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Abstract: We present a toolbox of microstrip building blocks for microwave atom chips geared
towards trapped atom interferometry. Transverse trapping potentials based on the AC Zeeman
(ACZ) effect can be formed from the combined microwave magnetic near fields of a pair or a triplet
of parallel microstrip transmission lines. Axial confinement can be provided by a microwave lattice
(standing wave) along the microstrip traces. Microwave fields provide additional parameters for
dynamically adjusting ACZ potentials: detuning of the applied frequency to select atomic transitions
and local polarization controlled by the relative phase in multiple microwave currents. Multiple
ACZ traps and potentials, operating at different frequencies, can be targeted to different spin states
simultaneously, thus enabling spin-specific manipulation of atoms and spin-dependent trapped
atom interferometry.

Keywords: atom chip; atom interferometry

1. Introduction

Trapped atom interferometers provide a spatially localized sample and potentially
long coherent phase interrogation times in packages as compact as an atom chip. These
benefits make them strong candidates for precision inertial navigation (i.e., acceleration and
rotation sensing), gravimetry, and microscopy, e.g., sub-mm gravity and Casimir–Polder
measurements. These benefits also come at the cost of increased atom–atom interactions,
which can reduce the accuracy of the interferometer. Operating the interferometer with
a Bose–Einstein condensate with low atom numbers can mitigate interactions [1] at the
cost of reduced signal. Alternatively, operating with degenerate fermions should suppress
interactions [2,3], and ultracold thermal bosons should also experience lower interactions.

A trapped atom interferometer based on degenerate fermions or ultracold thermal
bosons is similar to a white light interferometer and must ensure a state-independent
beamsplitting phase to avoid washing out the fringes [4,5]. One solution is to use two
overlapping identical spin-specific traps for two different spin states that are spatially
separated, follow different paths, and then recombined, i.e., a Ramsey interferometer with
spatially separated spin states. Such an approach requires the spin-specific microwave
traps that are the focus of this paper.

Unfortunately, spin-specific potentials are not part of the standard toolbox of ultracold
atom trapping. DC Zeeman potentials are spin-dependent and modify the energy of all
spins in a proportional manner; optical dipole potentials can be engineered to include a spin-
dependence but at the cost of significant spontaneous emission heating [6]. Fortunately,
the AC Zeeman (ACZ) effect, based on microwave hyperfine transitions, offers a clear
mechanism for spin-specific control of atoms [7]. However, strong microwave gradients on
length scales much shorter than the wavelength are needed for trapping, so microwave
near fields generated by atom chip currents must be employed.

The use of high-frequency currents has a transformative effect on the capabilities of
chip traps by introducing two new control parameters: frequency (as detuning) to control
the ACZ strength and polarity, and relative phase between wire currents to control the
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circularly-polarized field shape. Furthermore, ACZ traps can operate at any background
magnetic field, BDC, and can turn any hyperfine substate into a high- or a low-field seeker,
as we explain below.

This paper presents the basic building blocks for designing a microwave atom chip
based on microstrip transmission lines that can trap atoms via spin-specific ACZ poten-
tials. In Section 2, we present the basic two-level theory of the ACZ effect for microwave
transitions between hyperfine manifolds. In Section 3, we introduce basic physical consid-
erations for using microstrip transmission lines, our proposed building block. Section 4
discusses useful trap geometries based on two- and three-microstrip simplified models.
Section 5 presents numerical simulations of the trapping near field generated by two- and
three-microstrip geometries. Section 6 shows how a standing wave microwave lattice can
be used for axial confinement along the length of a trace. We conclude in Section 7 and
provide an outlook for future work.

2. Two-Level AC Zeeman Theory

Consider an atom with hyperfine spin states |g〉 and |e〉 separated by energy
h̄ωeg = h̄(ωe −ωg) to which we apply a microwave magnetic field, ~Bµw. If the field con-
tains N microwave photons and oscillates with frequency ωµw, then working with the bare
states [8,9], {|g, N〉 , |e, N − 1〉}, the Hamiltonian for the system is given by

H = H0 + Hµw + Hinteraction (1)

= h̄
[

ωg 0
0 ωe

]
+ h̄ωµw

[
N 0
0 N − 1

]
+

h̄
2

[
0 Ω

Ω? 0

]
, (2)

where the Rabi frequency is Ω = 〈g| −~µ · ~Bµw|e〉 /h̄. The Rabi frequency is an important
parameter, scaling the strength and linewidth of the ACZ interaction and selecting relevant
field polarizations. Neglecting the nuclear spin~I, the ground state (` = 0) atom’s magnetic
moment is the valence electron spin, given as ~µ = −(gSµB/h̄)~S, where µB is the Bohr
magneton (µB = 9.2740100783(28) × 10−24 J/T [10]), ~S is the spin operator of the electron,
and gS is the electron gyromagnetic factor, which we take to be gS = 2 here. Working in
the circular polarization basis and taking ẑ to be the quantization direction, we can express
the Rabi frequency as

Ω =
µB

h̄2 〈g|S+B− + S−B+ + 2SzBµw,z|e〉 , (3)

where S± = Sx ± iSy are the spin raising and lowering operators and B± = Bµw,x ± iBµw,y.
The first two terms represent the σ± transitions for circularly polarized AC magnetic fields,
and the last term represents π transitions. These matrix elements for the inter- and intra-
manifold transitions are calculated in Appendix A. In our application, the spatial shape
of the Rabi field Ω(x, y, z) field gives the entire trapping gradient, as ωµw and BDC are
intended to be global parameters.

By subtracting the offset h̄ωg + h̄ωµwN, the Hamiltonian simplifies to

H = h̄
[

0 Ω/2
Ω?/2 −δ

]
, (4)

where the detuning is defined as δ = ωµw −ωeg. This dressed atom Hamiltonian can also
be obtained by considering a two-level system interacting with an oscillating magnetic field
and making the appropriate rotating frame transformation and rotating wave approxima-
tion [11]. The detuning has a moderating effect on the ACZ energy shift EACZ and trapping
potential shape off-resonance, and it defines the degree of state mixing near resonance.
We illustrate the role of detuning on trap shape in Figure 1d for a sample two-microstrip
trap, explained later (see Section 5.1). Since the Rabi frequency broadens resonances, δ/Ω
provides a good dimensionless parametric handle on the system.
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Figure 1. Two-level atom in the presence of a microwave magnetic field. (a) The dressed atom
energies (red and blue curves) given by Equation (5) in units of h̄Ω. The bare state energies for
|e, N − 1〉 and |g, N〉 are shown in black dashed lines. For large detunings, the dressed states are
nearly identical to the bare atomic states, while at zero detuning, the dressed states are an equal
superposition of the bare states. (b) The shift in energy of the dressed states given by Equation (8).
The shift is maximum at zero detuning. Note that the |+〉 state is a low-field seeker, while the |−〉
state is a high-field seeker. (c) Comparison of the ACZ energy shift to the far off-resonance and near-
resonance approximations. (d) Vertical trap profiles of a sample |F = 2, mF = 2〉 ↔ |F = 1, mF = 1〉
hyperfine transition in 87Rb ACZ potential using 0.25 A in-phase in two microstrips, described later
(Section 5.1). We note that increased detuning lowers trap depth and frequency with the same
spatially varying Ω field, given by the resonant curve.

