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Abstract: Molecular dynamic simulations of Li+, and Br− ions in acetonitrile were carried out.
The simulated structural properties were compared to experimental data. The solvent potentials
of Li+-Br−, Li+-Li+, and Br−-Br− were evaluated using constrained molecular dynamics (CMD)
simulations, to determine the solvent contribution to the total force acting on the solute and estimate
the liquid arrangements according to the potential of mean force (PMF) values. The PMF of friction
kernels and the passage across the Li+-Br− barrier was studied using the Grote–Hynes theory. The
union-separation development happens in the polarization confining system.

Keywords: constrained molecular dynamics simulation; mean force potentials; acetonitrile; ions pair;
association-dissociation process

1. Introduction

Understanding ionic association in polar solvents at the molecular level is vital to
interpreting many chemical and biological processes [1]. Much research is being carried
out based on molecular dynamics simulations of ionic liquids in polar diluents, such as
methanol and water [2–4]. Constrained molecular dynamics (CMD) [5] simulations are
performed while maintaining a fixed interior separation. In this way, the ion–ion potential
of mean force (PMF) and coefficients of relative friction can be obtained to determine the
association constants. In addition, such simulations can reveal the behavior of ions and
adjacent molecules at the microscopic level. A characteristic of the liquids mentioned is
that, unlike acetonitrile (MeCN), they form hydrogen bridges.

Equations for deriving PMF values for lithium bromide in acetonitrile through simu-
lations have not yet been established, although theoretical calculations can be performed
via the Ornstein–Zernike equation using a hypernetted-chain (HNC) approach [6]. Ace-
tonitrile is a widely used organic solvent whose molecules do not form hydrogen bonds,
unlike water (H2O) and methanol (MeOH). In addition, it has a relative permittivity
(εMeCN

r = 36) significantly lower than that of water (εH2O
r = 78) and similar to that of

methanol (εMeOH
r = 34). It can be beneficial to compare the results obtained with different

solvents. The ion pair (Li+-Br−) was chosen in this study because data on neutron diffrac-
tion [7] and dielectric relaxation [8] are available for comparison. In the last 20 years, a great
deal of progress has been made in the study of ions in solution (both aqueous and non-, and
both experimental and theoretical). For example, the importance of explicit polarizability
in models to describe solvation of anions such as Br− is well established, and certainly
new experimental data using neutron scattering or other methods are available. Metal
salt solutions in polar aprotic solvents have a wide range of uses, including electrolytes
in electrochemical devices (such as lithium batteries with high energy density, capacitors,
and so on) and reagents in organometallic chemistry. The details of interactions between
dissolved salt ions and organic solvent molecules influence the density, viscosity, volatility,
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ionic conductivity, and other essential properties of ionic solutions. As a result, ion–solvent
interactions appear to be critical for furthering our understanding of ionic solutions. The in-
teraction of solvents with positive and negative ions differs significantly, making it difficult
to obtain a thorough knowledge of the anion solvation mechanism. Because of the huge size
of anions, their intricate geometry (for polyatomic anions) and charge distribution, anion
solvent interactions are weaker than cation solvent interactions. Second, in aprotic solvents,
anion solvation is mostly accomplished through hydrogen bonding, which is absent in
anionic solvents. For these reasons, it is commonly assumed that metal salt dissolving in
polar aprotic solvents occurs solely due to the solvation of metal cations, whereas anions
remain uncoordinated by the solvent molecules. Nevertheless, a thorough investigation of
monoatomic halide anions using both theoretical and experimental methods has revealed
that these notions are oversimplified, and that interactions of the halide anion with polar
aprotic solvent molecules is possible. The weak halide–solvent interactions, on the other
hand, make theoretical analyses of halide solvation difficult, necessitating a fine balance
between ion–solvent and solvent–solvent interactions. For bromide, as well as aprotic
and non-polar solvents, this trend becomes very pronounced. When acetonitrile is uti-
lized as the solvent, solvation numbers in the range of 1–9 are discovered in the literature
for this anion. Furthermore, the solvent molecules’ molecular organization is not well
understood [9–11].

The PMF values (W (r)) between particles with electrical charge in liquid perform a
crucial part of the analysis of liquefied mixtures. CMD, as a computer simulation technique,
is very useful for calculating W (r). CMD simulations can be used to calculate the mean
force (MF) exerted on dissolved substance by solvent, whereas the separation between
the solute is constrained. We used CMD and non-constrained (non-CMD) simulations to
calculate the W(r) of Li+-Br−, Li+-Li+, and Br−-Br− and the dynamics of these particles
with electrical charge.

This article is structured as follows. Details of our simulations and interaction poten-
tial models are given in Section 2. The ion–solvent structural properties obtained from the
non-CMD simulations, the ion–ion MF along with PMF results obtained for all the simula-
tions and the Li+-Br− pair friction kernel and the interconversion process are analyzed in
Section 3. The conclusions of this paper are summarized in Section 4.

2. Materials and Methods

The PMF values for Li+-Br−, Li+-Li+, and Br−-Br− in acetonitrile have been evaluated.
We carried out CMD simulations of systems built of two ions and 214 solvent molecules
located in a cubic box with periodic boundary conditions. The volume of the cubic box
(L = 26.58 Å) was selected to give a solvent density of 0.777 g/cm3 and with a temperature
of 298 K. Additionally, non-CMD simulations were performed for two systems with free
ions: one with Li+ and another with Br−. All code/programs-software used to perform the
simulations were developed in-house. Mainly the simulations codes were developed using
Fortran 77. The code included routines which evaluated the interaction potential, periodic
conditions, integration algorithms, implementation of constraints (SHAKE procedure) and
the mean force. See the Appendices A and B for simulation details.

