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Abstract: The focusing of a rubidium Bose–Einstein condensate via an optical lattice potential
is numerically investigated. The results are compared with a classical trajectory model which
underestimates the width of the focused beam. Via the inclusion of the effects of interactions into the
classical trajectories model, we show that it is possible to obtain reliable estimates for the width of
the focused beam when compared to numerical integration of the Gross–Pitaevskii equation. Finally,
we investigate the optimal regimes for focusing and find that for a strongly interacting Bose–Einstein
condensate focusing of order 20 nm may be possible.

Keywords: Bose–Einstein condensate; atom lithography; s-wave interactions; Gross–Pitaevskii
equation; classical trajectories; optical lattice

1. Introduction

Atom lithography is a technique where the gradient forces applied by laser fields on
a beam of atoms are used to direct the atoms into nanostructures deposited on a plane
surface [1,2]. It has been the topic of considerable study in the field of atom optics over
the last two decades as it provides a scheme of writing nanometer structures directly
onto a substrate in parallel process [3]. The main application in the development of
nano-lithography could be the race for an increased density of transistors in the computer
chips [4]. The possibility of using light to deposit feature sizes of a few nanometers was
first suggested in 1987 by Balykvin and Letokhov [5,6]. Later, in 1991, McClelland and
Scheinfein [7] proposed a particle optics approach in which the atom lens created by the
laser light can focus an atomic beam down to a surface. The principle was experimentally
demonstrated by Timp [1] in 1992 using Na deposited on Si via a standing light wave,
and was similarly followed by McClelland et al. [2] to focus Cr in the presence of a 1D lattice.
Atom lithography continued to develop to two- and three-dimensional nanostructures in a
single process, using 2D or 3D lattices [8]. There have also been demonstrations depositing
Yb [9] and Fe [10,11]. Almost all the experiments accomplished so far, have used an oven
source of atoms in which the beam is collimated with an aperture followed by a transverse
laser cooling process [2] before traveling through a focusing potential. The traditional
study of focusing in optical lattices uses the classical trajectories model of atomic motion
when travelling through the light [7]. The principle is based on atom-light interactions,
resulting from the dipole force [12] which causes neutral atoms to become manipulated
with a near resonant laser light [12–14]. Ideally, this model predicts almost perfect focusing
in the absence of interactions.

There have been efforts in studying different methods of cooling atoms. In 1996,
the Delta Kick Cooling [15] was introduced in which atoms are cooled below the photon re-
coil temperature. Applying a pulsed potential, the momentum distribution width of atoms
initially trapped in an optical lattice or a dipole trap is reduced. In another demonstration,
Kovachy et al. [16] investigated the possibility of obtaining pico-kelvin temperatures for
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an ensemble of 87Rb atoms in two-dimensions using a short pulse of red-detuned light
as well as the introduction to a three-dimensional magnetic lens. Nevertheless, there are
some advantages in using a Bose–Einstein condensate (BEC) of neutral atoms as the source
of atom deposition. Since the de-Broglie wavelength of a gas of atoms is of the order of
the mean field distance between particles, an ultra cold source such as a BEC would bring
atoms to wavelengths of ∼ nm or pm for nano-Kelvin temperatures [17] resulting in an
excellent collimation of the beam of atoms as well as a high flux density [18]. Using a BEC
source can also reduce effects such as chromatic aberration and angular divergence [2],
with the longitudinal and transverse velocity distributions typically being much lower
when incident on the surface compared to those resulted from thermal sources.

However, for BECs, the effect of interactions must be accounted for by introducing
the s-wave interaction between atoms. The investigation of the matter wave focusing
dynamics of a trapped BEC for both an interacting and non-interacting case was conducted
theoretically by D. Muuray and P. Ohberg in 2004 [19]. In their work, they derived the time
to focus as a function of the focusing strength for a 3D Bose–condensed cloud. Later in
another effort, the diffractive focusing of interacting matter waves confined by a box-like
trap and the focus time was studied [20]. It is worth mentioning that the properties of
focusing the BECs in an external optical focusing potential has recently been investigated,
analytically, via the variational method in [21]. The significance of this research is to take
atomic interactions into account when focusing a free propagating BEC and to scale its
effect on the broadening of the focal spot sizes and peak densities achievable in realistic
nano-lithography experiments.

The principle of atom lithography using a BEC is schematically depicted in Figure 1.
The cloud of 87Rb is initially confined by a harmonic trap. Turning off the trap, the released
condensate expands whilst propagating. It then encounters the optical lattice being focused
by its nodes along the horizontal axis resulting in a large periodic array of nano-structures
that are separated by λ/2 where λ is the wavelength of lattice.

Figure 1. Schematic representation of atom deposition using a 87Rb BEC focused by an optical lattice.
The condensate is initially confined by a harmonic trap. Once the BEC is released from the trap, it
starts propagating whilst expanding along the falling (longitudinal) direction. An optical potential
with a sinusoidal configuration along the transverse axis focuses the BEC resulting in the periodic
atomic distribution.

In this paper, the focal properties of an optical lattice are derived by the classical
equations. Using this model, we estimate the Full Width at Half Maximum (FWHM) as
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well as peak density of 87Rb focused structures, which can be further used to determine
the possible contributions of structure broadening such as the spherical and diffraction
aberrations. Following this, the Gross–Pitaevskii Equation (GPE) is introduced. Conducting
various numerical simulations via the GPE for different 87Rb BEC and focusing potential
parameters, we estimate resultant focused structure resolutions and peak densities. Not
only is the key role of the s-wave interaction within the BEC investigated through the GPE,
but also by taking the transverse and longitudinal velocity distributions of the condensate,
the classical trajectories model is developed to consider the influence of atomic interactions
on focused profiles.