The eigenenergies and eigenstates of this Hamiltonian are

E± =
h̄
2

(
−δ±

√
δ2 + |Ω|2

)
(5)

|+〉 = cos(θ) |g, N〉+ sin(θ) |e, N − 1〉 (6)

|−〉 = − sin(θ) |g, N〉+ cos(θ) |e, N − 1〉 , (7)

where cos(θ) = Ω/ξ, sin(θ) = (Ω′ − δ)/ξ, Ω′ =
√

δ2 + |Ω|2 and ξ =
√
(Ω′ − δ)2 + |Ω|2.

The ACZ energy shift, determined by how the energies of the |±〉 states differ from the
bare state energies, is given by

EACZ,± = ± h̄
2

(
−|δ|+

√
δ2 + |Ω|2

)
. (8)
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By implementing an adiabatic rapid passage sweep, either of the bare atomic states can
be made into a low- or high-field seeking state based on the initial detuning, as shown in
Figure 1a,b.

Notably, the |+〉 (|−〉) state increases (decreases) in energy in the presence of a mi-
crowave field, so it is a low- (high-) field seeker. Since microwave near fields cannot have
a local field maximum via Earnshaw’s theorem, any ACZ near field trap is based on a
microwave minimum to trap atoms in the low-field seeking |+〉 state.

Recalling the form of Ω from Equation (3) and the ACZ energy in Equation (8), we
highlight the dependence on frequency and polarization of the applied microwave field
Bµw as well as the states |e〉 and |g〉. By tuning these parameters, the potential can be made
to trap targeted spin states. The addition of a sufficiently large static field BDC results in
increased splitting between hyperfine states, causing neighboring states to become less
affected by the potential via detuning isolation. In the far off-resonance limit (|δ| � Ω),
the two states resemble the bare atomic states and hardly mix. The ACZ energy shift
for the two states is given by Eg,e ≈ ±h̄|Ω|2/4δ, where the plus corresponds to |g, N〉
and the minus corresponds to |e, N − 1〉. Near resonance (|δ| � Ω), the eigenstates of
the dressed Hamiltonian are roughly equal superpositions of the bare states. In this limit
the energy shift is EACZ,± ≈ ±h̄(|Ω| − |δ|)/2. We note that near resonance, the energy
shift scales linearly with the strength of the applied field (encoded in Ω). As we move
off-resonance, the relationship becomes quadratic. These limits are shown in Figure 1c. The
near resonance approximation is well-matched to the exact energy shift for |δ/Ω| . 0.5,
while the far off-resonance limit is a good description of the energy shift when |δ/Ω| & 1.5.

We can visualize the role of detuning on the shape of the ACZ trap by plotting the
vertical trap profile for a two-microstrip configuration (see Section 5.1) at various detunings,
shown in Figure 1d. The ACZ potential is plotted in µK, based on EACZ,±/kB, where kB
is Boltzmann’s constant. On resonance (δ = 0), we see the expected linear profile in the
vicinity of the potential minimum. As detuning is increased, the trap becomes harmonic
over a larger region and flattens out.

We note that ACZ potentials are distinct from adiabatic radio frequency (RF) potentials,
which use a spatial gradient in BDC to apply a force and a RF field to transfer atoms between
spin states via adiabatic passages [12,13].

3. Microstrip-Based Atom Chip Design

The primary purpose of a microwave atom chip is to generate microwave and RF near
fields with strong enough gradients to generate a substantial ACZ trapping force. In the
near field, the spatial scale for field variations is determined by the chip’s wire spacings
and wire widths (not the wavelength), so the chip’s basic architectural building blocks
should have small wire widths and be compatible with small inter-wire spacings.

In this paper, we present chip trap designs based on microstrip transmission lines [14]
because they have two key features: (1) microstrips can have relatively small trace widths
and spacings, and (2) their simple and extended microwave field mode is well suited to
generating trapping potentials. In contrast, while co-planar waveguide (CPW) transmission
lines have been used in microwave atom chips [15,16], their compact and double-lobed
field structure makes trap design more challenging. Alternatively, the negative index of
refraction metamaterial lenses represent a tantalizing prospect for generating compact
microwave trapping structures but are beyond the scope of this paper [17].

Microstrip transmission lines consist of a conducting trace on a planar dielectric
substrate with a conducting ground plane on the opposite side. Figure 2 shows the layout
and dimensions of the 50 Ω microstrip that is the basic building block for the chip trap
designs in this paper (presented in the next sections). We choose a 50 Ω impedance in
order to facilitate impedance matching with the 50 Ω standard used in microwave cables,
amplifiers, and sources. In order to achieve both a 50 Ω impedance and a narrow trace
width, a thin substrate with a high dielectric constant is required [18,19]. Aluminum nitride
(AlN, dielectric constant εr = 8.9) additionally has a high thermal conductivity to facilitate
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heat dissipation at high microwave power. To realize the desired impedance at 6.8 GHz
with a 50 µm thick AlN substrate, we find that a 54 µm wide copper trace optimizes the
transmission of microwaves through the microstrip.

Figure 2. Single microstrip with 50 Ω impedance. (Left): Cross-sectional view of a single microstrip
with 50 Ω impedance using a 50 µm thick aluminum nitride (AlN) substrate with relative permittivity
εr = 8.9. The microstrip trace has a thickness of 5 µm and a width of 54 µm. The microstrip maintains
a 50 Ω impedance up to ∼20 GHz. Due to the ground plane, we can utilize image theory, in which a
“mirror” trace carries equal but opposite current to the microstrip. (Right): FEKO simulation of the
microstrip (left) showing the current and magnetic near field for 12.5 W at 6.8 GHz, corresponding to
a microwave current of roughly 0.5 A. Due to the AC skin effect, the current density is largest along
the edges of the trace. The microstrip was meshed to the width of the trace divided by 4 to show
this effect.

The microwave field mode propagating through the microstrip is quasi-TEM (trans-
verse electro-magnetic), where the “quasi” is due to a small longitudinal electric component
(generally negligible) that arises from the vacuum–substrate interface. The thin-substrate
microstrip of Figure 2 has good broadband performance (i.e., largely frequency indepen-
dent), which extends past 20 GHz according to our numerical simulations. Furthermore, a
single microstrip can support multiple, simultaneous, independent microwave near fields
at different frequencies, with each one targeted to a different spin state.

The basic structure of the microstrip’s field mode can be understood to arise from
the current and charge on the trace and from the opposing current and charge on the
“mirror trace” expected from the method of images (see Figure 2): a static analysis yields a
decent estimate of the magnetic and electric near fields (for distances much smaller than
the wavelength) and can be converted to a time-dependent field by multiplying by eiωµwt,
i.e., Bµw = Beiωµwt and Eµw = Eeiωµwt. Section 4 uses this analysis to understand the trap
position for various wire and microstrip configurations.

Numerical simulations are needed to obtain accurate estimates of the microstrip’s near
field mode. In particular, at high frequencies, the current tends to hug the trace edges due
to the AC skin effect [20], which in turn tends to modify the near field at distances below the
trace width. Furthermore, the proximity effect tends to modify the current distribution in
neighboring traces (and image traces): in a single microstrip, the current hugs the bottom of
the trace (it is attracted to the ground plane); for neighboring microstrips, in-phase currents
tend to repel each other, while 180◦ currents tend to attract. Furthermore, inductive and
capacitive coupling between neighboring microstrips can also modify their currents and
phases significantly (the current can “tunnel” from one trace to another via a Maxwell
displacement current). We use commercial electromagnetic simulation software (FEKO by
Altair) to model the microstrip near fields in this paper.