We used an “acetonitrile rigid molecule pairwise additive potential model” [12,13] and
performed calculations for the nitrogen (N), carbon (C) and methyl group (Me) interaction
sites. Me is considered to be a unit atom model. The methyl-carbon and carbon-nitrogen
distances were 1.458 Å and 1.157 Å, respectively, as shown in Figure 1. The dipole moment
of each acetonitrile molecule is equal to 3.96 D.

Figure 1. Molecular model of acetonitrile.
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The ion–ion, ion–solvent and solvent–solvent interactions were evaluated using the
following mathematical expression:

Wmn = ∑on m
i ∑on n

j

(
Ai Aj

r12
ij
−

CiCj

r6
ij

+
qiqj

rij

)
, (1)

in terms of the Lennard–Jones parameters, A2
i = 4εiσ

12
i , C2

i = 4εiσ
6
i and qi is the charge

allocated to the place i.
We used the parameters for Li+ and Br− derived by Chandrasekhar et al. [14] and

Lybrand [15] from first principles computations of free ions in H2O. The values of the
parameters are summarized in Table 1. By using the same ion’s Lennard–Jones parameters
for acetonitrile as for water, we are assuming that ε and σ transfer from one solvent
to another.

Table 1. Lennard–Jones Interaction potential parameters.

Atom/Ion ε/kcal mol−1 σ/Å q/e
a Me 0.1869 3.775 +0.206
a C 0.130 3.650 +0.247
a N 0.15 3.200 −0.453

b Li+ 6.25 1.26 +1.0
c Br− 0.0907 4.62 −1.0

a Values from [12]. b Values from [14]. c Values from [15].

Table 2 summarizes the range of the interionic separation for each pair and the total
number of simulations performed. Each simulation consisted of a stabilization interval
of 25 ps followed by a generation time of 50 ps. For certain interionic separations, CMD
simulations of 100 ps were carried out to calculate statistical errors and friction kernels,
and for detailed study of the configuration of the solvent over the ion pairs. In the case of
acetonitrile, an integration step of 0.005 ps was used. We used the integration algorithm
of Berendsen et al. [16] with the SHAKE technique [17] to fix the molecular distances.
The Lennard–Jones interactions were cut off at L/2 and the long-range exchanges were
calculated by the Ewald sum technique [18].

Table 2. Range of inter ion distances and total number of CMD simulations conducted for each
ion pair.

Ion Pair rmin−rmax No. of Simulations

Li+-Br− 1.8 Å–9.0 Å 37
Li+-Li+ 2.0 Å–9.0 Å 36

Br−-Br− 4.0 Å–9.0 Å 26

Radial distribution functions (g(r)). The number of particles in a volume dr centered
at r, provided that one is at the origin is N(r + dr) = ρbulk·g(r)·dr; we know that (g(r)) de-
pends solely on the modulus r, so we may better consider the number of particles contained
in a spherical shell of radius r and r + ∆r, given by N(r, r + ∆r) = 4π·ρbulk·r2·g(r)·∆r,
from this formula g(r) can be calculated as, g(r) = lim

∆r→0

N(r,r+∆r)
4π·ρbulk ·r2·∆r .

In a practical simulation, a finite ∆r is considered. At each time step of the numerical
integration, all the pairs separated by a distance (r, r + ∆r) would be counted and added to
a histogram, then a coarse-grained g(r) is obtained.

Finally, we carried out two unconstrained simulations of Li+ and Br−, with 215 solvent
molecules. The information obtained from these ion–solvent structure simulations is
compared to the neutron diffraction data in Section 3. In addition, these simulations are
representative of an infinitely diluted solution (zero concentration limit). According to
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Chandrasekhar and Jorgensen [19], the enthalpy of dissolution (∆Hsol) can be determined
from these simulations by means of the following expression:

∆Hsol = ∆Usol + P∆Vsol − RTre f , (2)

where the last two terms are negligible under normal environmental conditions, and ∆Usol
is the difference between the interaction energy of the infinite dilution system (U∞

sol) and
the pure solvent (U ∗):

∆Usol = U∞
sol −U∗, (3)

although these expressions are commonly used to determine ∆Hsol from the simulations,
we will use them in reverse to obtain an experimental estimate of U∞

sol from the experimental
results of ∆Hsol and U*.

Table 3 shows the U∞
sol values corresponding to our simulations, which are compared

against the experimental values obtained from the procedure described above.

Table 3. Comparison between the experimental and simulation results regarding the interaction
energy of a solution at infinite dilution U∞

sol(kcal mol−1).

Ion ∆Hsol(exp) U*/N (exp) U∞
sol(N + 1)(exp) U∞

sol(N + 1)(sim)

Li+ −7.4 b −7.48
Br− −80 a −7.73 −7.11

a from Ref. [20]; b from Ref. [21].