2. Materials and Methods
2.1. Classical Trajectories Approach

When atoms are exposed to a potential field, an atomic dipole moment is induced
by the electric field. The induced dipole moment interacts with the gradient of the field
resulting in a dipole force gradient [22] applied towards the nodes or anti-nodes of the
periodic field. The resultant dipole potential on stationary atoms is well established [22].
However, when atoms carry a momentum, the created optical dipole potential behaves as
a focusing thick lens on neutral moving atoms [23]:

U(x, z) =
h̄∆
2

ln(1 + p(x, z));

p(x, z) =
γ2

γ2 + 4∆2
I(x, z)

Is
,

(1)

where ∆ denotes the detuning of the laser frequency from the atomic resonance, γ is the
natural linewidth of the atomic transition and Is is the saturation intensity related to the
atomic D2 line transition, 5 2S1/2 −→ 5 2P3/2, for 87Rb. While a red detuned laser light
from resonance, ∆ < 0, in 87Rb D2 line, directs the falling atoms towards the nodes of
the standing potential, a blue detuned light, ∆ > 0 brings the atoms to the anti-nodes of
the focusing potential (∆ = ωL −ω0 where ωL and ω0 are, respectively, the frequency of
incident laser light and resonance between 5 2S1/2 and 5 2P3/2). We consider a geometry
for the optical potential such that the laser intensity profile, I(x, z), shapes a mask with a
periodic scheme of multiple focusing lenses along the direction of focusing atoms. Hence,
a Gaussian standing potential is considered which contains of a sinusoidal behavior of the
intensity along the x-axis (the focusing direction) and a Gaussian envelope function along
the z-axis, the direction of falling atoms. This optical lattice potential is represented by

I(x, z) = I0 exp(−2z2/σ2
z ) sin2(kx), (2)

where I0 is the maximum intensity of the spatially varying Gaussian profile, σz is the radius
of the beam at 1/e2 value of the maximum intensity and k = 2π/λ is the wavenumber.
Since almost no force is applied to atoms along the y direction compared to the other
two directions, neglecting this causes the focusing potential, Equation (1), to become
independent of y.

In order to scale the parameters involved in an optimal focusing potential, we exploit
the classical trajectories approach [2]. Neglecting the y axis due to the symmetry of problem,
the classical equations of motion for atomic trajectories are given by

d2x
dt2 +

1
m

∂U(x, z)
∂x

= 0, (3)

d2z
dt2 +

1
m

∂U(x, z)
∂z

= 0. (4)
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Using conservation of energy, one can combine Equations (3) and (4):

d
dz

[(
1− U(x,z)

E0

)1/2(
1 + x′2

)−1/2x′
]
+ 1

2E0

(
1− U(x,z)

E0

)−1/2(
1 + x′2

)1/2 ∂U(x,z)
∂x = 0, (5)

where E0 represents the total energy of each atom and x′ = dx
dz .

To obtain the focal properties of the lattice, we consider the paraxial approximation [24]
in which the sinusoidal term of the potential consisting of a multi-node wave along the x
axis is converted to a single node harmonic part. In addition, the approximation neglects
aberrations, i.e., the initial trajectories are parallel to the z axis. These can be implemented
by U(x, z)� E0, dx

dz � 1 and kx � 1. Applying these, Equation (5) converts to

d2x
dz2 +

1
2E0

h̄∆
2

[
1

1 + p(x, z)
∂p(x, z)

∂x

]
= 0. (6)

Now, considering sin(kx) ∼ kx, sin2(kx) ∼ 0 and cos(kx) ∼ 1, one obtains

d2x
dz2 + q2 exp(−2z2/σ2

z )x = 0, (7)

q2 =
h̄∆
2E0

I0

Is

γ2

γ2 + ∆2 k2. (8)

According to the relation between the maximum intensity and the corresponding
value of power in a standing wave Gaussian beam [24], I0 = 8P0/πσ2

z , the required power
value of the harmonic potential to focus atoms at any desired spots along the focal axis
(z-axis) is achieved as function of the potential factors and atoms’ initial kinetic energy,

P0 = ξ
π

4
E0

h̄∆
γ2 + 4∆2

γ2
Is

k2 , (9)

where ξ = q2σ2
z is a dimensionless parameter.

We now proceed with a specific example for focusing ultra-cold 87Rb atoms using the
paraxial approximation displayed in Figure 2. To meet the requirements of the paraxial
approximation, the potential wavelength is chosen to be 400 times greater than the actual
87Rb D2 line wavelength, λ = 400λD2 = 312 µm where λD2 = 780.027 nm. This forms
a potential with a harmonic distribution along the x axis. While the potential radius is
adjusted to σz = 100 µm, ξ = 5.37, 3.37, 2.37, and 1.37 corresponding to the potential
power of P0 = 43.018 , 26.996, 18.986, and 10.975 µW, respectively, provided that the initial
velocity of atoms and the detuning from resonance are selected as vi = vz = 1 cm/s and
∆ = 200 GHz. For each value of ξ or P0, two 87Rb atomic trajectories falling symmetrically
from xi = ±λ/4 = ±78 µm landing at x f = 0 and a particular z f are plotted. As a case in
point, for ξ = 5.37, solving Equation (7) yields the focal point optimally placed at z f = 0
and x f = 0 (the center of potential). However, reducing power values results in the focal
point being located at z < 0 below the potential center.
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Figure 2. Cross-section view (top view) for the 87Rb classical atomic trajectories for different values
of ξ and consequently different harmonic potential powers, P0, when applying the paraxial approxi-
mation. The solid and dashed curves, respectively, represent the area above (z > 0) and below (z < 0)
the center of potential. The gray-shaded oval areas illustrate the blue detuned harmonic potential
intensity profile, I(x, z), which are darker for higher intensity regions. The maximum intensity
value for ξ = 5.37, 3.37, 2.37, and 1.37 is, respectively, I0 = 1.095× 104, 6.874× 103, 4.834× 103,
and 2.794× 103 W/m2. A choice of λ = 400λD2 = 312 µm for the potential wavelength necessitates
the two adjacent peaks (located at x = ±λ/4 = ±78 µm, z = 0) to be apart by λ/2 = 156 µm along
the x axis. The trajectories corresponding to ξ = 5.37 (brown curves) are focused at x f = z f = 0 while
setting ξ = 3.37, 2.37, and 1.37 shifts the focus points to z < 0. Parameters used are: σz = 100µm,
∆ = 200 GHz, γ = 37 MHz, Is = 16.5 W/m2, m = 1.44× 10−25 kg and vi = vz = 1 cm/s.