The basic architecture of the chip traps in this paper relies on a pair or triplet of
parallel microstrips to generate a minimum in the microwave near field. This minimum
is parallel to the microstrips and provides transverse confinement for weak-field seeking
|+〉 eigenstates. Axial confinement is generated by a microwave lattice, i.e., standing wave
(see Section 6). A static uniform magnetic field BDC is applied parallel to the microstrips
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and provides a quantization axis. In this configuration, the microwave near field drives σ±

hyperfine transitions to generate the ACZ potential.

4. Trap Location Theory

In this section, we investigate the trap position’s dependence on relative phases and
currents by mapping the zeros of the circularly polarized B± fields using a toy model for
the atom chip. We can write simple, pedagogical expressions for the trap position when
using simplifications such as long, thin, parallel wires aligned to the background BDC,
B ∝ 1/r spatial scaling, and perfect image currents. Effects that appear experimentally
such as inductive couplings between wires, the AC skin effect, and image proximity effects
are excluded here but are discussed in Section 5.

The calculations here are performed quasi-statically, where a current I = |I|eiωt+iφ in
the ẑ direction encodes its complex angle φ and its amplitude |I| into the generated magnetic
field vectors (Bx, By). The layout of the wire and microstrip configurations is given in
Figure 3. The current I at (x0, y0) generates magnetic field components at location (x, y)
given by Bx = −I µ0

2π
(y−y0)

r2
0

and By = I µ0
2π

(x−x0)

r2
0

, where r0 =
√
(x− x0)2 + (y− y0)2 =√

(∆x)2 + (∆y)2. These carry 1/r0 spatial scaling, the complex I’s phase, and θ̂ vector
orientation from cos(θ) = ∆x

r0
and sin(θ) = ∆y

r0
, where θ is the polar angle around the z-axis

wire, starting from +x̂. We sum over active currents (replacing I at (x0, y0)) at horizontal
distances d to the midline: left (IL at x0 = −d), middle (IM at x0 = 0), and right (IR at
x0 = +d), all at y0 = 0 for the “wire" cases. For microstrips, we add a ground plane at
y = 0 by moving the currents to y0 = +s, the substrate thickness, above the ground plane.
To satisfy the boundary conditions at the ground plane, equal and opposite image currents
are added at y0 = −s.

y y

x x

d d
d d

s
s

s
s

d d

substrate
ground

substrate

L

-L -M

M R

-R

L RM

Wire
Schematic

Microstrip
Schematic

By,M
Bx,M

BM

BR

BLBDC BDC

Figure 3. Schematics of (left) the multiple-wire configuration and the (right) microstrip structure,
with an added ground plane and image currents.

Having calculated the complex values of Bx and By in all xy-plane positions, we
generate the circular polarized fields via B± = Bx ± iBy. Searching for zeroes in B±, we
can locate the trap in terms of a few geometric and phase parameters. An equivalent
analytic approach for finding pure or zero B± is to locate where the local magnetic phase
relationship is given by φx − φy = ±π

2 , with |Bx| = |By|. In the subsections below, we
analyze traps produced by two- and three-wire and microstrip geometries.

4.1. Two-Wire Trap

First, we consider the two-wire trap, which does not contain the microstrip ground
plane needed for good microwave power coupling but represents an instructive case for
understanding trap behavior. Additionally, an RF trap based on this design was recently
demonstrated in our lab [21]. In the general case, two wires are separated horizontally
by 2d, and the right wire precedes by some phase φRL ≡ φR − φL, with a real positive
magnitude ratio to the left current, rRL ≡

∣∣∣ IR
IL

∣∣∣. We find that the general solution for zeroes
in B± is

y± ix = ±id · 1− rRLeiφRL

1 + rRLeiφRL
(9)
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where the imaginary and real parts of the right-hand expression are identified as the trap
coordinates (x, y), and both signs match to select for ± polarization. Solutions to B± = 0
are seen as negative complex conjugates of one another, tracing the same paths in opposite
directions, with phase φRL. The two-wire trap position in Equation (9) is plotted as “iso-r”
curves for a cycle of phase delay φRL at various values of current ratio rRL in Figure 4.
Paths that maintain phase (“iso-phase”) at ±90◦ and vary rRL trace the dashed circle of
radius d.
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Figure 4. Trap minima locations in the two-wire (left) and two-microstrip (right) models for d =

s = 1. Currents are marked by black dots. We plot trap position for various values of rRL (labeled
connected curves) across a cycle of phase φRL, given in 15◦ increments with large dots. The dashed
curves map the trap position for φRL = ±π/2 while varying the current balance rRL. Similarly,
dotted lines map φRL = 0, π. The locations of a B+ and B− trap at φRL = 15◦ are marked with 4
and5, respectively.

In the case of equal currents (rRL = 1), the trap is located at x = 0, with y controlled
by phase φRL as

y± = ±d tan(φRL/2) (10)

We plot Equation (10) in Figure 5a, for each B± field across a cycle of phases. As phase
φRL shifts away from zero, the B+ and B− minima move vertically in opposite directions
away from y = 0. Perturbations are linear near φRL = 0◦ (i.e., y = 0), although this is
not experimentally useful due to the chip’s surface. When currents are 180◦ out-of-phase
(IR = −IL, φRL = π, rRL = 1), the traps are asymptotically far away. The single trap returns
to its original position after moving through a single cycle (2π) of phase delay.

An instructive and useful special case is φRL = ±90◦ and rRL = 1, which yields
y± = ±d for the B± field. This arrangement gives one polarization-specific trap in a useful
location y+ = +d above the chip but leaves the other −d below the chip surface.

When r 6= 1, the trap crosses the x-axis outside of d for φRL = π rather than asymp-
toting to y → ∞ as well as crossing the x-axis between the wires for φRL = 0. Plugging
φRL = {0, π} into Equation (9), we see the x-axis crossings occur at x = d · 1±rRL

1∓rRL
.



Atoms 2021, 9, 54 8 of 22

− − /2 0 /2
Phase, RL

−5

−4

−3

−2

−1

0

1

2

3

4

5

V
er

tic
al

 P
os

iti
on

, d
 =

 1

Two-Wire Trap

(a)

B
+

B−

− −   /2 0 /2
Phase, RL

−5

−4

−3

−2

−1

0

1

2

3

4

5

V
er

tic
al

 P
os

iti
on

, d
 =

 s
 =

 1

Two-Microstrip Traps

(b)

B
+

B−

Figure 5. The y-position of trap minima in the two-wire (a) and two-microstrip (b) cases for equal
currents (rRL = 1) in units of d = s = 1.