3. Results and Discussion
3.1. Ion–Acetonitrile Structural Properties

The structural properties obtained from the non-CMD simulations of Li+ and Br−

ions in acetonitrile are shown in Figure 2 (left axis) in the form of ion-acetonitrile radial
distribution functions [gIMeCN(r) = gIN(r), gIC(r), gIMe(r)]. We similarly calculated the
running coordination numbers (n(r)) which is giving by n(r) = 4πρ

∫ r
0 r′2g(r′)dr′ where

ρ is the numeric solvent density. The function n(r) gives the mean number of molecules
within a sphere of radius r centered on the ion. The coordination number is defined as
the plateau value of n(r) at distances close to the first g(r) minimum (Figure 2, right axis).
Table 4 summarizes the positions of the first peaks of gIMeCN(r), and the coordination
numbers obtained from our simulations and neutron diffraction experiments. The most
probable distances, Li+-N and Li+-C, are well-reproduced. For Li+ in acetonitrile, we obtain
a coordination number slightly higher than the experimental one (5.5 instead of 3).

Table 4. Ion-atom distances and corresponding coordination numbers.

Atoms Distance/Å Coordination Number

Simulation Experiment a Simulation Experiment a

Li+-N 2.025 2.05 5.5 2.9± 0.3
Li+-C 3.075 3.17 5.5 3.4± 0.3

Source: a from Ref. [7].

Elastic neutron scattering measurements obtained by applying the first-order differ-
ence approach [22,23] yield experimental information about the arrangement of solvent
molecules surrounding ions. This procedure establishes a difference function ∆GI , which
is a combination of the partial radial distribution functions corresponding to each solvent
atom: gIMe(r), gIC(r), gIN(r). The experimental solubility of LiBr in acetonitrile is 0.58 M.
We calculated the ∆GMeCN

Li+
corresponding to this concentration from the gIMeCN(r) for Li+

as follows:

∆GMeCN
Li+ (r) = A[gLiBr(r) − 1] + B[gLiLi(r) − 1] + C[gLiH(r) − 1] + · · ·

D
[
gLiC1(r) − 1

]
+ E[gLiN(r) − 1] + F

[
gLiC2(r) − 1

] (4)
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where the constants A–F depend on the concentration and scattering lengths. The contri-
bution of the first two terms of (4) pertains to distances beyond the first hydration shell,
A = B ∼ 0. The shape of the ∆GMeCN

Li+
function resulting from the simulations is in agree-

ment with the experimental results (Figure 3). We obtained the contribution to ∆GMeCN
Li+

for the last three terms of (4). The results are consistent with the interpretation regarding
the principal ∆GMeCN

Li+
peaks. The discrepancies in the height of the ∆GMeCN

Li+
peaks can be

attributed to the deficiency in the interaction potentials used, as well as to experimental
inaccuracies and the hydrogen atoms of the methyl group not being taken into account.
Nevertheless, nearly all of the computer simulation studies described for acetonitrile and
acetonitrile solutions are based on the hypothesis of rigid molecular models that do not
explicitly consider the hydrogen atoms of the methyl group. With this assumption, the
computing time is substantially decreased, and longer simulations of larger systems can be
carried out.

Figure 2. Free ion–N (________________), free ion–C (- - - - - - - - - -), and free ion–Me (– – – – – – –) radial
distribution functions and running coordination numbers for Li+ (top) and Br− (bottom).

Table 4 summarizes the positions of the first peaks of gIMeCN(r), and the coordination
numbers obtained from our simulations and neutron diffraction experiments. The most
probable distances, Li+-N and Li+-C, are well-reproduced. For Li+ in acetonitrile, we obtain
a coordination number slightly higher than the experimental one (5.5 instead of 3). This
failure of simulations can be attributed to the deficiency in the interaction potentials used
and the hydrogen atoms of the methyl group not being considered explicit.
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Figure 3. Comparison between the ∆GMeCN
Li+ functions resulting from the CMD simulations (________)

and (- - - -) the experiments from Ref. [7].

3.2. Mean Force Potentials

The force (∆F(t;r)) applied by N solvent molecules along the intermolecular axis of
two A and B ions is indicated by:

∆F(t; r) = µ

(
FAS(t; r)

mA
− FBS(t; r)

mB

)
·r̂, (5)

the resultant forces FAS(t; r) and FBS(t; r) acting on the solute caused by the molecular
liquid, mA and mB are the masses of the solute, r̂ is the unit vector alongside the AB path
and µ = mAmB/(mA + mB) is the reduced mass. This expression is calculated at every
single time interval and averaged throughout the entire simulation. Where Fd(r) is the
direct solute force, and the resultant MF between ions is:

F(r) = Fd(r) + ∆F(r), (6)

where ∆F(r) ≡ 〈∆F(t; r)〉. W(r) was calculated by integrating the mean force:

W(r) = W(r0) −
∫ r

r0

Fd(r)dr. (7)

W(r0) was calculated so the PMF values matched the macroscopic Coulomb potential
at large distances (r0 = 9.0 Å) and used the experimental acetonitrile relative permittivity
(εMeCN

r = 36). Table 2 summarizes the range of interionic separation for each pair and the
total number of simulations performed.

The statistical errors for W(r) and ∆F were analyzed as stated by the method outlined
in the ref. [24]. Table 5 shows the statistical inefficiency (s∆F(r)), standard deviation (σ∆F(r))
and estimated statistical errors (ε∆F(r)) values according to several interionic distances and
simulation lengths. Simulations beyond 50 ps provided no further benefit. The estimated
errors for the mean force potentials for the various ion pairs range between 0.4 kBT and
0.7 kBT.

The MF acting on every single ion is shown in Figure 4, jointly with the direct (Fd) and
solvent (∆F(r)) contributions to the Li+-Br−, Li+-Li+, and Br−-Br− pairs. The contributions
of the solvent (∆F(r)) are opposite to the direct ion–ion force in all the systems.