We note that this is an ideal scenario in which for a particular value of P0, all atoms
are focused exactly at one spot and no aberration is considered. However, in practice, there
always exists a spherical aberration in optics while atoms are entering a thick lens [25]. This
arises from the fact that atoms traveling farther to the focal axis will experience a weaker
force than those that are closer to this axis. This effect can be considered through the exact
numerical solution of Equation (5). As an illustration, the atomic trajectories for ultra-cold
87Rb starting at zi = 20 µm whilst moving at a longitudinal velocity of vz = 1 cm/s through
the potential of a radius size of σz = 10 µm focused at z f = 0 (ξ = 5.37) have been numeri-
cally simulated and are depicted in Figure 3. Here, we choose a lattice whose wavelength
is 16 times larger than the actual wavelength of 87Rb D2 line, λ = 16λD2 = 12.48 µm. This
is practical in realistic experiments through the use of a Spatial Light Modulator (SLM)
[26,27]. Aligning the laser detuning to ∆ = 200 GHz, the required optimal value of lattice
power and maximum peak intensity to focus the atoms to the center of potential (z = 0)
are calculated as P0 = 0.068 µW and I0 = 1.752× 103 W/m2. Unlike the paraxial solution,
for each lattice node here, the atoms do not fully land at the same focal point, and this
process is identical for all lattice nodes implying the spherical aberration. Hence, one could
evaluate the linewidth of the created structure and estimate the broadening contribution
arising from this effect inside every lattice slit, D = λ/2 = 6.24 µm. For instance, we have
selected the lattice central node, from x = −λ/4 = −3.12 µm to x = λ/4 = 3.12 µm,
and plotted a histogram distribution for 62400 trajectories arriving at the focal plane (z = 0)
in Figure 4. Applying a Kernel fit to the focused profile, the value of FWHM is acquired as
(∆x)sph = 0.136 µm.
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Figure 3. Top view of the classical trajectories for the 87Rb atoms (indicated by the solid blue
curves) falling at vz = 1 cm/s between x = −24 µm and x = 24 µm being deposited at z f = 0,
and the lattice (depicted by the gray-shaded oval areas) of a size of σz = 10 µm distributed between
x = −8λ/4 = −24.961 µm and x = 8λ/4 = 24.961 µm. The color map at the bottom of the figure
represents the intensity of the focusing lattice, and the horizontal solid black line shows the focal plane.
The lattice power and maximum intensity values are P0 = 0.068 µW and I0 = 1.752× 103 W/m2

given that ξ = 5.37 and ∆ = 200 GHz. Parameters involved in the simulation are: γ = 37 MHz,
Is = 16.5 W/m2, m = 1.44× 10−25 kg.

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8
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1.6

1.8

2 104

Figure 4. Histogram distribution indicated by the violet area including n = 50 bins show the 62,400
atoms focused on the focal plane, z f = 0, between x = −λ/4 = −3.12 µm and x = λ/4 = 3.12 µm.
The estimated FWHM is (∆x)sph = 0.136 µm using a Kernel fit to the distribution illustrated by the
red solid curve. Parameters used in the simulation are: σz = 10 µm, ∆ = 200 GHz, γ = 37 MHz,
Is = 16.5 W/m2, m = 1.44× 10−25 kg, vz = 1 cm/s and λ = 12.48 µm.
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However, the spherical aberration is not the only reason for profile broadening. In a
lens like lattice, there are finite adjacent apertures positioned in a distance of λ/2 apart
along the entire lens. Since atoms exhibit wave-like behavior, they interfere together with
their de-Broglie wavelengths, λdB, while crossing through the apertures. This causes a
limit on the linewidth of structures known as the diffraction effect. The angular resolution
produced by the diffraction is estimated by Rayleigh Criterion [28,29]

θ = β
λdB
D

, (10)

where the factor β = 1.22 accounts for a circular aperture [28] while β = 0.88 is dedicated
to a rectangular (or cylindrical) aperture [24,30,31]. The de-Broglie wavelength of atoms is
defined as λdB = h/mvz where vz is the most probable longitudinal velocity. The angular
resolution in Equation (10) can be converted to the diffraction-limited FWHM by

(∆x)diff = f tan(θ) ≈ f θ, (11)

where θ is considered to be a very small angle. Since each aperture has a rectangular
structure to the incident atomic beam, (∆x)diff would be

(∆x)diff = 0.88
f λdB

D
= 1.76

f h
mvzλ

. (12)

For the previous example, for the atoms with a mass of m = 1.44× 1025 kg falling at
vz = 1 cm/s through a lattice of wavelength of λ = 312 µm, the diffraction-limited FWHM
is estimated as (∆x)diff = 0.3589 µm. In this calculation, the focal length (the difference
between the coordinates of the focal point and the principal plane location when focusing
at z = 0), f = 5.531 µm, σz = 10 µm and λ = 12.48 µm. According to Equation (12), this
broadening is proportionally related to the focal length and is inversely associated with the
velocity of atoms as well as the size of apertures. Hence, to minimize (∆x)diff, one needs
to either use a relatively shorter focal length, a higher longitudinal velocity or a larger
potential wavelength.

Eventually, taking into account the total structure broadening predicted by the classical
trajectories model in absence of atomic interactions,

(∆x)classical = (∆x)sph + (∆x)diff, (13)

and considering the results for (∆x)sph of the stated example, we can estimate the total
value of FWHM via the classical trajectories model for the cases, z f = 0 (with σz = 10 µm),
which is evaluated as (∆x)Classical = 0.495 µm.