4.2. Two-Microstrip Trap

Adding a ground plane to the two-wire case moves the in-phase trap out of the chip
substrate, usefully co-locating both B± minima outside of the chip. In this new geometry,
the single wires become microstrip transmission lines for efficient microwave transmission,
modeled using two mirror image currents, as seen in Figure 3 (right). Additionally, more
traps are formed with, now, four complex currents (at x0 = ±d and y0 = ±s), causing the
field to cancel in two places for both B+ and B−. We find the general expression for the
(x, y) location of the trap minima for both B±

y± ix = ±i ·
d(1− rRLeiφRL)±

√
4d2rRLeiφRL + s2(1 + rRLeiφRL)2

1 + rRLeiφRL
(11)

where the left-hand side ± sign matches the leading right-hand side ± sign referring to
B±, while the third ± sign inside the numerator gives both solutions per field polarization
component. We plot this function in the same manner as before in Figure 4 (right). By
counting 15◦ dots in Figure 4 or by counting curves for the case rRL = 1 in Figure 5b, each
phase φRL now gives four trap locations simultaneously. Furthermore, the two traps of
each polarization (B±) travel in opposite directions with phase shifts. Each trap is located
at y > 0 over one 2π cycle and at y < 0 for another 2π cycle, crossing over at y = 0 and
y → ∞ (for φ = ±π). After a cycle of 2π, the field returns to the same initial state, but if
we label the two traps and track their motion, we see that each of the two traps moves to
the other’s location in 2π, returning to their initial locations over two full cycles, i.e., 4π.

Extreme values of rRL restrict paths to just around the wires, cycling each 2π. As
before in Figure 4 (right), black dashed curves mark the iso-phase for φRL = ±π/2, now in
two locations each. The dotted lines give the iso-phase circle marking φRL = {0, π}, the in-
and out-of-phase conditions, for s = d = 1.

Again, equal currents (rRL = 1) restrict the trap location to x = 0, and the general
vertical position as a function of phase difference φRL is

y± = ±d tan(φRL/2)±
√

s2 + d2 + d2tan2(φRL/2) (12)

where again the leading sign matches B±, and the inner sign gives two solutions. We plot
these microstrip curves in Figure 5b, for rRL = d = s = 1.

Perturbing the phase around 0◦ with IL = IR, one can separate opposite polarization
traps vertically from co-location, but the trap frequencies differ and must be compensated
for in an interferometer scheme. Additionally, this phase control scheme can co-locate one
polarization’s minimum with a linear gradient or saddle-point regions from the opposite
polarization’s field.
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4.3. Three-Wire Trap

Considering the case of three currents (adding IM at x0 = 0 to IR and IL at x =
±d from Section 4.1, no images currents), we observe left–right separation of the spin
polarization for phase shifts near 0◦, fundamentally changing the behavior from the two-
wire case. We restrict ourselves to the case of equal left and right currents in magnitude and
phase, whereas we vary each of those parameters in the middle wire, with respect to the
outer wires. We use {|IL|eiφL , |IM|eiφM , |IR|eiφR} = {1, rMeiφM , 1}, with rM = |IM|/|IL| =
|IM|/|IR| = |IM|, and φL = φR = 0. The positions of the zeroes of B± for three co-planar
wires are given by

y± ix = ±id

√
rMeiφM√

2 + rMeiφM
(13)

where each B± field (identified by the left-hand ± sign) has two solutions, distinguished
by the ± sign on the right-hand side. The trap minima are plotted for various rM values
for a cycle of 0 ≤ φM ≤ 4π, with d = 1 in Figure 6. Again, as in the two-microstrip case in
Section 4.2, the solutions in Equation (13) are 2π periodic in φM. However, if atoms are in a
given trap and the phase φM is varied continuously, then the atoms return to their original
location after a 4π cycle of φM, although the field looks identical over each 2π cycle.
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Figure 6. Trap minima locations in the three-wire (left) and three-microstrip (right) models for
d = s = 1. Currents are marked by black dots. We plot various values of rM (labeled curves), across
2π of phase φM given in 15◦ increments with large dots and milliradians in small dots. The black
dashed figure-eight curve maps constant φM = ±π/2 for a range of rM. Similarly, black dotted
lines map φM = 0, π. Locations of B+ and B− traps at φM = 195◦ are marked with a 4 and 5,
respectively.

For rM < 2, the trap positions form closed loops around the middle wire, convex for
0 < rM < 1, growing to bulging bowling-pin shaped loops for 1 < rM < 2, as shown in
Figure 6 (left). At rM = 2, i.e., the standard co-planar waveguide (CPW) configuration, a
trap cannot form directly above the center trace (i.e., x = 0). Furthermore, the trapping
positions do not form a closed loop but instead demarcate diagonal asymptotes as φM → π,
limiting the CPW as a useful ACZ trapping platform. When rM > 2, the trap positions
form two loops around the outer wires. As the phase φM is varied, the loops cross the
x-axis once between the wires, and once outside, at x = ±d

√
±rM√

2±rM
.

An instructive case is IL = −IM = IR, using rM = 1, φM = π, where a trap is formed
at y = d above the middle wire, and a quick mental sketch shows the vector-wise B-field
cancellation. Perturbations around φM = π introduce imaginary components, shifting
B± zeros left-and-right differentially (see 4 and 5 in Figure 6), making this scheme an
interferometric spin separation candidate for use with a single frequency.
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4.4. Three-Microstrip Trap

We convert the three-wire scheme from Section 4.3 to a three-microstrip layout by
adding a ground plane and the three associated image currents. This arrangement of cur-
rents produces four zeroes for both B+ and B− field polarizations. The general expression
for the trap position (|B±| = 0) as a function of the center current’s relative amplitude rM
and phase φM is given by

y± ix = ±

√√√√d2(1− rMeiφM ) + s2(2 + rMeiφM )± id
√

d2(4rMeiφM − 1) + (2s)2rMeiφM (2 + rMeiφM )

2 + rMeiφM
(14)

where the two ± signs on the right-hand side give four solutions and the left-hand side
± sign identifies the B± polarization. The four expressions are plotted in Figure 6 with
the same formatting as Figure 4. The fields in Equation (14) still repeat when φM is
advanced by 2π, but similar to the two-microstrip and three-wire schemes, the phase must
be advanced by multiples of 2π for trapped atoms to return to their original locations.
For different ranges of rM, it takes a 2π, 4π, or 8π advance in the phase to make a “total”
cycle, depending on rM’s magnitude, shown in Figure 6 (right). Crossovers between these
regions of 4, 2, 1, 2, or 4 connected trap curves (shown by color or rM in Figure 6 (right))
are found to be simple expressions for rM, only for a simple case such as s = d = 1.

We can find topological boundary values of rM between the number of connected
curves by locating curves that contain a “crossing” such as the rM =

{√
10−3
2 , 1,

√
10+3
2

}
curves in Figure 4, which can split into more curves, or merge into fewer curves with
perturbations in rM. Mathematically, these values of rM mark the zeroes and 1/0 poles
under square roots in Equation (14), marking transitions between real and imaginary
total values (trading x and y). Values of rM depend generally on the eccentricity s/d of
the design.

Similar to the three-wire trap, this microstrip arrangement (simulated in Section 5.2 for
rM ≈ 0.25) overlaps the B± traps for φM = π and then separates them horizontally as φM is
shifted away from this value. Separation of the B± traps away from each other provides a
potential beamsplitting mechanism for an atom interferometer (see also Section 6.1).