This is constant with the trend of polar liquids to produce stable complexes in the
case of like-ion pairs, and to separate ions with opposite signs [2–5]. Equilibrium between
the direct and solvent contributions results in a repulsive force acting on the Li+-Li+ pair
at all distances. For the Li+-Br− pair, the resultant force is repulsive at extremely small
distances and attractive at middle separation. The total force on the Br−-Br− pair has
similar tendencies, but the attractive component is considerably less significant.
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Table 5. Error estimates: value to the ion–ion PMF (kBT/Å).

Ion Pair r/Å S∆F(r)/ps
τRUN = 50 ps τRUN = 75 ps τRUN = 100 ps

σ∆F(r) ε∆F(r) σ∆F(r) ε∆F(r) σ∆F(r) ε∆F(r)

2.2 0.30 9.51 0.74 9.05 0.57 8.87 0.48
Li+-Br− 4.4 0.05 14.16 0.45 14.23 0.37 14.90 0.33

8.0 0.15 11.54 0.63 11.97 0.54 12.09 0.47
Li+-Li+ 5.6 0.12 11.11 0.54 11.04 0.54 10.75 0.37

Br−-Br− 7.0 0.45 4.48 0.43 4.51 0.35 4.68 0.32

Figure 4. Contributions to the mean force acting on the Li+-Br−, Li+-Li+, and Br−–Br− ion pairs.
- - - - - - - Fd, •••••••• ∆F(r), -*-*-*-*-F(r).

Figure 5 shows the PMF values for the various ion pairs. Oscillations in the potential
corresponding to Li+-Br− occur in association with the structure of the solvent in the
vicinity of the ions. W(r) shows a noticeable minimum at 2.2 Å and lower one at 8.0 Å.
The contact ion pair (CIP) region corresponding to the first minimum, and for the solvent
separated ion pair (SSIP) region the second one. W(r) shows a maximum at r = 4.4 Å. In
the CIP region, the ion pairs are enclosed by acetonitrile particles, with the corresponding
nitrogen atoms geared to the Li+ and their methyl groups in the direction of Br−, as
illustrated in Figure 6. The SSIP region values are attributed to attractive forces produced
by solvent molecules between ion pairs.
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Figure 5. Mean force potentials for the various ion pairs.

The stability of the CIP and SSIP regions is indicated by the association constants [25].
For the CIP and SSIP state we have the following expressions

KCIP = 4π NA

∫ rb

0
e−

W(r)
KBT r′2dr′ (8)

KSSIP = 4π NA

∫ rm

rb

e−
W(r)
KBT r′2dr′, (9)

where NA is the Avogadro’s number and rb is a cut-off parameter that we have chosen as
the position of the first potential of mean force W(r) maximum, and rm is some value of r
for which it is considered that the diffusive motion is a good approximation. Moreover, the
equilibrium constant is giving by

Keq =
KSSIP
KCIP

, (10)

we calculate the association constants KCIP and KSSIP and the equilibrium constant, as
shown in Table 6. We found that KCIP � KSSIP. The value obtained from the equilibrium
constant (Keq = 7.1× 10−12) indicates much less stable configurations in the SSIP region
compared to the CIP region.
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Figure 6. Configurations of acetonitrile clusters that illustrating the compositions of solvent molecules
over ion pairs at various interionic separations. Li+ (yellow color), Br− (green color), N (blue color)
and C and Me (gray color).

Table 6. Li+-Br− association-dissociation barrier heights in kBT and association constants in 1/mol
(ion–ion distances are in Å).

Magnitude Value

rCIP 2.2
rmax 4.4
rSSIP 8.0

Dissociation barrier 33.7
Association barrier 2.9

KCIP 3.1× 1012

KSSIP 22.0
Keq 7.1× 10−12

W(r) for Li+-Li+ is repulsive and decreases monotonically to zero. Even though the
acetonitrile molecules located near the ion pairs have their nitrogen atoms toward Li+, as
shown in Figure 7, the electrostatic interaction N-Li+ is less important than Fd.
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Figure 7. Configurations of acetonitrile clusters illustrating the arrangements of solvent molecules
around Li+-Li+, and Br−-Br− ion pairs at two interionic separations. Li+ (yellow color), Br− (green
color), N (blue color) and C and Me (gray color).

The Br−-Br− pair conformation is steadied at a separation corresponding to the
minimum (r = 7.0 Å) of W(r) by the acetonitrile molecules enveloping it. Their methyl
atoms are oriented toward the Br− ions due to an attractive interaction. The structure is
stabilized by the methyl atoms of the liquid molecule in the central area.

To carry out a more quantitative analysis of the distribution of the liquid molecules
around the ionic particles, we determined the radial ion–solvent distribution functions
(left axis) and their corresponding coordination numbers (right axis) for different interionic
separations. Figures 8 and 9 show the radial distribution functions, Ion-Me, Ion-C and
Ion-N, obtained in the situation of the Li+-Br− ion pair for the interionic separations
corresponding to rCIP, rSIP and the maximum value of W(r). Table 7 summarizes the
positions of the maximum and minimum radial distribution functions for the various cases
analyzed. The corresponding coordination numbers are given in Table 8. A coordination
number (cnN) of 23 for a free bromide ion in acetonitrile is large. This value may be
attributed to the deficiency in the interaction potentials used. Nevertheless, other studies
indicate that the solvation shell of the Br-anion can have a maximum number of molecules
of acetonitrile bigger than 10 [9]. It should also be pointed out that in aqueous solutions
coordination numbers increase when the concentration decrease [26].
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Figure 8. Radial distribution functions and running coordination numbers for Li+ at various interionic
separations for the Li+-Br− ion pair.