2.2. Gross–Pitaevskii Equation Methodology

Using a BEC [32] as a source of ultra-cold atoms brings several advantages to atom
deposition as it can significantly reduce the linewidth of longitudinal and transverse
velocity distributions providing excellent coherence and collimation for the atomic beam
as well as offering relatively small de Broglie wavelengths, high peak densities and quality
spatial modes [17,18,33]. In Section 3, we take into account the atomic interaction when
focusing a free propagating 87Rb BEC. The impact of interactions on the broadening of the
nano-focal spot sizes and peak densities are estimated, which is accomplished through
the use of the GPE [34,35]. The three-dimensional time dependent GPE modelling the
dynamics of a BEC is represented by [34,36–38]

ih̄
∂ψ(r, t)

∂t
=
(
− h̄2

2m
∇2 + Vext(r, t) + Vmean(r, t)

)
ψ(r, t), (14)

where ψ(r, t) indicates the BEC wavefunction at different times of propagation, Vext is the
time-dependent external potential applied on the BEC, m is the atomic mass and h̄ is the
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Planck constant. The interactions between atoms within the cloud are considered using a
non-linear mean field potential, Vmean, which estimates the averaged exerted potential on
any particular atom by all other atoms given by [33,39–41]

Vmean(r, t) = u|ψ(r, t)|2, (15)

where

u =
4πh̄2as

m
, (16)

quantifies the atomic interactions, |ψ(r, t)|2 describes the atomic density, and as is the
s-wave scattering length. The value as can be practically tuned from as > 0 (repulsive
interactions) to as < 0 (attractive interactions) utilizing a Feshbach resonance [42].

2.3. The BEC Ground State

In order to generate the BEC ground state wavefunction at t = 0, we assume that the
condensate is initially confined via a harmonic trapping potential defined by

Vext(r, 0) = Vtrap(r) =
1
2

m
(
ω2

xx2 + ω2
yy2 + ω2

z(z− z0)
2), (17)

where z0 denotes the initial distance between the center of lattice and the center-of-mass of
condensate along the z axis, and ωx, ωy, ωz represent the harmonic trap frequencies along
the x, y, z axes, respectively. For our purpose, we consider a cylindrical (cigar-shaped)
condensate with two radial axes associated with the two tight trap frequencies, ωy and
ωz, and one axial axis corresponding to the weak trap frequency, ωx, where ωy, ωz > ωx.
This configuration allows the BEC to be elongated along the x axis compared to the y and z
axes.

The Thomas–Fermi solution [39,43] to Equation (14) can be used as an initial function
to Equation (14) to acquire the exact solution for the ground state wavefunction of system,
ψg(r, t = 0), which itself is exploited as an initial condition to Equation (14) to achieve
the propagation state, ψ(r, t > 0). The process of calculating ψg(r, t = 0) and ψ(r, t > 0)
is numerically conducted using an imaginary and real time step, respectively, via the
Embedded Runge–Kutta scheme along with adaptive Fourier split-step size [44]. We
consider 105 atoms trapped by ωx = 2π × 10 Hz and ωy,z = 2π × 70 Hz producing
a cylindrical BEC elongated along the x axis. Once the harmonic trap, Vtrap, is turned
off (ωi = 0, i = x, y, z), the condensate starts expanding due to the s-wave interaction
between atoms.

3. Results and Discussion
3.1. Time Dependent Focusing Potential

For simplicity of numerical calculation for the evolving BEC through a focusing
potential, we assume that the BEC is located in a stationary frame while the optical lattice
is situated in a moving frame approaching the BEC along the z axis. Hence, Vlattice would
be dependent on time by z(t) = 1

2 gt2 + v0t, which is the varying distance as a function of
time following the free falling method where g and v0 are the gravity and initial velocity
kick, respectively. Thus, once the confining potential is switched off at t > 0, the optical
lattice potential [see Equation (1)] is switched on so that

Vext(r, t) = Vlattice(x, t) =
h̄∆
2

ln

[
1 +

I0

Is

γ2

γ2 + 4∆2 exp

(
−2
(
z0 − z(t)

)2

σ2
z

)
sin2(kx)

]
. (18)
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As a result, combining Equations (14)–(16) and (18), the dynamics of a focused BEC at
t > 0 would be given by the following equation

ih̄
∂ψ(r, t)

∂t
=
(
− h̄2

2m
∇2 + Vlattice(x, t) +

4πh̄2as

m
|ψ(r, t)|2

)
ψ(r, t). (19)

To make a direct comparison between the output of the GPE and classical trajectories
models, we exploit the same example in Section 2.1 in which the 87Rb BEC located at
z0 = 20 µm is released from the trap by vi = vz = 1 cm/s (see Figure 5a) optimally
focusing to the center (ξ = 5.37, z = z f = 0) of the lattice potential with σz = 10 µm and
λ = 16λD2 = 12.48 µm (see Figure 5b). For this case, provided that the laser detuning is set
to ∆ = 200 GHz, the optimal lattice power and maximum peak intensity values to focus
the BEC at z = 0 are required as P0 = 0.068 µW and I0 = 1.752× 103 W/m2, respectively.
Applying the stated factors along with the relevant data for the mass, saturation intensity
and spontaneous emission rate associated with 87Rb D2 line in Equation (19), the BEC
focusing dynamics is numerically achieved, and the full process as well as results are
shown in Figure 5a–f.

Here, we have considered two different cases to examine the focal spot sizes and
peak densities. Firstly, the BEC is strongly interacting and the s-wave scattering length is
chosen as as = 100a0 leading to a repulsive BEC (see Figure 5c). Secondly, it is assumed
that there exist no atom–atom interactions within the cloud, as = 0 (see Figure 5d) in
the focusing process enabling one to compare directly the outcomes with those of the
spherical aberration from the classical trajectories approach. The value of FWHM along
the x axis for both cases, as = 100a0 and as = 0, are calculated utilizing a Voigt fit to
the central focused structure for each case, and the results are illustrated, respectively, in
Figure 5e,f. For the interacting and non-interacting 87Rb BECs, the resultant linewidth
is estimated as (∆x)int

GPE = 1.074 µm and (∆x)non
GPE = 0.477 µm, respectively, indicating

that the focal spot size for an interacting case is about two times larger than that of non-
interacting BEC. Moreover, the magnitude of the central peak density in the absence of
s-wave interactions is about three times greater than that of interacting condensate (3771
compared to 1185 atoms/µm2) showing the destructive impact of inter atomic interactions
on the resolution of focused profile. At this point, one can notice that for the non-interacting
case, there is a reasonable agreement between the outcomes of the classical trajectories
((∆x)non