5. Simulations

We now move away from ideal 2-D trap models to discuss finite-sized, 3-D simulated
versions of these microwave traps designed with 6.8 GHz as a target (87Rb hyperfine
splitting) but usefully broadband as well. One approach to modeling chip performance is
to use numerical electromagnetic simulation software to simulate the near field generated
by sets of microstrips. We observe many features of microwave engineering that are
not immediately evident from the pure current approach of Section 4, which we must
take into account when designing these chip traps. Features (or hurdles) such as phase-
dependent impedance, longitudinal propagation speeds, the skin and proximity effects,
and surface roughness all add complexity to the situation. Using the results obtained from
the simulation, we can reassess the theory to find out which approximations are justified.
For instance, thin wires are not good approximations for broad chip traces when traps are
only one or two trace widths away. Additionally, the AC skin effect’s adjustment of current
density and phase within each trace [20] and the proximity effect between traces should be
captured in proper near field calculations.

All of these effects can significantly impact the performance of the chip and trap
properties, and therefore, simulations are necessary for determining their importance as
well as for assessing chip designs. In this section, we present our simulations of two-
and three-microstrip geometries and their expected performance. The simulations are
conducted with the commercial software FEKO (Altair Inc., Troy, MI, USA) using the
method of moments solutions. The simulations require a fairly high-density discretization
(i.e., mesh) of the chip model traces in order to obtain reliable currents and fields (i.e.,
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converged values). Additionally, the memory required to run simulations using the method
of moments solutions increases with the square of the number of mesh elements. As such,
these simulations must typically be run on a supercomputer cluster with terabyte-scale
RAM memory.

5.1. Two Microstrip Traces

As shown in Section 4, the combination of magnetic near fields from multiple mi-
crostrip currents can result in a trapping potential for atoms in a given magnetic hyperfine
state. This section examines an accurate 3-D model for a two-microstrip trap in order to
determine the current distribution in the traces and the resulting trapping potential, as well
as how these depend on phase.

To overlap microwave near fields from multiple microstrips, we separate the traces
by a distance of 100 µm center-to-center. Due to the 54 µm width of the microstrips, a
scheme must be developed to transfer the microwaves from conventional connectorized
cables (BNC and SMA) down to the micron scale while maintaining a 50 Ω impedance.
Accommodating for such a device, we separate the input ports of the chip by 10 mm and
similarly separate the output ports. To fulfill these requirements, we adopt the “double-s”
configuration shown in Figure 7. Here, the chip is divided into two regions. The trapping
region comprises two parallel 1 cm long microstrips spaced 100 µm center-to-center. The
input (output) region consists of two microstrips that begin (end) at 10 mm separation,
connected to two curved traces into (out of) the trapping region. In order to minimize the
reflections for a curved microstrip, we employ a generous 1 mm turn radius, though the
rule of thumb is to use a bend radius of at least three times the trace width [22].

Figure 7. Simulation of the in-phase two-microstrip model. (Left): Current density and magnetic
near field magnitude for the model (right) with 12.5 W of power in each trace at 6.8 GHz and zero
relative phase. (Right): Geometry of the two-microstrip trap configuration. The 54 µm wide, 5 µm
thick copper traces lie on a 2 × 2.5 cm, 50 µm thick AlN substrate. A 500 µm thick copper ground
plane is placed below the substrate on the opposite side of the figure. A 1 mm turn radius is chosen to
minimize the reflections. The traces are separated by 100 µm center-to-center in the trapping region
of the chip. Microwaves are fed in through the microwave ports.

5.1.1. Standard Configuration

As outlined in Section 4.2, a benefit to using parallel microstrips is that the presence of
the ground plane lifts the minimum of the combined magnetic field from the traces out
of the plane of the chip. For currents in phase with one another, this results in co-located
B+ and B− traps. Using the model of Figure 7 (right), we direct 12.5 W into each input
at 6.8 GHz with 50 Ω impedance and zero phase difference between the left and right
ports. The resulting B± field components and corresponding ACZ potential for φRL = 0◦

are shown in Figure 8. The substrate is shown in gray, and the black rectangles indicate
the traces. Using Equation 5 for the |2, 2〉 ↔ |1, 1〉magnetic hyperfine transition, we can
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convert the B− field into an ACZ potential. The conversion to µK uses EACZ+/kB, where
kB is Boltzmann’s constant.
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Figure 8. Near field B± components and resulting ACZ potential for the in-phase two-microstrip
model for 12.5 W (in each trace) at 6.8 GHz with δ = 2π × 1 MHz detuning. The 50 µm thick AlN
substrate is shown in gray, and the traces are indicated by 5 µm thick black rectangles. The marked
white contours correspond to lines of constant potential at 50, 100, 150, and 200 µK. The ground
plane (y = −50 µm, not shown) moves the near field minimum (zero) out of the substrate and above
the traces.

The simulation results in collocated B± traps above the microstrips, consistent with
the simple theory of Section 4. However, as previously mentioned, the ideal theory does
not account for the skin effect, which is present in our model at microwave frequencies.
This effect can be seen in the current distribution of Figure 7, which shows higher current
density near the edges of the traces. The proximity effect also has a strong effect on the
current distribution and the resulting magnetic near field. As seen in Figures 7 and 8,
the in-phase currents in neighboring traces effectively repel each other, leading to larger
current density and near field strength on the outer edges of the two traces. This effect
is most easily visualized by looking at the current density in the traces for the in- and
out-of-phase cases, shown in Figure 9. At equal phase, the coupling causes currents in
each microstrip to be pushed away from each other, resulting in a larger current density on
the outside edge of the microstrips. When the currents are set to be 180◦ out-of-phase, we
observe the opposite effect and the currents are attracted to each other.
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Figure 9. Simulation of the two-microstrip “double-s” model (Figure 7) at 6.8 GHz fed with 12.5 W at
the inputs. The diagrams show the surface current magnitudes in the trapping region for different
φRL. When the input phase difference is 0◦ or 180◦, the currents are symmetric about the center
(x = 0) and the proximity effect pushes the current in each trace towards the outer or inner edges
of the microstrip, respectively. For other input phase differences (90◦ and 270◦ shown), we observe
non-symmetric currents.

5.1.2. Phase Control

To show how controlling the relative phase of the inputs affects the trapping fields,
we simulate the same two-microstrip model but now put the right trace ahead by 270◦

with respect to the left. The results of this simulation are shown in Figure 10.

−100 −50 0 50 100
−50

0

50

100

150

200
B+ ( RL = 270°)

Substrate

0

5

10

15

20

25

30

Gauss

−100 −50 0 50 100
−50

0

50

100

150

200

Substrate

0

5

10

15

20

25

30

GaussB− (  RL = 270°)

−100 −50 0 50 100
−50

0

50

100

150

200
AC Zeeman Potential (  RL = 270°)

Substrate

0

100

200

300

400

500

600

700
K

Figure 10. Near field B± components and resulting ACZ potential with φRL = 270◦ in the two-
microstrip model for 12.5 W (in each trace) at 6.8 GHz with δ = 2π × 1 MHz detuning. The marked
white contour lines correspond to lines of constant potential at 1, 3, 5, 7, 9, and 11 µK. The 50 µm
thick AlN substrate is shown in gray, and the traces are indicated by 5 µm thick black rectangles.

