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Abstract: We present enabling experimental tools and atom interferometer implementations in
a vertical “fountain” geometry with ytterbium Bose–Einstein condensates. To meet the unique
challenge of the heavy, non-magnetic atom, we apply a shaped optical potential to balance against
gravity following evaporative cooling and demonstrate a double Mach–Zehnder interferometer
suitable for applications such as gravity gradient measurements. Furthermore, we also investigate
the use of a pulsed optical potential to act as a matter wave lens in the vertical direction during
expansion of the Bose–Einstein condensate. This method is shown to be even more effective than the
aforementioned shaped optical potential. The application of this method results in a reduction of
velocity spread (or equivalently an increase in source brightness) of more than a factor of five, which
we demonstrate using a two-pulse momentum-space Ramsey interferometer. The vertical geometry
implementation of our diffraction beams ensures that the atomic center of mass maintains overlap
with the pulsed atom optical elements, thus allowing extension of atom interferometer times beyond
what is possible in a horizontal geometry. Our results thus provide useful tools for enhancing the
precision of atom interferometry with ultracold ytterbium atoms.

Keywords: atom interferometry; Bose–Einstein condensate; quantum sensing

1. Introduction

Pulsed optical lattices are crucial tools for high precision atom interferometry (AI), with
applications ranging from tests of fundamental physics to force sensing [1–5].
AI in free space rather than in a trapped geometry has the inherent advantage of not
being susceptible to systematic effects from the confining potentials. Terrestrial pulsed-
lattice atom interferometers have relied on a vertical geometry of diffraction beams in order
to fully realize the inherent power of the method, as the loss of spatial overlap with the
pulsed lattice from atoms falling due to gravity is suppressed in this configuration.

While laser cooled atoms have found pronounced success as sources for precision
AI, a Bose–Einstein condensate (BEC) source offers improvement with an inherently nar-
row velocity distribution, which increases the coherence length and allows for longer
interferometer times due to the slow spread of the atomic spatial distribution during free
expansion. Spin-singlet ground state atoms, such as Sr and Yb, are particularly appealing
for AI because of their near-insensitivity to external magnetic fields and the availabil-
ity of several narrow optical transitions [2,6,7]. Furthermore, the heavy nucleus of the
Yb atom supports the stability of multiple isotopes allowing for systematic cross-checks
within the same apparatus as well as the possibility to perform AI with degenerate Bose
or Fermi gases.

Prior work with Yb BEC atom interferometers [6,8–10] have all been restricted to
geometries with horizontally oriented laser beams as the atom-optic elements. Adapting
to a vertical geometry poses significant challenges due to the larger velocity spread in
the vertical direction for BECs expanding out of typical atom traps. In this paper, we
investigate solutions to these challenges using two separate methods of atom manipulation
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via light shifts from laser beams shaped in position and in time. Using these methods,
we successfully demonstrate AI with Yb BECs in a vertically oriented atomic fountain
geometry and establish tools for future enhancement of AI precision.

The rest of this paper is organized as follows. In Section 2, we describe the production
of our BEC source and the vertical fountain launch which prepares the atoms for inter-
ferometry. In Section 3, we present a gravity compensation beam method for reducing
vertical velocity spread. With this method in place, we report on the first vertical Yb
interferometer, performed in a double Mach–Zehnder configuration, in Section 4. Finally,
in Section 5, we implement delta-kick collimation as an alternative method to the gravity
compensation beam, and we demonstrate effectiveness of the technique through coherence
length measurements using momentum-space Ramsey interferometry.

2. Yb BEC Fountain

We first briefly describe Yb BEC production in our apparatus [8,11] and then present
the launch process which initiates the atomic fountain.

2.1. BEC Source and Atom Optics

Each of the experiments reported in this work begins with a trapping and cooling
sequence for the production of a ytterbium (174Yb) Bose–Einstein condensate consisting of
105 atoms [11]. A Yb atomic beam emerging from an effusive oven is slowed in a first stage
through an increasing-field Zeeman slower and in a second stage using a pair of crossed
laser beams [12]. The slowed atoms are then captured in a magneto-optic trap (MOT). The
broad (Γb = 2π × 29 MHz) dipole transition (1S0 → 1P1) at λb = 399 nm is used to slow
the atoms, while the narrow (Γg = 2π × 182 kHz) intercombination transition (1S0 → 3P1)
at λg = 556 nm is used for the MOT trapping beams (see Figure 1a).