Classical = 0.495 µm) and GPE ((∆x)non
GPE = 0.477 µm) models. However, for the

interacting case, the classical model fails to accurately render an estimate for the linewidth.
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Figure 5. (a): Cross section view (x− z plane) of 87Rb BEC ground state. The center-of-mass of the condensate is located at
z0 = 20 µm. (b): Intensity profile of the lattice potential in W/m2 indicated by the color map. (c,(d): Focused structures,
respectively, for an interacting and non-interacting 87Rb BEC from the prospective of x − z plane. (e,f): The transverse
profile of the central peak along the x axis for the interacting and non-interacting BEC (solid blue curves) whose linewidth
is estimated as (∆x)int

GPE = 1.074 µm and (∆x)non
GPE = 0.477 µm using a Voigt fit (dashed red curves). The BEC and intensity

profiles in (a–d) have been integrated over the y axis. For this example, we assume that the BEC moves with a constant
velocity under no gravity, g = 0. Parameters involved in the simulations are: ξ = 5.37, N = 105, ωx = 2π × 10 Hz,
ωy = ωz = 2π × 70 Hz, λ = 12.48 µm, Is = 16.5 W/m2, ∆ = 200 GHz, σz = 10 µm, vz = 1 cm/s, m = 1.44× 10−25 kg,
and as = 100a0 and 0 for the interacting and non-interacting cases, respectively.

3.2. The Variation of BEC and Potential Factors

In this section, we consider more examples to investigate the influence of altering the
BEC longitudinal velocity and lattice radius size on the deposited profiles. In addition
to the previous instance discussed in Section 3.1 for the focused profile with σz = 10 µm,
vz = 1 cm/s, two more rounds of simulations are considered accounting for both inter-
acting and non-interacting BECs. While parameters such as ξ = 5.37, λ = 12.48 µm,
∆ = 200 GHz remain unchanged, we consider σz = 20 µm, vz = 1 cm/s and σz = 10 µm,
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vz = 2 cm/s. The results for FWHM and central peak density values are summarized in
Table 1. We notice that doubling the lattice radius size for the same BEC velocity leads
to a reduction almost by half in the structure peak, and an increase by a factor of two in
the structure linewidth for both as = 100a0 and as = 0. Furthermore, for the two cases,
increasing the condensate velocity for a given potential radius results in a decline by half
in the FWHM and a growth by a factor of two in the peak density. This arises from the
fact that the potential peak intensity is directly proportional to the square of BEC velocity,
whereas it is inversely proportional to the square of lattice radius size, I0 ∝ v2

z/σ2
z .

Table 1. FWHM and peak density results for interacting (as = 100a0) and non-interacting (as = 0) focused BECs collected at
z = 0 (with g = 0) for three different simulations {σz = 10 µm, vz = 1 cm/s}; {σz = 20 µm, vz = 1 cm/s} and {σz = 10 µm,
vz = 2 cm/s}.

Example P0 (µW) I0 (W/m2) (∆x)int
GPE

(µm)
(∆x)non

GPE
(µm)

(Peak)int
GPE

(atoms/µm2)
(Peak)non

GPE
(atoms/µm2)

σz = 10 µm
vz = 1 cm/s

0.0688 1.752× 103 1.074 0.477 1185 3771

σz = 20 µm
vz = 1 cm/s

0.0688 4.381× 102 2.106 0.985 543 1598

σz = 10 µm
vz = 2 cm/s

0.275 7.01× 103 0.447 0.228 3181 6028

3.3. Velocity Distribution of a BEC

Due to the s-wave interactions between the atoms within a condensate, the velocity
of atoms does not remain constant over time. Hence, a distribution is formed in both the
longitudinal (along the z axis) and transverse (along the x axis) velocity profiles so that
each one encompasses an associated peak representing the most probable velocity. Taking a
Fast Fourier Transform (FFT) directly from the BEC density profile in position space, one is
able to gain the BEC density profile in momentum space at different times of propagation.
Since inter atomic interactions cause the condensate to expand (for as > 0) over time the
density profile in momentum space also spreads.

As an illustration, we have studied separately the BEC transverse and longitudinal
velocity distributions at t = 2 ms in Figure 6a–c. Here, the BEC is kicked by vz = 1 cm/s
when being released from the trap. Neglecting the gravity acceleration in BEC’s falling,
the linewidth for each distribution is derived by applying a Gaussian fit (see Figure 6b,c).
The values of FWHM for the transverse and longitudinal profiles at t = 2 ms are estimated
as ∆vx = 0.0264 cm/s and ∆vz = 0.1791 cm/s, respectively. It is clear that the tight trap
frequency along the z axis (ωz = 2π × 70 Hz) causes a significantly enhanced widening
velocity profile along the falling axis compared to the horizontal axis (∆vz � ∆vx).

In Sections 3.4 and 3.5, we explore the possibility of implementing the information from
∆vz and ∆vx to the classical trajectories model to predict the resultant structure broadenings.
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(a)

(b)

(c)

Figure 6. (a) The density profile of the free 87Rb BEC, with as = 100a0, in momentum space at t = 2
ms. (b): The longitudinal and (c): the transverse velocity distribution profiles (shown by the blue dots)
are separately taken from the BEC density profile in momentum space at t = 2 ms. The most probable
longitudinal velocity is vz = 1 cm/s, which is the initial velocity of the condensate (no gravity is
applied to the BEC), and the peak velocity in transverse profile is vx0 = 0. An appropriate Gaussian
fit is applied to both plots (solid red curves), which estimates the FWHM for the longitudinal and
transverse profiles as ∆vz = 0.1791 cm/s and ∆vx = 0.0264 cm/s, respectively.

3.4. Chromatic Aberration in Classical Trajectories Model

In optics, the chromatic aberration occurs because lenses have different refractive
indices for different wavelengths of light causing the parallel incident wavelengths to focus
at different positions from the focal point [45]. In our case, if the longitudinal velocity of
incoming atoms varies when transmitting through a focusing lens, they are not focused at
a certain focal point limiting the resolution.