An interesting result is that, unlike the in- and out-of-phase cases, the currents in
the microstrips in the trapping region are not symmetric. Instead, we observe a current
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imbalance, resulting in the location of the trapping field shifting horizontally. We note that,
for these non-symmetric cases, the trace that initially “lags behind” in phase at the inputs
gains relative current magnitude and loses relative phase in the trapping region, shown
in Figure 9. The symmetry in the currents can be viewed by considering the traveling
modes of the parallel microstrip configuration. In this system, the eigennmodes are given
by the currents being completely in- or out-of-phase (0◦ and 180◦) [18,19]. In these cases,
we expect the currents in the microstrips to be well-behaved, modulo skin and proximity
effects. For other phase differences, the traveling mode is a linear superposition of the
eigenmodes, resulting in possible non-symmetry between the traces. The proximity of
the microstrips may also cause the current to move between the traces via a displacement
current induced by coupling. In designing a microwave atom chip, one must be aware of
such effects on the microstrip’s current and phase in the trapping region. Possible schemes
to minimize these effects are to increase the trace separation in the trapping region and to
adjust the input power and phases to account for the current differential.

5.2. Three-Microstrip Traces

Similar to the two-microstrip model, the three-microstrip design consists of two “s-
curves” with an additional straight trace running between them (Figure 11). The addition
of a third microstrip trace offers a couple of avenues for interferometry. As demonstrated
in Section 4.4, altering the phase of the center trace relative to the outer traces spatially
separates the B± trap minima horizontally along the x-direction above the chip surface.
This single-frequency trap splitting has been observed in simulation; however, it is not
the primary means of interferometry intended with this chip. Using multiple frequencies,
one could realize overlapping independent spin-specific traps that could subsequently be
translated horizontally onto microwave lattices generated on each of the outer traces, as
described in Section 6.

Figure 11. (Left): Simulation of the three-microstrip model at 6.8 GHz. The input power and relative
phases of the currents in this region are indicated in purple. The surface current magnitudes and
ACZ potential (2π × 1 MHz detuning) up to 200 µm above the chip surface are shown in the
trapping region of the chip. The contours indicate lines of constant potential at 1, 5, 10, 15, . . . , 60 µK.
(Right): Geometry of the three-microstrip trap configuration. The traces are separated by 100 µm
center-to-center in the trapping region of the chip. The power and phase directed into the center
microstrip are chosen such that the relative phase between the currents in the center trace and the
two outer traces at the location of the trap is 180◦.

To achieve the 180◦ phase difference for the center trace current in the central section
of the chip (see Section 4.4), we note that the different travel distances of the microwaves
for the center and side traces must be accounted for (in units of wavelength). For instance,
at 6.8 GHz, a trap is formed for a center input phase of 80◦ (Figure 11), while at 10 GHz, the
input phase is 5◦. Additionally, an unintentional lattice is formed on the center microstrip
due to possible couplings or reflections, affecting how the current propagates along the
center trace.
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Additionally, the skin and proximity effects described in previous sections are present.
Examining the two outer traces in Figure 11, the current density is seemingly larger on the
inner part of the trace than the outer trace, corresponding to a deeper red coloring. This
behavior agrees with what we encountered in Section 5.1 from the proximity effect. Since
in this region the outer currents are roughly 180◦ out of phase with the center, the currents
in the two outer traces tend to be attracted towards the inner trace.

By lowering the power and current in the center trace, the trap is pulled closer to the
chip while also reducing crosstalk to outer traces. For 8 W of input on the side microstrips
and 0.5 W on the center trace, as shown in Figure 11, the trap is located 93 µm above the
chip and has a depth of ∼15 µK.

6. Microwave Lattice

A microwave lattice, i.e., standing wave, can provide a flexible mechanism for both
axial confinement and axial positioning along the length of a microstrip trace. If microwaves
of equal amplitude are directed from both ends of a trace, then a magnetic standing wave is
created as well as an electric standing wave 90◦ out of phase with the former. The effective
index of refraction for a TEM wave in our 50 Ω microstrip with an AlN substrate is ∼2.5,
which results in a wavelength of λ = 1.8 cm at 6.8 GHz (λ = 4.4 cm in vacuum) and magnetic
minima every 0.9 cm. The lattice can be translated axially along the microstrip by adjusting
the relative phase between the two counter-propagating waves.

The three-microstrip trapping potential in Section 5.2 provides confinement in the
xy-plane transverse to the microstrips but not longitudinally along the z-axis. A microwave
lattice applied to the center microstrip at a frequency offset ∆ f from the transverse trapping
microwave fields provides axial confinement. As long as ∆ f is much faster than the
mechanical response of an atom (e.g., ∆ f = 1 MHz versus ftrap = 0.1–1 kHz), the atoms only
respond to the average microwave field magnitude at a given frequency, and thus, the total
potential is just the sum of the lattice and transverse potentials.

If spin-independent axial confinement is needed or if a different spatial period is
required, then the lattice can be operated away from the hyperfine transition used for
the transverse potentials via the AC Stark potential of the electric standing wave. For
microwaves, the AC Stark effect is in the quasi-static regime, so the Stark potential is
well approximated by the DC Stark energy shift EStark = −αE2

rms/2, where α is the DC
polarizability of the atom and Erms is the rms magnitude of the microwave electric field.
While the AC Stark potential is typically much weaker than the ACZ energy, in the very far
detuned limit, it dominates. Furthermore, at high power or very close to a microstrip trace,
the AC Stark potential can become sufficiently strong to provide useful axial confinement
at the location of the lattice electric field maximum, which is also the magnetic field
minimum (zero).

Figure 12a shows the ACZ and AC Stark potentials of a microwave lattice produced
by a standing wave current in a single microstrip (same design as in Figure 2), generated
by two counter-propagating 12.5 W traveling TEM waves at 6.8 GHz directed from either
end of the microstrip. The microwave frequency has a detuning of δ = 2π × 1 MHz on
the 87Rb |1, 1〉 ↔ |2, 2〉 transition, and the lattice potential is evaluated 100 µm above the
microstrip. In this example, the axial confinement is 30.1 Hz and 2.8 Hz for the ACZ and
AC Stark potentials, respectively, thus showing that the lattice can provide adjustable and
re-positionable axial confinement for a transverse ACZ trap.
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Figure 12. Microwave lattices for axial interferometry. (a) Plot of the ACZ (blue) and AC Stark
(orange) potentials versus axial position for a 6.8 GHz microwave standing wave produced by
two counter-propagating 12.5 W traveling TEM waves directed from either end of a microstrip
(each wave generates a current of 0.5 A in amplitude). The microwave frequency has a detuning of
δ = 2π × 1 MHz on the 87Rb |1, 1〉 ↔ |2, 2〉 transition, and the lattice potential is evaluated 100 µm
from the microstrip. (b) Schematic representation of gravimetry (maximum arm separation) and
rotation-sensing (maximum enclosed area) configurations for the interferometer. The outer trace
lattices can employ either an ACZ or an AC Stark potential for axial confinement.

6.1. Axial Interferometry

Microwave lattices enable potentially large interferometer arm separations on the
cm scale. Spin-specific transverse trap positioning can be used to beamsplit and separate
spin states towards the outer traces of the three-microstrip geometry, while microwave
lattices on these outer traces can then be used to translate the spin states axially for cm-
scale interferometer arm separations. Microwave lattices on the outer traces can use an
ACZ potential (spin-dependent) or an AC Stark potential (spin-independent). In the latter
case, the lattice can be operated at a much higher microwave frequency for tighter axial
confinement. As shown in Figure 12b, this interferometer architecture can operate in a
gravimeter configuration (outer lattices translate in opposite directions for a large arm
separation) or in a Sagnac configuration (outer lattices translate in the same direction for a
large enclosed area).

