform-
ing than higher periods of the periodic table. Intuitively, elements that have a small
number of atomic transitions perform worse than elements with a larger amount of data.
Though this poor performance can typically be augmented with data from other elements
to improve overall performance. Additionally, model performance is heavily dependent
upon feature representation of each atomic transition and we see model performance gains
to be had in this space. For example, our Section 4.3 analysis suggests that model predic-
tions that heavily rely on the Ritz wavelength are indicators of poor performance while
models that heavily rely on orbital information are typically higher performing. Further
feature engineering to reflect this finding could give modest performance gains.

Significant potential in this technique still remains if the accuracy and dynamic range
of neural network predictions are improved on in the future. This technique offers orders of
magnitude speed up compared to traditional methods. The technique would allow not only
new spectra to be explored, but it would also enable quality checking of previously reported
values and allow modeling of transitions that are known, but have not been measured yet.
As theoretical transition probability calculations and experimental accuracy are improved
over time, the inputs to the machine learning models will also improve, thereby potentially
enhancing the value of the NN approach for non-measured or non-calculated transitions.

Our future efforts in this area will focus on improving optimization of neural network
models, determining the minimum and most important subsets of features required for
accurate predictions, and attempting to extend this technique to higher Z elements on
the periodic table as well as ions. Additionally, it is of interest to determine if training
on specific periodic table trends (e.g., only transition metals) increases the accuracy for
elements in that trend.
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Appendix A

For completeness and transparency, the full set of results from all elements used in our
experiments is provided below. Included in Table A1 is a collection of quantitative metrics
from the intraelement and interelement experiments. This is followed by a complete set of
the predicted vs published and ‘within factor’ plots for each intraelement experiment.
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Table A1. Performance metrics for all elements investigated.

Name Samples Intraelement Within 3x Intraelement R2 Interelement Within 3x Interelement R2

Aluminum 309 0.84 0.9205 0.83 ± 0.06 0.953 ± 0.008
Antimony 10 0.79 −2.2836 NA NA

Argon 428 0.52 0.4815 NA NA
Beryllium 375 0.82 0.9096 0.93 ± 0.03 0.934 ± 0.023

Boron 253 0.63 0.9189 NA NA
Bromine 53 0.47 0.1994 NA NA

Cadmium 18 0.35 −0.1567 NA NA
Calcium 136 0.67 0.6388 NA NA
Carbon 1602 0.73 0.767 NA NA

Chlorine 96 0.67 0.405 NA NA
Chromium 527 0.68 0.4334 NA NA

Cobalt 338 0.61 0.602 NA NA
Copper 37 0.58 −0.0914 0.69 ± 0.09 0.696 ± 0.052
Fluorine 118 0.59 0.0682 NA NA
Gallium 23 0.7 0.3369 NA NA

Germanium 26 0.65 0.2397 NA NA
Helium 2218 0.98 0.9865 0.94± 0.02 0.979 ± 0.007

Hydrogen 138 0.85 0.8198 NA NA
Indium 27 0.93 0.9325 NA NA

Iron 2347 0.69 0.6947 0.63 ± 0.02 0.771 ± 0.029
Krypton 183 0.29 0.5768 NA NA
Lithium 257 0.76 0.9075 NA NA

Magnesium 937 0.95 0.9593 0.95 ± 0.02 0.97± 0.006
Manganese 463 0.58 0.409 NA NA

Molybdenum 721 0.8 0.7205 NA NA
Neon 533 0.67 0.6891 NA NA

Nickel 428 0.55 0.602 NA NA
Nitrogen 1222 0.73 0.793 0.66 ± 0.04 0.859 ± 0.016
Oxygen 828 0.86 0.8719 0.85 ± 0.03 0.95 ± 0.006

Palladium 8 0.69 −1.3638 NA NA
Phosphorus 99 0.71 0.5899 NA NA
Potassium 207 0.78 0.7985 NA NA
Rhodium 111 0.6 0.6065 NA NA
Rubidium 40 0.85 0.742 NA NA

Ruthenium 11 0.42 −8.4747 NA NA
Scandium 260 0.61 0.688 NA NA

Silicon 563 0.66 0.8615 NA NA
Silver 7 0.88 0.3603 NA NA

Sodium 496 0.99 0.9791 NA NA
Strontium 86 0.3 0.0599 NA NA

Sulfur 893 0.89 0.9269 NA NA
Technetium 13 0.71 −4.7655 NA NA
Tellurium 6 0 −8.9116 NA NA

Tin 55 0.59 −1.2858 NA NA
Titanium 496 0.51 0.6862 0.68 ± 0.10 0.857 ± 0.031
Vandium 993 0.67 0.6658 NA NA

Xenon 187 0.62 0.5887 NA NA
Yttrium 189 0.45 0.2527 NA NA

Zinc 16 0.98 0.9042 NA NA
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Table A2. Example feature vector representation for the transition of iron I from excited state
energy 19,350.891 cm−1 (Configuration: 3d6(5D)4s4p(3P◦), Term Symbol: 7D◦) to ground state
(Configuration: 3d64s2, Term Symbol: 5D).

Feature Name Encoded Value

Ritz Wavelength Vac log(516.77207 + 1)
Accuracy 3
n-s1-LO 4
k-s1-LO 2
n-s2-LO 0
k-s2-LO 0
n-p1-LO 0
k-p1-LO 0
n-p2-LO 0
k-p2-LO 0
n-d1-LO 3
k-d1-LO 6
n-d2-LO 0
k-d2-LO 0
n-s1-UP 4
k-s1-UP 1
n-s2-UP 0
k-s2-UP 0
n-p1-UP 4
k-p1-UP 1
n-p2-UP 0
k-p2-UP 0
n-d1-UP 3
k-d1-UP 6
n-d2-UP 0
k-d2-UP 0

Lower Level J 4
Upper Level J 5
Lower Energy log(0 + 1)
Upper Energy log(19,350.891 + 1)

Lower Multiplicity 2
Upper Multiplicity 3

Lower L 2
Upper L 2

Lower Parity −1
Upper Parity 1

Lower Degeneracy 9
Upper Degeneracy 11

Aki log(1450 + 1)
Period 4
Group 8

Atomic Number 26
Atomic Mass 55.845

Protons 26
Neutrons 30
Electrons 26

LS-LO 1
JJ-LO −1
JL-LO −1
LS-UP 1
JJ-UP −1
JL-UP −1
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