In this section, the broadening contribution arising from the longitudinal velocity
spread is calculated via the classical trajectories model. According to Figure 7, considering
the displacement of the focal length (from f to f1) due to the velocity variation (from vz1
to vz2) as ∆ f , and the convergence angle at the focus point as ϕ, the resultant broadening
along the x axis is given by

(∆x)c = ϕ∆ f , (20)

where
ϕ = tan−1(D/ f ), (21)
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is the angle between the incident atomic beam and the focal axis, and D is the lens slit size
(which is the distance between two adjacent peaks in an optical lattice) given by D = λ/2.
Since a change in velocity, vz, would vary the focal length, f , one can write

∆ f =
d f
dvz

∆vz, (22)

where the variation of focal length with respect to the longitudinal velocity of atoms, d f
dvz

(or the kinetic energy of atoms) can be broken down as

d f
dvz

=
d f
dξ

dξ

dvz
. (23)

The dimensionless parameter, ξ, in Equation (23) is a function of E0 and consequently
a function of vz (see Equation (9)), represented by

ξ(E0) =
C

E0
=

C

1/2mv2
z

, (24)

where C is a constant coefficient. Now, taking into account that

dξ

dvz
= − 2

vz
ξ, (25)

and using Equation (23), Equation (22) converts to

∆ f = −2ξ
d f
dξ

∆vz

vz
. (26)

Finally, substituting Equations (26) and (21) into Equation (20), the broadening in the
focal spot sizes resulting from longitudinal velocity spread is described as

(∆x)c = −2ξ tan−1
( λ

2 f

)d f
dξ

∆vz

vz
, (27)

where the data for d f /dξ for a range of desired focal lengths is derived from Figure 8
estimated by the paraxial approximation in Section 2.1.

Thick Lens

Principal Plains

Figure 7. A schematic illustration of two atoms with different longitudinal velocities whilst crossing
through a thick lens. They are then focused at different focus points due to chromatic aberration.
The actual focus point, f , is considered for atom (1) moving at vz1. The angle in which atom (1)
creates with the focal axis (z axis) is ϕ, f1 is the focal length for atom (2) moving at vz2, and (∆x)c is
the chromatic aberration broadening.
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Figure 8. Variation of the dimensionless focal length, F, against ξ. This graph is used to estimate the
broadening resulting from the longitudinal velocity spread in structure resolution.

We now calculate the contribution of the chromatic aberration in broadening the
focused structure for the example mentioned in Sections 2.1 and 3.1. According to Figure 8,
to focus the atoms to the center of potential, ξ = 5.37, one would obtain dF/dξ = −0.0249
(F is the dimensionless focal length). Then, for a lattice with a size of σz = 10 µm, one
would calculate d f /dξ = σz(dF/dξ) = −0.249 µm. Hence, given a lattice wavelength of
λ = 12.48 µm, a focal length of f = 5.531 µm (for focusing to the center of the potential
with σz = 10 µm, and ξ = 5.37), the longitudinal velocity and linewidth, vz = 1 cm/s and
∆vz = 0.1791 cm/s at t = 2 ms (for the BEC falling from zi = 20 µm to z f = 0), the resultant
broadening magnitude is (∆x)c = 0.405 µm.

It is clear that the most significant factor in the broadening is due to the longitudinal
velocity linewidth. As a result, to reduce (∆x)c, one would better choose a relatively short
propagation time (or a small z0) for the condensate to prevent the longitudinal velocity
profile from a high spread. Moreover, from Equation (27), one can understand that larger vz
values can also result in less broadening in the focused structures, which is in an agreement
with what is predicted by the diffraction effect (see Equation (12)).

3.5. Angular Divergence in Classical Trajectories Model

Another broadening which appears in the deposited structures results from the a
divergence in the falling beam of atoms. The divergence is sourced from the transverse
velocities of the atoms within the cloud, vx 6= 0. As shown in Figure 9, we consider two
atoms approaching a thick lens. Atom (1) is collimated to the focal axis (z axis), and atom
(2) is moving towards the lens with an angle of θ with respect to the focal axis. The size of
the virtual object caused by the two atoms located at z = −z0 before the lens is chosen as
∆x0. Considering f and f1, respectively, as the associated focal lengths to atom (1) and (2),
the created image is demagnified by (∆x)a. This is represented by the following equation

(∆x)a

∆x0
=

f
z0

. (28)

Given that the object size is obtained by

∆x0 = z0θ, (29)
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the linewidth arising from the beam divergence would be estimated as

(∆x)a = f θ, (30)

where the beam divergence,
θ = tan−1(∆vx/vz), (31)

is directly taken from the transverse velocity linewidth, ∆vx, and the most probable longi-
tudinal velocity, vz. Inserting Equation (31) into Equation (30), one would obtain

(∆x)a = f tan−1(∆vx/vz). (32)

As a case in point, we refer to the example in Sections 2.1 and 3.1. A transverse velocity
linewidth of ∆vx = 0.0264 cm/s (see Figure 6c) and a probable longitudinal velocity of
vz = 1 cm/s result in θ = 0.0264 rad at t = 2 ms for the BEC falling from zi = 20 µm
focusing to the center of lattice (ξ = 5.37) of a radius size of σz = 10 µm. In such an instance,
considering the associated focal length, f = 5.531 µm, the angular divergence broadening
is estimated as (∆x)a = 0.146 µm.

Thick Lens

Principal Plains

Atom (1)- Collimated

Atom (2)- Not collimated

(2)
(1)

Figure 9. A schematic illustration of two atoms with an angle of θ with respect to each other crossing
through a thick lens with two principal planes being focused at different points. The focal length, f ,
is considered for atom (1) collimated to the z axis while f1 is associated with atom (2) moving under
an angle of θ with respect to the z axis. The virtual object of a size of ∆x0 is located at z = −z0 on the
left side of the lens, and the created image of a size of (∆x)a appears on the right side of the lens.

Clearly, a longer time of BEC propagation gives the atoms more chance to interact
within the cloud. Thus, to reduce ∆vx and consequently (∆x)a, one can choose to utilize a
fall time for the focusing process.