While each lattice is localized on an outer trace, there can be residual “crosstalk”,
where the lattice potential from one trace perturbs the trapping potential for spin states on
the other trace. This crosstalk between the lattices on the outer traces can be minimized by
applying lattice currents (at a given microwave frequency) to multiple microstrips with
the appropriate phases and amplitudes to further suppress the unwanted lattice at a spin
state’s location, i.e., make a “trap” or microwave lattice field minimum (zero) at its location.

6.2. Interferometer Stability

The viability of the spin-dependent interferometry approach depends on the stability
of the interferometric phase with respect to imperfections and noise in the system parame-
ters as well as to external magnetic field noise. We identify three main decoherence and
de-phasing mechanisms: (1) Asymmetry of the two spin-dependent traps that constitute
the interferometer arms, (2) gravimetric sensitivity of arm displacements to microwave
trapping parameter fluctuations, and (3) differential DC Zeeman shifts between the two
spin states.

6.2.1. Asymmetry Decoherence

Any asymmetry in the trap frequency of the harmonic traps for the two spin states lead
to decoherence, since the spin states then have slightly different trap state energies and thus
dephase over time. This decoherence mechanism has been studied both theoretically [4,23]
and experimentally [24]: the coherence time is given by tc = h̄ωtrap/(|δωtrap|kBT), where
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ωtrap is the trap frequency, δωtrap is the trap frequency asymmetry, and T is the temperature
of the atoms (kB is Boltzmann’s constant). While the symmetry of the traps can be enforced
by the careful adjustments of trap parameters over the course in the interferometry process,
uncontrolled deviations in the parameters ultimately lead to asymmetry fluctuations in
the two traps. In a microwave ACZ trap, deviations in the trap frequency δωtrap/ωtrap are
directly related to the microwave power fluctuations δP/P (via the Rabi frequency Ω) and
the microwave frequency stability δωµw/ωµw (via the detuning δ).

Table 1 shows the tolerance on trap system parameters to ensure a coherence time of
tc = 1 s. We use a target coherence time tc = 1 s, since such a time is useful for competitive
atom interferometry measurements [25], and such a time has been demonstrated in atom
chip-based Ramsey interferometers [26,27]. The power and frequency tolerance require-
ments are derived from the trap frequency asymmetry requirement. A power stability
of δP/P < 5× 10−5 requires active microwave amplitude stabilization. The microwave
frequency stability of δωµw/ωµw < 10−8 is based on a detuning of 1 MHz and is well
within the stability of commercial oscillators referenced to a high-quality clock.

Table 1. Twin trap asymmetry decoherence: Asymmetry tolerance on the trap frequency ωtrap of the
two traps of the interferometer in order to ensure a coherence time tc = 1 s. The table includes the
corresponding requirements on the microwave power P and frequency ωµw of the microwaves that
generate the two traps to limit the asymmetry on ωtrap.

Parameter Asymmetry Tolerance

Trap Frequency, ωtrap
δωtrap
ωtrap

< 5× 10−5

Power, P δP
P < 5× 10−5

Frequency, ωµw
δωµw
ωµw

< 10−8

6.2.2. Gravimetric Dephasing

If the two traps of the interferometer experience a differential vertical position fluctua-
tion, i.e., along the local direction of gravity, then a corresponding gravimetric fluctuation in
the interferometer phase accrues. This gravimetric contribution to the interferometer phase
ϕ is given by δϕ = mgδht/h̄, where m is the mass of the atom, g is the local acceleration
due to gravity, t is the interrogation time, and δh is the vertical position fluctuation. In a
three-trace trap, the trap position is controlled by the microwave power (y-axis), the phase
of the transverse trapping microwave currents (x-axis), and the microwave lattice phase
(z-axis).

Table 2 shows the required stability on the vertical position δh and the corresponding
stability on the microwave parameters to ensure an interferometer phase variation δϕ < 2π
for an interrogation time of t = 1 s (for an ultracold rubidium-based interferometer).
The stability requirements on the microwave parameters (power and phase) necessitates
their active stabilization. Shortening the interrogation to t = 100 ms relaxes the stability
requirements by a factor of 10.

Table 2. Required gravimetric stability. The stability requirements ensure an interferometer phase
fluctuation δϕ < 2π for an interrogation time of t = 1 s. The required stability is computed
with gravity (9.8 m/s2) oriented along the direction that the parameter controls (i.e., orientation of
maximum sensitivity to gravity) for a 87Rb-based interferometer.

Parameter Stability Tolerance

Trap Height, h δh < 5× 10−10 m
Power, P (center trace) δP

P < 9× 10−6

Microwave Phase, φ
Transverse: δφM < 5× 10−6 rads

Lattice/axial: δφlattice < 3× 10−7 rads



Atoms 2021, 9, 54 18 of 22

6.2.3. Differential Zeeman Shifts

Technical and environmental magnetic field noise generate spin-dependent DC Zee-
man energy shifts in the two spin states used in the interferometer. The resulting energy
fluctuations quickly de-phase the interferometer signal, so a mitigation strategy is needed.
If the spin state pair have a “magic” magnetic field, then at this field the differential Zeeman
shift between the two spin states is zero and thus immune to magnetic field noise (to first
order). Table A3 in Appendix B shows the low-field magic magnetic fields for rubidium
and potassium isotopes of interest. Notably, the use of the 3.23 G magic magnetic field for
the |F = 2, mF = 1〉, and |F = 1, mF = −1〉 spin states of 87Rb has resulted in a coherence
time of about 1 s for a Ramsey interferometer based on atoms in a micromagnetic chip
trap [26] and in a laser dipole trap [27].

7. Conclusions

In summary, we presented several microwave traps targeted toward use in trapped
atom interferometry based on an atom chip with microstrip transmission lines. Utilizing the
near field generated by sets of two or three microstrips, we can make use of the ACZ effect
to produce a trap for ultracold atoms in a specific hyperfine spin state. This spin-specific
trapping scheme offers experimental control variables not currently part of the ultracold
atom chip toolbox. detuning of the microwave magnetic field affects the shape of the trap,
changing from linear near resonance to more quadratic as detuning increases. Additionally,
adjusting the phase of the field-generating microwave currents allows for the targeting of
specific hyperfine magnetic states using circularly polarized fields.

While the microstrip geometries described in this paper generate near field traps from
microwaves, we have not addressed how to couple microwaves into and out of the chip.
An important engineering task is to efficiently transfer (i.e., “focus”) microwaves in coaxial
cables with mm-scale TEM field modes into the 54 µm-wide microstrips. Areas of current
interest are the design and simulation of tapered connectors, tapered coplanar waveguides,
and micro-coaxial cables [28].

While this paper focused on microwave ACZ traps geared towards interferometry,
such spin-specific trapping has other useful applications. For example, in 1D many-
body systems, the collective eigenmodes manifest themselves as pure spin or charge
(“charge” here refers to density) wave packets that propagate at different velocities [29].
By overlapping two 1D gases comprising different spin states, a spin-specific potential
could be used to control interactions and the resulting spin-charge separation [30]. The
microwave ACZ traps could also be used to realize spin-based quantum gates, in which
entanglement between internal atomic spin states can be mediated by the spin-specific
ACZ potential, as is pursued in the ion quantum computing community [31–34].