Following cooling in the MOT, atoms are transferred into a crossed optical dipole trap
(ODT) for evaporative cooling towards BEC. The ODT is formed by a pair of 532 nm beams:
one oriented horizontally, defining the x-axis, and the other nearly along the vertical y-axis.
The evaporative cooling stage concludes with a BEC of 105 atoms in harmonic confinement
characterized by trap frequencies ωx,y,z = 2π × (16, 200, 80) Hz. Subsequently, the BEC is
released by suddenly switching off the ODT before the application of atom optics pulses.
We note that the tightest confinement direction in the ODT is along the vertical axis, in
order to counter the gravitational force on the heavy atom. A consequence of this general
characteristic of optically trapped Yb is that the expansion of the BEC after release is mostly
along the vertical, as most of the initial chemical potential is converted to kinetic energy in
this direction [13,14], a quantity we measure to be kB × (42± 5) nK through absorption
imaging after long expansion times.

The optical lattice used for the vertical fountain launch and the interferometer optics
has a waist of 1.8 mm and is composed of a pair of vertically-oriented counter-propagating
laser beams that are aligned to the atoms and controlled by independent acousto-optic
modulators (AOMs). The optical frequency of the lattice is detuned from the 1S0 → 3P1
transition by ∆ and the frequency difference between the two lattice laser beams is δ
(see Figure 1a and inset to Figure 1b). For the work presented here, ∆ is set to +3500Γg
(2π× 637 MHz), except in Section 5, where ∆ = −3500Γg. In general, the positive detuning
leads to lower spontaneous scattering rates in the lattice. However, for either sign, the
spontaneous scattering rate is less than 1 Hz in this work and negligible, even for the
highest lattice depths used. For the experiments in Section 5, we choose the negative
detuning to more easily allow generation of the attractive pulsed optical potential for
delta-kick collimation using the same 556 nm laser source. The case where ∆ = +3500Γg
is depicted in Figure 1a. The quantity δ is always less than 2π × 1 MHz and varied with
sub-Hz precision using direct digital synthesis radio-frequency sources that drive the
lattice AOMs.

We note that the measured kinetic energy in the vertical direction corresponds to a
velocity spread of ∆v ' 0.5vrec, where vrec = h̄kg/m is the recoil velocity with kg = 2π/λg
and m is the mass of a Yb atom. Since the coherence time relevant for signal-to-noise in
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atom interferometry typically scales with 1/∆v, it is important to address the reduction of
this value, and much of the present work demonstrates successful techniques towards this
end for Yb BEC vertical interferometers.

2.2. Vertical Fountain Launch

The vertical launch is performed by using Bloch oscillations for large momentum
transfer. Such processes were carried out in the following sequence: (i) adiabatically turning
on the optical lattice in the frame of the falling atoms, (ii) chirping the relative frequency
difference of the lattice beams, δ, to accelerate the atoms, and (iii) adiabatically turning off
the lattice once the desired atom velocity had been reached. During lattice turn-on and
turn-off, an additional chirp of δ̇ = 2gkg was necessary to maintain an inertial frame. Here,
g is the acceleration due to gravity. The frequency sweep during the acceleration step was
uniquely chosen for each set of experiments to optimize momentum transfer efficiency.
A representative fountain launch is shown in Figure 1b.

Figure 1. (a) Energy level diagram for ytterbium showing the optical transitions used in the experiment; (b) demonstration
of a vertical fountain launch with 30 ground-band Bloch oscillations. The relative frequency sweep of the lattice beams was
δ̇ = 2π × 600 kHz/ms. Time-of-flight absorption images show the trajectory of the atom cloud at variable times following
the launch. The dashed line indicates the part of the trajectory that is out of view of the absorption imaging setup.