3.6. GPE and Classical Trajectories Agreement

As stated thus far, the influence of the s-wave interaction between atoms appears as
the longitudinal and transverse velocity distributions in the classical calculations. That
being said, one can define the following equivalency

(∆x)int
GPE ≈ (∆x)int

Classical, (33)

where
(∆x)int

Classical = (∆x)non
Classical + (∆x)c + (∆x)a, (34)

which can be rewritten as following using Equation (13),

(∆x)int
Classical = (∆x)sph + (∆x)diff + (∆x)c + (∆x)a. (35)

For the examples discussed in Sections 3.4 and 3.5, adding (∆x)c = 0.405 µm and
(∆x)a = 0.146 µm to (∆x)non

Classical = 0.495 µm (which comprises (∆x)sph = 0.136 µm and
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(∆x)diff = 0.359 µm, see Section 2.1), we estimate the total FWHM of the focused structures
as (∆x)int

Classical = 1.046 µm via the classical trajectories model. This is in good agreement
with GPE results, (∆x)int

GPE = 1.074 µm [see Figure 5e] indicating a reliable mapping
between the classical trajectories approach using the BEC transverse and longitudinal
velocity profiles from the GPE. Table 2 compares the outcomes resulting from the GPE and
classical methods for three various examples for both interacting and non-interacting cases.

Table 2. FWHM data in µm calculated via the GPE and classical trajectories approaches for interacting
(as = 100a0) and non-interacting (as = 0) focused BECs collected at z = 0 for three different
simulations {σz = 10 µm, vz = 1 cm/s}; {σz = 20 µm, vz = 1 cm/s} and {σz = 10 µm, vz = 2 cm/s}.

Example (∆x)non
Class (∆x)non

GPE (∆x)int
Class (∆x)int

GPE

σz = 10 µm
vz = 1 cm/s

0.495 0.477 1.046 1.074

σz = 20 µm
vz = 1 cm/s

1.059 0.985 2.065 2.106

σz = 10 µm
vz = 2 cm/s

0.264 0.228 0.428 0.447

3.7. Numerical Investigation of Focusing

We now study in more detail the impact of the focusing potential aperture size (or the
potential wavelength) as well as its radius on the deposited BEC structures. We consider a
87Rb BEC trapped by ωx = 2π× 10 Hz, and ωy = ωz = 2π× 70 Hz, whose center-of-mass
is at z0 = 500 µm from the lattice center at z = 0. In the results presented, the freely
propagating and interacting (as = 100a0) condensate is aimed to be focused optimally at
z = 0 (ξ = 5.37).

We initially consider a lattice radius size of σz = 10 µm while three various potential
wavelengths are employed, λ = 16λD2 , 8λD2 , and 4λD2 . The results are extracted for
a range of initial momentum kicks differing from p = 16 h̄k to p = 128 h̄k (where k is
the wavenumber associated with the 87Rb D2 line defined by k = 2π/λD2) is applied
to the BEC. As a result, for an optimal focus, the lattice power and peak intensity are
adjusted accordingly based on the BEC kinetic energy for any certain momentum kick.
Figure 10a,b display the associated outputs for the focused BEC linewidths and peak
densities, respectively. The FWHM in each numerical calculation is achieved by taking an
average over the linewidth of the structure peaks whose height are greater than 1/e of the
highest central peak.

Analyzing the results, firstly, one can conclude that imparting higher momentum
kicks to the BEC reduces the focal spot sizes and enhances the peak densities for any
potential wavelength. However, larger λ values necessitate higher potential powers and
peak intensities resulting in the superior structure resolutions and heights (see the blue
stars in Figure 10a,b compared to the red triangles and green crosses). Furthermore,
one can understand that the FWHM and peak density data points for λ = 16λD2 , 8λD2 ,
and 4λD2 tend to a steady state at relatively large magnitudes of initial momentum kick
(i.e., p ≥ 96 h̄k, see Figure 10a,b). This implies the characteristic factors of a focused profile
(including the resolution and peak density) become independent of the BEC momentum
kick at relatively high longitudinal velocities. At this point, the profile resolution also
becomes independent of the lattice wavelength while the focused peak density remains
strongly dependent on the size of the momentum kick.
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Figure 10. Results for the characteristic factors of the focused 87Rb BEC versus different momentum
kicks. (a,b): Results for the average structure resolutions and the highest peak densities. The data
points indicated by the blue stars, red triangles and green crosses are for λ = 16, 8 and 4λD2 ,
respectively. The three horizontal axes at the bottom of the figure represent the corresponding
optimal power values to the momentum kicks for each lattice wavelength. Parameters involved in
the simulations are: N = 105, z0 = 500 µm, σz = 10 µm, as = 100a0 , ∆ = 200 GHz, γ = 37 MHz,
and Is = 16.5 W/m2.

In Figure 11a,b, a fixed value of λ = 16λD2 is considered while three different lattice
radii, σz = 10, 20 and 40 µm are selected. Since an expansion in the potential radius size
leads to a decline in the power and peak intensity values, it is expected that larger FWHMs
will be obtained as well as lower peak densities for σz = 40 µm (indicated by the green
crosses) compared to those of σz = 10 µm (indicated by the blue stars). As an instance,
choosing σz = 10, 20 and 40 µm would, respectively, result in (∆x)int

GPE = 19.68, 23.27 and
48.83 nm for the resolutions, and 4.068× 104, 2.692× 104 and 1.501× 104 atoms/µm2 for
the peak densities at p = 128 h̄k. Moreover, the profile characteristic factors tend to a steady
state for every potential size at larger momentum kicks (i.e., p ≥ 96 h̄k, see Figure 11a,b).
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Figure 11. Results for the characteristic factors of the focused 87Rb BEC versus different momentum
kicks. (a,b): Results for the average structure resolutions and the highest peak densities. The data
points indicated by the blue stars, red triangles and green crosses are for σz = 10, 20 and 40 µm,
respectively. The first three horizontal axes at the bottom of the figure represent the corresponding
peak intensity values to the momentum kicks for each lattice radius size. The fourth horizontal
axis displays the corresponding optimal power values for λ = 16λD2 . Parameters involved in the
simulations are: N = 105, z0 = 500 µm, λ = 12.48 µm, as = 100a0 , ∆ = 200 GHz, γ = 37 MHz,
and Is = 16.5 W/m2.