3.3. Li+-Br− Interconversion and Friction Kernels

The friction kernels ξ(t) depend on the ionic species and interionic distances [27].
We determined the transmission coefficient (k) of the barrier at 4.4 Å according to

the Grote–Hynes theory of chemical reactions in a solution. In this model, the reaction
coordinate develops by a global Langevin equation. The transmission coefficient (subscript
GH or Kr stand for Grote–Hynes or Kramers) can be obtained as:

kGH =
λr

ωb
, (11)

where ωb is the barrier frequency, obtained by extrapolating an inverted parabola with an
apex equivalent to the maximum PMF value. λr (reactive frequency) is the result of the
next expression:

λr =
ωb[

λr +
∫ ∞

0 ξ(t)e−λrtdt
] . (12)
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Figure 9. Radial distribution functions and running coordination numbers for Br− at several interi-
onic separations for the Li+-Br− ion pair.

It is follows that λr is the characteristic frequency for the unstable motion at the
transition state. For the coefficients involved in the previous theory regarding the Li+-Br−,
Li+-Li+, and Br−-Br− systems, the initial values of the friction kernels (ξ(0)) are summa-
rized in Table 9. The initial time values of the ξ(t) kernels are not only dependent on
the ionic species but also show noticeable changes with the interionic separation. This
interionic separation dependence of ξ(0) is strongly related to the magnitude of the changes
in the solvent structure around the ion pairs as a function of these separations. The nor-
malized friction kernels (ξN(t) = ξ(t)/ξ(0)) related through all cases are displayed in
Figures 10 and 11. There are features common to the functions of both systems, all of
which show a rapid and very similar initial decay before 0.2 ps. A lengthy decay follows,
characterized for each individual system.
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Table 7. Maximum (Rion−atom) and minimum (rion−atom) radial distribution functions for the various cases.

Ion-Pair r/Å Rion−N g(Rion−N) Rion−C g(Rion−C) Rion−Me g(Rion−Me)
Li+ Br− Li+ Br− Li+ Br− Li+ Br− Li+ Br− Li+ Br−

2.2 2.025 3.575 26.3 4.3 3.075 4.575 7.1 2.8 4.525 3.925 3.7 3.3
Li+-Br− 4.4 1.975 4.325 36.9 1.7 3.025 3.975 9.4 2.2 4.575 3.875 3.4 4.6

8.0 2.075 6.075 27.1. 1.7 3.125 4.925 10.4 2.2 4.525 3.875 4.9 5.3
Li+-Li+ 5.6 1.975 27.8 3.075 10.0 4.525 4.6

Br−-Br− 7.0 5.675 1.5 4.775 2.2 3.875 5.3
Free ions 2.025 5.775 27.8 1.5 3.075 4.775 10.1 2.2 4.525 3.875 4.7 5.3

Ion-Pair r/Å rion−N g(rion−N) rion−C g(rion−C) rion−Me g(rion−Me)
Li+ Br− Li+ Br− Li+ Br− Li+ Br− Li+ Br− Li+ Br−

2.2 2.825 4.075 0.0 0.2 3.575 6.225 0.0 0.6 6.475 5.225 0.6 0.7
Li+-Br− 4.4 3.075 4.825 0.1. 0.8 3.625 5.975 0.2 0.5 6.275 5.675 0.6 0.3

8.0 3.675 7.875 0.1 0.8 3.975 6.125 0.2 0.6 6.275 5.925 0.5 0.4
Li+-Li+ 5.6 3.375 0.1 3.875 0.4 6.125 0.6

Br−-Br− 7.0 8.025 0.7 6.025 0.5 5.675 0.4
Free ions 3.575 8.075 0.1 0.7 4.075 5.975 0.2 0.5 6.325 5.925 0.5 0.4

Table 8. Ion–solvent coordination numbers for each ion pair and interionic separation.

Ion Pair r/Å cnN cnC cnMe

Li+ Br Li+ Br− Li+ Br−

2.2 3.0 3.0 3.0 11.5 12.9 7.5
Li+-Br− 4.4 4.2 3.4 4.2 9.7 11.4 9.5

8.0 5.7 22.4 5.6 10.7 11.9 10.8

Li+-Li+ 5.6 5.2 5.2 10.7

Br−-Br− 7.0 21.2 10.1 10.4

Free ions 5.5 23.3 5.5 9.8 11.9 10.7

Table 9. Initial values of the friction kernels for all ion pairs and interionic separations.

Ion Pair r/Å
ξ(0) × 10−3

(ps−2)

2.2 2.98
Li+-Br− 4.4 8.55

8.0 5.69

Li+-Li+ 5.6 8.18

Br−-Br− 7.0 0.14

The coefficients involved in the Li+-Br− system are summarized in the Table 10.
λ−1

r , gives us a temporal measure of the transition state in the presence of the solvent.
We determined that, for acetonitrile, λ−1

r = 2.17 ps.
The correlation time of the friction of the solvent acting on the ion pair (τc) is defined

by the value of the integral of the normalized kernel function:

τc =
∫ ∞

0
ξN(t)dt. (13)
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Figure 10. Normalized friction kernels for the Li+-Br− ion pair at various interionic separations.

Figure 11. Normalized friction kernels for the Li+-Li + ion pair (top) and Br −-Br− ion pair (bottom)
at various interionic separations.
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Table 10. Li+-Br− association-dissociation process parameters and reaction constants.