3. Gravity Compensation by Shaped Optical Beam

Atoms trapped in our ODT experience a potential proportional to the shape of the
ODT beams as well as gravity. Due to the linear gravitational potential, there is a nonzero
minimum allowable depth of the ODT such that it remains a trapping potential. This value
increases as the vertical width of the horizontal ODT beam increases, resulting in a conflict
between desires for both low trap frequency and low trap depth. This constraint can be
lifted, however, by compensating the gravitational potential with an appropriately tuned
linear optical potential in the trapping region [15]. Importantly, this technique is accessible
for all atoms, including non-magnetic atoms such as ytterbium. Using a time-averaging
technique discussed below, we implemented an appropriately shaped optical potential US
to weaken the confinement along the vertical direction and thus the vertical kinetic energy
during expansion after release from ODT. Assuming a Gaussian shape of the trapping
beam (waist w0), we can write the total potential seen by the atoms as

U(y) = U0e−2y2/w2
0 −mgy + US(y) (1)

' U0(1−
2y2

w2
0
) + (α−mg)y = U0 +

1
2

mω2
yy2 + (α−mg)y (2)

where U0(< 0) is the peak ODT Stark shift, w0 is the ODT beam waist, US(y) is the
additional gravity compensation potential with α = ∂US/∂y|y=0, and we have kept lowest
order terms around y = 0 for Equation (2). US is tuned such that α ' mg at the location of
the atoms.

The shaped beam used the same 532 nm light used for optical trapping. It was aligned
to co-propagate with the horizontal ODT beam and—by means of an AOM—could be
spatially modulated along the vertical axis (see Figure 2). We designed the input waveform
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of the AOM such that the resultant time-averaged optical potential at the atoms would be

linear over a region h, slightly larger than the trapping region. The function ξ(t) = h
√

ωp
π t

represents one half-period of this waveform and is therefore defined over 0 ≤ t < π with a
full oscillation frequency, ωp. For this work, ωp = 2π × 4 kHz, chosen to be much greater
than the trap frequencies and less than the bandwidth of our electronics.

The gradient of this optical potential was adjusted by changing the total power
in the beam while maintaining a constant time-averaged beam intensity profile. This
would alter the gradient of the net background potential in the trapping region (see
Figure 2a), resulting in a displacement to the local minimum of the ODT. When this
shift is zero, the linear optical potential is assumed to be properly compensating grav-
ity. Thus, we first determined the “zero point” location by measuring the position of
the atom cloud as a function of ODT depth in the absence of the new shaped optical
beam. The best-fit curve for the data shown in Figure 3a is a simple reciprocal function
(∝ 1/ODT power), derived from a harmonic approximation valid near the center of the
Gaussian ODT intensity profile (see Equation (2)). The convergent location observed
at large ODT powers, corresponding to trap depths much higher than the gravitational
potential variation across the trap, provided a benchmark value against which we could
discern the effectiveness of the linear optical potential. The value is also marked in
Figure 3b by the dashed line.

Figure 2. Implementation of a shaped optical beam for gravity compensation. (a) model for total optical potential along the
vertical axis, through the center of the optical trapping region; (b) illustration of the ODT geometry along with the shaped
optical beam. This beam is used to compensate the linear gravitational potential through use of an acousto-optic modulator
supplied with the waveform, ξ(t), as shown.

With the ODT returned to low depth (i.e., standard evaporation endpoint), we
increased the total power in the shaped beam potential until the shift in the atoms’
location was consistent with zero. This can be seen in Figure 3b where the two lines cross.
The best-fit curve for the data in this figure is a line, again as a result of approximating a
harmonic trapping potential near the center of the ODT (see Equation (2)). The optimal
beam power from this procedure is then determined to be about 300 mW. Following
this optimization, we used time-of-flight absorption imaging to measure the kinetic
energy in the vertical direction to be kB × (17± 2) nK, a 42/17 ' 2.5-fold improvement
compared to without the gravity compensation beam. In terms of velocity spread, the
reduction factor is

√
2.5 ' 1.6.
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Figure 3. Optimization procedure for gravity compensation with a shaped optical beam. (a) measured BEC position with
absorption imaging, as the ODT depth is increased. The converging locations at higher depths indicate a reduction of the
displacement due to the gravitational potential. The blue curve is a best-fit reciprocal function; (b) introduction of the linear
optical potential at low ODT depth. The BEC position has a nearly linear dependence on the shaped beam power as the net
background potential gradient changes. The dashed line marks the asymptotic value of the reciprocal function shown in (a).
The solid blue curve is a best-fit line to this data.