Finally, the focused 87Rb BEC profile is studied through a focusing lattice of λ = λD2 .
The output FWHM and peak density values are plotted as a function of potential power in
Figure 12a,b (for σz = 100 µm) and Figure 13a,b (for σz = 200 µm). There are six categories
of data points representing the condensate kicked by, p = 0, 2, 8, 32, 128 and 256 h̄k. Unlike
the previous case, the lattice power selection here takes a certain range (from P = 0.3 to
1.83 mW) regardless of an optimal power value for any momentum kick, P = PλD2

(nh̄k).
In other words, the focused profiles are examined at z = 0 even when they are not at their
optimal focus stage.
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Figure 12. Results for the characteristic factors of the focused 87Rb BEC versus different potential
power values for λ = λD2 . (a,b): Results for the average structure resolutions and the highest peak
densities. The data points correspond to the momenta kicks indicated in the legend. The horizontal
axis at the bottom of the figure represents the corresponding peak intensity values to the momentum
kicks for σz = 100 µm. Parameters involved in the simulations are: N = 105, z0 = 500 µm,
λ = 780.027 µm, as = 100a0 , ∆ = 200 GHz, γ = 37 MHz, and Is = 16.5 W/m2.

According to Figure 12a,b, for each value of momentum kick, a rise in the focus-
ing potential power results in an enhanced resolution as well as a higher peak density.
For instance, setting P = 1.83 mW for p = 256 h̄k produces a focused profile with
(∆x)int

GPE = 51.25 nm and a highest peak of 2975 atoms/µm2. However, increasing the
value of beam radius (from σz = 100 to 200 µm) broadens the corresponding profile
resolutions creating shorter peaks, which is indicated in Figure 13a,b. In such a case,
for P = 1.83 mW and p = 256 h̄k, the resolution and highest peak density, respectively,
reduce to (∆x)int

GPE = 85.87 nm and 1726 atoms/µm2.
It is also noticeable that for any magnitude of momentum kick applied to the BEC,

the focused profile characteristic factors become independent of the potential power at
larger P values. As a result, in this case, there exists a threshold in power value for
improving the profile resolution and peak density meaning that one may not expect
to obtain a considerable improvement in focal spot sizes when using P > 2 mW (see
Figures 12a,b and 13a,b). We note that the threshold range, P > 2 mW, is only the case for
a lattice of λ = λD2 as it could be reduced by a factor of ten to P16λD2

(128 h̄k) = 0.39 mW

for a lattice of λ = 16λD2 , which could lead to a focused profile of (∆x)int
GPE = 19.68 nm

(see Figure 11a).
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Figure 13. Results for the characteristic factors of the focused 87Rb BEC versus different potential
power values for λ = λD2 . (a,b): Results for the average structure resolutions and the highest peak
densities. The data points correspond to the momenta kicks indicated in the legend. The horizontal
axis at the bottom of the figure represents the corresponding peak intensity values to the momentum
kicks for σz = 200 µm. Parameters involved in the simulations are: N = 105, z0 = 500 µm,
λ = 780.027 µm, as = 100a0 , ∆ = 200 GHz, γ = 37 MHz, and Is = 16.5 W/m2.

4. Conclusions

In this paper, we summarized the classical trajectories approach and its applications in
focusing ultra-cold 87Rb atoms. The structure of an appropriate focusing potential as well
as its focal properties for an optimal focus were analyzed using the paraxial solution to the
equations of atomic motion. Moreover, we derived a relation between the required value
of potential power and the desired focus point on the focal plane along with employing
a relevant example. The spherical aberration on broadening of focused structures was
explored through numerical solutions to the classical equations. We then calculated the
structure linewidth resulting from the diffraction contribution. We inferred that an increase
in lattice aperture size and atomic longitudinal velocity or a reduction in the focal length
results in a lower FWHM of diffraction as in this case atoms would have less chance
to interfere.

We then moved on to consider the influence of s-wave interactions between the atoms
on focusing of 87Rb condensate using the GPE. It is found that the resultant structure
linewidths are significantly impacted by s-wave interactions. Moreover, we concluded that
either reducing the lattice radius size or increasing the BEC initial kinetic energy could
improve the characteristic factors (resolutions and peak densities) of a focused 87Rb profile.
Further to this, the contribution for both the BEC longitudinal and transverse velocity
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distributions in broadening the structure size was explored via the classical trajectories
model. We found a reliable agreement between the GPE approach and a classical trajectories
model which includes the interaction contribution.

Finally, conducting a variety of numerical simulations with different lattice radii and
wavelengths, we noticed that narrower and higher density structures arise from relatively
lower potential radius sizes and greater wavelengths. It was shown that nano-meter
structures are achievable in principle. The example of this is a resultant structure of
(∆x)int

GPE = 19.68 nm via a focusing lattice of σz = 10 µm and λ = 16λD2 . Furthermore, it
was inferred that applying higher momentum kicks necessitating greater optimal potential
powers and peak intensities causes superior profile resolutions and peak fluxes. However,
for a certain lattice wavelength, there is a threshold point in potential power where for
larger values than this point, the focused profile characteristic factors are no longer de-
pendent on power magnitudes tending to a steady state. It was observed that exploiting
a relatively smaller lattice wavelength increases the threshold power whilst causing a
destructive impact on the structure resolution and peak density. For instance, the approxi-
mate threshold power for a lattice of λ = λD2 and λ = 16λD2 is about PλD2

= 1.83 mW and

P16λD2
= 0.39 mW resulting in (∆x)GPE

λD2
= 51.25 nm and (∆x)GPE

16λD2
= 19.68 nm.

Overall, we conclude that the idea of producing nanometer-scale structures using
BEC sources is attainable. We believe that the numerical methods presented in this paper
provide a realistic assessment of the actual experiments in atom lithography using BECs
although this is yet to be realized and established in practice. It also remains as an open
question for the future research to explore other dominant effects limiting the resolution of
structures such as the diffusion at an impact site.
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