Finally, we note in closing that atom chips based on ACZ near field traps are expected
to benefit from the suppression of potential roughness. Resulting from the transfer of chip
wire defects into the trapping potential, this roughness is a frequent concern when using
atom chips [35]. Fortunately, current theoretical work indicates that such roughness is
expected to be significantly suppressed in RF and microwave ACZ chip traps [36–38].
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Appendix A. Matrix Elements in the Rabi Frequency

In the low-field limit, µBBDC � ∆h f s, where ∆h f s is the ground ` = 0 hyperfine
splitting, F2 = F(F + 1) and Fz are “good” quantum numbers, and |F, m〉 are eigenstates
of the atomic Hamiltonian. We calculate the Clebsch–Gordan coefficients for the F± =
I ± S = 3

2 ±
1
2 hyperfine states for the inter-manifold microwave transitions as

〈F+, m|S±|F−, m′〉 = ± h̄
√
(F+ ±m)(F+ ±m′)

2I + 1
δm,m′±1, (A1)

〈F+, m|Sz|F−, m′〉 = − h̄
√
(F+ + m)(F+ −m′)

2I + 1
δm,m′ . (A2)

For the low-frequency intra-manifold transitions, we have

〈F, m|S±|F, m′〉 = η
h̄
√
(F±m)(F∓m′)

2I + 1
δm,m′±1, (A3)

〈F, m|Sz|F, m′〉 = η
h̄m

2I + 1
δm,m′ . (A4)

where (η = ±1 for F = F±). These elements identify the transitions allowed with a Kro-
necker delta, give the relative transition probability values, and select a single polarization
field per transition. We list explicit values for the inter-manifold values in Table A1 and for
the intra-manifold values in Table A2.

As an example, consider the |2, 2〉 ↔ |1, 1〉 inter-manifold transition (∆m = +1) in
the presence of a microwave magnetic field with (Bx, By, Bz) = (1, 1, 1) G, where the time
dependence is contained in a complex exponential (see Section 4). From the δ-function in the
above equations for the inter-manifold transitions, the only non-vanishing contribution in
Equation (3) contains S+. The magnitude of the Rabi frequency is then |Ω| = | µB

h̄2 B− 〈S+〉 |.
Using the provided tables (A1), we see that 〈S+〉 = h̄

√
12/4 for this transition. Therefore,

|Ω| ≈ 2π × 1.7 MHz.

 https://www.wm.edu/it/rc
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Table A1. Clebsch–Gordan coefficients (factor of h̄/4 pulled out) used to to determine the Rabi
frequency for the inter-manifold transitions (∆m = m−m′). Note that the 〈Sz〉 coefficients have a
factor of 2 included to match the form of the Rabi frequency given in Equation (3).

∆m F+ m F− m′ 〈S+〉 〈S−〉 2 〈Sz〉

+1
2 2 1 1

√
12 0 0

2 1 1 0
√

6 0 0
2 0 1 −1

√
2 0 0

−1
2 0 1 1 0 −

√
2 0

2 −1 1 0 0 −
√

6 0
2 −2 1 −1 0 −

√
12 0

0
2 1 1 1 0 0 −

√
12

2 0 1 0 0 0 −4
2 −1 1 −1 0 0 −

√
12

Table A2. Clebsch–Gordan coefficients (factor of h̄/4 pulled out) used to determine the Rabi frequency
for the intra-manifold transitions (∆m = m−m′). Note that the 〈Sz〉 coefficients have a factor of 2
included to match the form of the Rabi frequency given in Equation (3).

∆m F m m′ 〈S+〉 〈S−〉 2 〈Sz〉 F m m′ 〈S+〉 〈S−〉 2 〈Sz〉

+1

2 2 1 2 0 0 1 1 0 −
√

2 0 0
2 1 0

√
6 0 0

2 0 −1
√

6 0 0 1 0 −1 −
√

2 0 02 −1 −2 2 0 0

−1

2 1 2 0 2 0 1 0 1 0 −
√

2 0
2 0 1 0

√
6 0

2 −1 0 0
√

6 0 1 −1 0 0 −
√

2 02 −2 −1 0 2 0

0

2 2 2 0 0 4 1 1 1 0 0 −22 1 1 0 0 2
2 0 0 0 0 0 1 0 0 0 0 0
2 −1 −1 0 0 −2 1 −1 −1 0 0 22 −2 −2 0 0 −4

Additionally, we note that while both S+ and S− can have nonzero values for RF tran-
sitions within in each manifold on paper, in practice, the level structure of each hyperfine
manifold determines its circular polarization with the level’s gyromagnetic ratio gF. In
the case of 87Rb, the F = 2 (1) manifold has gF = 1

2 (− 1
2 ), forcing any addition of photon

energy to alter ∆mF = +1 (∆mF = −1) via solely σ+ (σ−) transitions [12]. Additionally, the
intra-manifold Sz self-term can be identified as the DC Zeeman mF value.

Appendix B. Rubidium vs. Potassium

When using atoms as sensitive clocks or matter-wave interferometers, reducing the
sensitivity to environmental magnetic field fluctuations and noise is generally necessary.
Given the ACZ effect’s ability to utilize any spin state, we can target so-called “clock
states” that have identical linear DC Zeeman shifting, accounting for higher-order effects,
turning noise in the magnetic field into a common-mode noise, and leaving a second-order
magnetic dependence instead. The classic example is between 87Rb’s |2, 1〉 and |1,−1〉 at
3.23 Gauss, but this is a two-photon transition, where one photon is nearly 6.8 GHz.

Isotopes of potassium, both fermions and bosons, have hyperfine splittings much
lower, around 250 MHz and 1.3 GHz. We list some available “magic” magnetic fields that
produce good clock states in Rb and K in Table A3. Operating at lower frequency relaxes
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some chip design constraints needed for microwave frequencies as well as allows for
easier phase control and more precise signal generation. Additionally, potassium benefits
from improved spin-specificity because the magic magnetic fields are typically an order of
magnitude larger than in 87Rb, so neighboring (unwanted) transitions are also an order of
magnitude further off resonance.

Table A3. Low-field “magic” magnetic fields for 87Rb, 41K , and 40K. All values are computed.
“Zeeman splittings” refers to the energy splittings with states neighboring the “state pair”.

Isotope “Magic” Field
(G)

State Pair
|F, mF〉 Basis Energy (MHz) Zeeman Splittings

(MHz)
87Rb 3.23 |2, 1〉& |1,−1〉 6834.7 ∼2

41K
24.47 |2,−1〉& |1, 0〉 245.4 15–21
24.36 |2, 0〉& |1,−1〉 245.3 15–18
45.36 |2,−1〉& |1,−1〉 219.9 32–47

40K

0.72 |9/2, 7/2〉& |7/2,−7/2〉 1285.0 ∼0.2
50.96 |9/2, 1/2〉& |7/2, 1/2〉 1277.8 ∼16
53.56 |9/2,−1/2〉& |7/2, 3/2〉 1277.4 16–18
53.74 |9/2, 3/2〉& |7/2,−1/2〉 1277.4 16–18
63.55 |9/2,−3/2〉& |7/2, 5/2〉 1275.9 19–22
63.95 |9/2, 5/2〉& |7/2,−3/2〉 1275.8 19–22
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