Magnitude Value

ωb
(
ps−1) 8.2

ξ
(
ps−1) 165
kkr 0.050

kGH 0.056
λ−1

r (ps) 2.17
c(ps) 0.019

ω2
NA
(
ps−2) −8.48× 10−3

k f
(
ps−1) 4.8× 10−15

kb
(
ps−1) 1.2× 10−3(

k f + kb

)−1
(ps) 835

In the case of acetonitrile, the correlation time is shorter than the reaction time.
A polarization caging regime is verified because a negative amount for the nonadi-

abatic barrier frequency (ω2
NA = ω2

b − ξ(0)) was found [28]. In this regime, the solvent
immediately catches the solute in a well or “polarization cage” of solvent molecules. Hence,
the motion of solvent molecules is extremely crucial. A limiting case of the polarization
caging regime is when τc � λ−1

r and designated as adiabatic. In such circumstances,
the predictions of the Grote–Hynes theory are reduced to Kramers doublets. Our results
confirm that for the Li+-Br− ion pair, kGH ' kkr.

Lastly, we computed the full rate constants for the dissociation (k f ) and association
(kb) processes, given by [27,29]:

k f =
kGH√
2πβµI

·
(
r 6=
)2e−βW(r 6=)∫ r 6=

0 r2e−βW(r)dr
(14)

kb =
kGH√
2πβµI

·
(
r 6=
)2e−βW(r 6=)∫ rm

r 6= r2e−βW(r)dr
, (15)

whereby µI is the reduced mass of the ion pair, kGH is the transmission coefficient, r 6= is
the interionic separation at the transition state (i.e., the top barrier), β = 1/kBT and rm
is an arbitrary interionic distance beyond the outer boundary of the SSIP region, where
there is no further interactivity. The results are summarized in Table 10. We have obtained
a k f rate constant that is roughly smaller than kb. This is due to the greater stability
of the CIP complex for the present model system since a value of 7.1× 10−12 was ob-

tained for Keq. Our overall constant rate
(

k f + kb

)−1
corresponds to a relaxation time of

approximately 835 ps. Values for τc = 0.019 ps � λ−1
r = 2.17 ps were found. In such

circumstances, the predictions of the Grote–Hynes theory are reduced to Kramers dou-
blets. From the transmission coefficient values (kGH = 0.050; kkr = 0.056) results confirm
the case called regime adiabatic and for the Li+-Br− ion pair, kGH ' kkr. A polarization
caging regime is verified because a negative amount for the nonadiabatic barrier frequency
(ω2

NA = −8.48× 10−3 ps−2) was found.

4. Conclusions

The results reported in this paper on structural properties are in agreement with
the experimental data; for instance, we carried out two unconstrained simulations of Li+

and Br−, with 215 solvent molecules. The information obtained from these ion–solvent
structure simulations is compared to the neutron diffraction data (Table 3). We also obtain
a coordination number for Li+ in acetonitrile, slightly higher than the experimental one
(5.5 instead of 3—Table 4). This failure of simulations can be attributed to the deficiency
in the interaction potentials used and the hydrogen atoms of the methyl group not being
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considered. We obtained PMF values for Li+-Br−, Li+-Li+, and Br−-Br−. For the Li+-Br−

ion pair, the diluter allows sets two stable interionic separations, a CIP and a SSIP; where
the CIP is more stable. The Li+-Li+ system is repulsive. The Br−-Br− pair composition
is equilibrated at a distance corresponding to the lowest value (r = 7.0 Å) of W(r) by the
adjacent acetonitrile molecules. The friction kernels and interconversion process of the
Li+-Br− ion pair were evaluated. The passage of the barrier happens in the polarization
caging regime. The correlation time of the solvent τc is much shorter than the reaction time
λ−1

r and the Kramers regime of the Grote–Hynes theory was found for the system.

Funding: Dr. Reinhardt Pinzón acknowledges funding from SNI (Sistema Nacional de Investigación),
the APC was covered by R.P. SNI funds, Contract No. 159-2018 of SENACYT (Secretaria Nacional de
Ciencia y Tecnología e Innovación), project FID2016-275, and from a MUTIS fellowship from Institute
Catalan de Cooperación Internacional.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank the editor and reviewers for their time and constructive comments,
which have helped improve our manuscript. R.P. would like to acknowledge the support provided
by Elvira Guardia I Manuel (EG), who is a professor at Department de Física i Enginyeria Nuclear
Universitat Politècnica de Catalunya, Barcelona Spain.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Grote–Hynes Theory

We have seen that great progress has been made in the direction of linking the rate
constants with microscopic properties. Several equivalent expressions involving time
correlations functions have been deduced [27], so that it is clear what should be calculated.
However, the theoretical calculation of rate constants is an extremely difficult task. Actually,
we could regard computer simulations as the only feasible “theoretical” calculations for
realistic systems.

The first contribution was that of Kramers [30]. The basic idea is borrowed from the
Langevin formulation of the Brownian motion. He modeled the time evolution of the
reaction coordinate of an active process as a Brownian particle under the influence of an
external potential. This model has proven to be useful to describe the motion of a large and
massive single particle inside a fluid. Mathematical:

m
.
→
v (t) = −ξm

→
v (t) +

→
R(t); (A1)

the first term is the friction that acts on the particle of mass m and ξ is the friction coefficient.