4. Double Mach–Zehnder Interferometer

We next report a demonstration of the first vertical Yb BEC interferometer.
The geometry we use for this is a double Mach–Zehnder configuration, a design which
is beneficial for precision measurement and sensing, since it suppresses vibration noise.
In particular, the vertical double Mach–Zehnder interferometer is well-suited for gravity
gradiometry applications [16].

Our implementation consists of four atom-optic elements: two splitting pulses, a mir-
ror pulse, and a readout pulse. Each was implemented as a third-order Bragg pulse [9,17]
with Gaussian 1/e full-width 54 µs in our vertical optical lattice with single-photon detun-
ing, ∆ = +3500Γ. The typical peak lattice depth for a mirror pulse was 26h̄ωrec to satisfy
the Bragg π–pulse condition, while the splitting and readout pulses had a peak depth of
14h̄ωrec and operated as π/2–pulses. Here, ωrec = h̄k2

g/2m is the recoil frequency. The
relative detuning of the lattice beams was chirped at the rate δ̇ = 2gkg for all pulses to
account for the continuous Doppler shift of the falling atoms.

The double Mach–Zehnder interferometer geometry is depicted in Figure 4a in the
accelerating frame of a falling atom cloud. To improve the efficiency of the momentum
transfer within the interferometer, we apply an initial third-order Bragg π–pulse (not
shown) to further narrow the width of the vertical velocity distribution. The two splitting
pulses at the beginning of the interferometer are separated by a time ∆t, which establishes
the baseline between the two Mach–Zehnder interferometers. We chose ∆t = 3 ms, which
also made the interferometer paths visually distinguishable in our absorption images.
From these images, we determine the relative populations in the output ports and observe
interference fringes for each sub-interferometer, A and B (see Figure 4b). For long inter-
ferometer duration, however, physical vibrations affect an unknowable shift to the lattice
phase, resulting in a reduction of fringe visibility for each sub-interferometer. Nonetheless,
the differential interferometer phase for a double Mach–Zehnder, ∆Φ = ∆φB − ∆φA, is
insensitive to vibration effects, which cancel out as a common mode phase shift. On the
other hand, a finite differential phase can be generated from external forces such as a
gravity gradient. This phase ∆Φ can be observed by analyzing the correlation of sub-
interferometer populations. As shown in Figure 4b, the fractional population in an output
port of one sub-interferometer when plotted against that in an output port of the other
sub-interferometer traces out an ellipse whose eccentricity determines ∆Φ [18–21].
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Figure 4. Double Mach–Zehnder interferometry. (a) Upper: Space-time diagram for a typical interferometer sequence
shown in the accelerating frame of the free-falling BEC source such that the action of gravity is removed. The horizontal lines
and the lines with finite slope correspond to interferometer paths separated in momentum by 6h̄kg. Lower: Corresponding
lattice pulse sequence; (b) representative ellipse signal for a double Mach–Zehnder interferometer with ∆t = 3 ms and
T = 0.25 ms. The oscillating populations in the output ports are plotted versus the phase of the readout lattice for the two
sub-interferometers, from which an ellipse can be observed in the correlation of the populations in the top right parametric
plot. All black curves are best fit sinusoids or ellipses.