The second term
→
R(t), is a random force with zero mean and uncorrelated with the initial

velocity, which mimics the chaotic impacts with solvent molecules. From the energy
point of view, the friction drags energy from the particle, and the random force restores
it. Therefore, if there is thermal equilibrium (a null mean flow of energy), the following
equation should hold:

〈
→
R(t)·

→
R(0)〉 = 6kBTξmδ(t), (A2)

which is called the second fluctuation dissipation theorem.
However, if the model is applied to electrolytes, we cannot consider that the ions are

massive and large particles in comparison with acetonitrile molecules. As a consequence,
the random forces will keep some degree of correlation in a short time, because the time
scales for the solvent and solute dynamics are comparable.
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In the Grote–Hynes theory, the reaction coordinate obeys a generalized Langevin
equation [30,31].

µ· .v(t) = −dW(x)
dx

− µ
∫ t

0
dτξ(t− τ)·v(t) + R(t), (A3)

where the friction coefficient is replaced by a memory function of friction kernel ξ(t), µ
is a reduced mass of particles that conform the solute and β = 1

KBT . The first term of the
above equation is the gradient of the potential of the mean force regarding the reaction
coordinate. R(t) is a stochastic force with zero mean and is uncorrelated with the initial
velocity and modeled by a Gaussian process. In this case,

ξ(t) =
β

µ
〈R(t)·R(0)〉. (A4)

If the dynamics are studied in the vicinity of the transition state, the barrier can be
approximated as an inverted parabola of frequency ωb. Grote and Hynes have deduced
the following expression for the transmission coefficient,

kGH =
λr

ωb
. (A5)

From the analysis of the model, it follows that λr is the characteristic frequency for the
unstable motion at the transition state. λr is determined through the equation,

λ2
r + λr·ξ̂(λr)−ω2

b = 0. (A6)

ξ̂(λr) is the Laplace transform of the time dependent friction coefficient,

ξ̂(λr) =
∫ ∞

0
dte−λrtξ(t). (A7)

The basic assumptions of this approach are:

(a) The generalized Langevin equation is a valid description;
(b) The friction kernel ξ ’(t) does not depend on the reaction coordinate;
(c) The mean force barrier is parabolic.

If we approach the friction coefficient dependent on time to a delta function; namely,
(t) = ξδ(t), with the friction coefficient constant given by,

ξ =
∫ ∞

0
dτ ξ(τ). (A8)

Then, the Kramers theory can be recovered from this model and the transmission
coefficient is given by,

kkr =

√
1 +

(
ξ

2 ωb

)2
− ξ

2 ωb
. (A9)

Another case is the non-adiabatic limit, where the solvent remains essentially static
during the time scale of the motion at the barrier. The effect of the friction is almost constant
and equal to its time zero value ξ(0). The transmission coefficient in the extreme case of
constant friction is,

kNA =
ωNA
ωb

, (A10)

where ωNA is called the non-adiabatic barrier frequency. In this case it can be interpreted
as the solute moving under the influence of an instantaneous barrier of frequency ωNA
instead of ωb,

ω2
NA = ω2

b − ξ(0). (A11)
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One particular situation is that in which ω2
NA is negative; it is called the polarization

caging regime. The reaction coordinate is trapped in a well rather than moving on an
inverted parabola. Here, it is clear that the movement of the solvent is key to allowing this
instantaneous configuration to relax.

Appendix A.2. Friction Kernels from Molecular Dynamics

The Grote–Hynes description of the reaction coordinate assumes previous knowledge
of the potential of mean force and the friction kernel. There is a method for evaluating the
friction kernel in the limit case called the frozen bond approximation [31,32].

The method is based on the following idea: when we assume the generalized Langevin
equation, one of the hypotheses is that the whole dependence on the reaction coordinate is
contained in the potential of the mean force. On this basis, it seems reasonable that ξ (t)
should not depend on the interparticle potential.

When there is a harmonic potential of interaction for the coordinate of interest, it is
possible to obtain the corresponding memory function as,

U(x; x0, ω) =
1
2

µω2(x− x0)
2. (A12)

Following the Mori formalism, it follows that

µ
.
v = µω̂2q(t) −

∫ t

0
dτ ξ(t)v(t− τ) + R(t), (A13)

with
q(t) = x(t)− 〈x〉. (A14)

The renormalized frequency,

ω̂2 =
[

β µ
〈

q2
〉] − 1

, (A15)

where ξ (t) can be obtained through the relations

.
C(t) = −

∫ t

0
dτ K(τ)C(t− τ) (A16)

K(t) = ω̂2 +
ξ (t)

µ
. (A17)

Following this method, we can obtain the memory function parameterized as a
function of x0 andω

ξ (t) = ξ (t; x0, ω). (A18)

It has been demonstrated that the ω → ∞ limit corresponds to the aforementioned
frozen bond approximation. This method is implemented in a molecular dynamics simula-
tion program; the reaction coordinate is constrained to the x0 during the simulation and
the friction kernel is calculated as the autocorrelation function,

ξ (r0, t) ≡ β

µ
〈δ∆F(t, r0) δ∆F(0, r0)〉, (A19)

where the instantaneous values ∆F(t, r0) are given by Equation (5) and,

δ∆F(t, r0) ≡ ∆F(t, r0) − 〈∆F(r0)〉. (A20)
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Appendix B

Appendix B.1. Computer Simulation. Molecular Dynamics (MD)

We took a Molecular Dynamics approach for the present study. The basic assumption
is the Born–Oppenheimer approximation. The motion of electrons and nuclei is treated
separately. It rests on the fact that electrons are lighter than atomic nuclei. So, it is a good
approximation to calculate the ground state of the electrons as if the nuclei were static.

The next is to treat the movement of the nuclei using classical mechanics. We are not
interested in low temperatures or chemical reactions that involve electronic transitions
from the ground state [31,32].

Appendix B.2. Interaction Potential

The full determination of the potential energy surface is an extremely complicated
task even for a few atoms. Therefore, a solution is to split the potential function into a
sum that will include terms depending on pairs of atoms, terms depending on triples of
atoms, and terms involving quadruples. Each term will depend on a limited number of
parameters. An alternative to determine these parameters is to fit them to theoretical as
well as to experimental results and later on refine them until the properties calculated from
the simulation are considered satisfactory [31,32].

The force field to simulate a lithium bromide solution (vectors
→
r i represent the posi-

tions of the N atoms of the system) is given by:
U
(→

r 1, ..,
→
r N

)
= ∑

pairs o f ions
Vion−ion + ∑

MeCN molecules
Vintramolecular

+ ∑
pairs of MeCN molecules

Vmolecule−molecule + ∑
pairs of ions and MeCN molecles

Viom−molecule
(A21)

The first term describes the interaction between pairs of ions. The second and third
sums constitute the model for acetonitrile molecules. Finally, the last term represents the
interaction between the ions and the acetonitrile molecules.

Appendix B.3. System Size and Periodic Conditions

The particles of interest lie in a central cell, which is surrounded by exact replicas.
When one of the particles leaves the central shell through one face, its periodic image
will enter it through the opposite face of the cube, so that we always have the same
number of particles. The particles in the central cube are considered to interact with
those of the neighboring images. The usual approximation is to fix a cut-off for the range
of the interaction potentials. Each particle in the central box is considered to interact
only with those that are at a distance lower than some value Rc. In this work, Rc was
chosen equal to L/2, L being the length of the cubic central shell. This procedure is fine
for the short-range interactions since they show a rapid decay with distance. However,
the Coulomb interactions decay as r−1. To overcome this problem, we used the Ewald
summation technique. The basic idea is that the potential energy associated with the
Coulomb interactions should be computed as a sum over all pairs for which at least one of
the atoms lies in the central box [31,32].

Uc =
1
2 ∑∞

n=0 ∑N
i=1 ∑N ′

j=1

qiqj∣∣∣∣∣∣∣∣→r ij +
→
L ·→n

∣∣∣∣∣∣∣∣ . (A22)

→
n =

(
nx, ny, nz

)
with ni integers. The prime indicates that the case i = j should not

be considered for
→
n = 0, and that the given pair i-j must be excluded when

→
n = 0 if the

charges belong to the same molecule.
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Appendix B.4. Integration Algorithms

If we are only considering the potential energy for the calculation of the forces, then
the system is being studied at a fixed volume, number of particles, and energy [31,32].
The results obtained will correspond to the microcanonical ensemble. The corresponding
equations of motion are:

mi
d2→r i(t)

dt2 = −∇iU
(→

r 1, . . . ,
→
r N

)
. (A23)

The practical way to solve them is using the leap-frog algorithm of the following steps:
Evaluate forces at time t. Next, evaluate velocity for each particle. Evaluate positions

for each particle. Here we are going to focus on simulations at a constant temperature. The
equations that have to be solved in this approach are:

mi
d2→r i(t)

dt2 = −∇iU
(→

r 1, . . . ,
→
r N

)
+ miβ

[
T0

T(t)
− 1

]
d
→
r i(t)
dt

. (A24)

β is an arbitrary parameter that specifies the time scale of temperature fluctuations. T0
denotes the reference temperature of the system and T(t) the instantaneous temperature.

Appendix B.5. Implementation of Constraints

The Newton equations for a system with constraints can be derived from Hamilton’s
principle [31,32],

mi
d2→r i(t)

dt2 =
→
F i −∑n

k=1 λ
k( ∂σk

∂ri
)
. (A25)

→
F i are the direct forces, and λk is a set of Lagrange multipliers that has to be determined

from the equations that define constraints,

σk({σi}) = 0 k = 1, . . . , n. (A26)

In principle, {λk} can be found solving a system of linear equations and being substi-
tuted back in Equation (A25). The solution consists of approximating the exact Lagrange
multipliers by a set of parameters {γk} which must guarantee that the constraints are
maintained at each time step with a certain tolerance. These parameters are determined
iteratively at each time step, considering the constraints in a sequential order within each
iteration. This procedure is called SHAKE [17].

Appendix B.6. The Method of the Mean Force

The free energy A has the property that the work done by the system in a reversible
process can be written [31,32],

dW = −dA. (A27)

If we take as additional parameters for A the positions of N solute particles (A (N, V,
T, r1, . . . , rN)), the work done by the system in an ideal reversible process in which the N
particles are infinitesimally moved is:

dW = ∑N
i=1−

∂A

∂
→
r i
·d→r i. (A28)

We are interested in the free energy as a function of the interionic vector
→
r ≡ →

r 1−
→
r 2.

For this particular choice,
∂A

∂
→
r

= −〈
→
F r〉, (A29)
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where
→
F r is the force on the interionic axis. For symmetry reasons, A will only depend

on the modulus of r and multiplying (A29) with a unitary vector r̂, then dA
dr ≡ −F(r), the

equality comes from the fact that <
→
F r > will be directed along r̂. From this equation, we

can calculate the free energy with a simple integration:

A(r) =
∫ r

r0

(−F(r))dr + A(r0), (A30)

where F(r) = Fd(r) + ∆F(r), Fd is just the direct force that can be calculated from the
interparticle potential and ∆F(r) is the contribution from the solvent.
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