To demonstrate robustness against vibrations, we extended the free evolution time
within the interferometer, T, to values above the timescale of vibrations, which exist in
our system at a bandwidth below 1 kHz. In this set of experiments, T = 0.25 ms, 1.25 ms,
and 2.25 ms, covering nearly one whole order of magnitude. The visibility at short times
is as high as 80% (see for T = 0.25 ms in Figure 4b), but drops with increasing T, and is
consistent with zero by T = 2.25 ms. However, the ellipse traced out by the correlated
populations is only marginally disturbed as shown in Figure 5. The fits (black curves in
Figure 5) are obtained by first converting the data into polar coordinates, then performing
a least-squares regression analysis using the function

r =
a(1− e2)

1 + e cos(θ − θ0)
(3)

for an ellipse with one focus at the origin. In addition to the origin location, the given fit
parameters describe the eccentricity of the ellipse, e, the length of the semi-major axis, a,
and the rotation angle, θ0. The differential interferometer phase can be determined from
the eccentricity by the relation [18]

∆Φ = cos−1
(

e2

2− e2

)
(4)

which is defined over a one-quarter period.
The values of eccentricity returned by the fits are very close to 1, implying a differential

phase close to zero. Indeed, the gravitational gradient for these parameters is expected
to be negligibly small. The ∆Φ corresponding to the measured e ' 0.99 is a few hundred
mrad and may be due to atomic interactions. The calculated interaction energy for 3 ms
expansion time and immediately before the first splitting π/2 pulse is 1.2 kHz. For a 10%
level difference in arm splitting this gives rise to a few hundred mrad phase shift over the
few millisecond timescale of the interferometer. This hypothesis is also consistent with the
location of the center position of the ellipse deviating from the symmetric (0.5, 0.5) location
at the 10% level. This deviation is a manifestation of deviations at the same level from



Atoms 2021, 9, 58 7 of 11

the π/2 condition for splitting pulses, and was independently verified by observing the
correlation of the output port populations in the absence of the readout pulse. Further
tuning of the π/2 pulses and longer expansion time to reduce the interaction strength, as
is needed to scale-up the interferometer to larger times and enclosed areas, will make this
differential phase contribution negligible. The deviation at the 10% level from π/2 pulses
is also an important reason for the visibility of the sub-interferometers being less than 100%
even at the shortest time T (see Figure 4b). We expect that unit visibility is approached
(for T approaching zero) with better tuned π/2 and π pulses, as can be done by observing
single-pulse Rabi oscillations (see, for e.g., [9]).

Figure 5. Ellipse signals at various values of T for a double Mach–Zehnder interferometer. Black curves are best fit ellipses
for each data set. These are characterized by e, the eccentricity of the ellipse, and, a, the length of the semi-major axis.

Further development of our double Mach–Zehnder interferometer will involve meth-
ods to accurately calibrate the differential phase extraction procedure by applying large
independently-known differential phases. While the use of magnetic pulses with associated
Zeeman shifts works well for this purpose with alkali atoms [18], their use in spin-singlet
atoms like 174Yb is precluded by the lack of magnetic sensitivity. Instead, appropriately
timed optical pulses with the associated AC Stark shifts can be used for this purpose.

5. Delta-Kick Collimation of Yb for Vertical AI
5.1. Delta-Kick Collimation

We now report on another technique to reduce the vertical velocity spread for
Yb—delta-kick collimation (DKC)—which shows even better performance than the gravity
compensation beam technique described earlier. This technique, also known as matter–
wave lensing [22–24], has previously been demonstrated in alkali atoms, but not in spin-
singlet atoms to the best of our knowledge. The process involves pulsing a parabolic
attractive potential which may slow—or even halt—the expansion of the atom cloud in the
corresponding dimension. In our system, this is applied as a pulsed optical potential at a
time to after the BEC had been released from the ODT. The potential is derived from our
556 nm laser with a detuning, ∆DKC = −4600Γ, red-shifted from the 1S0 → 3P1 resonance.
The DKC beam has a power of' 22 mW and is oriented horizontally, close to the horizontal
ODT axis. It is focused with a waist size of ' 150µm at the location of the atoms. The DKC
beam creates a transverse attractive potential for the atoms proportional to the Gaussian
shape of the beam, which is parabolic to lowest order near the beam center with effective
harmonic angular frequency ωDKC.

To minimize the variance of the BEC position over the duration of the DKC pulse,
δt, the pulse was applied at the apex of the atoms’ trajectory following a vertical fountain
launch. To facilitate beam alignment, the launch was designed to place the apex at the
location of the trapped BEC (see Figure 6a). The optical lattice had a depth of about 30h̄ωrec
during the launch and a single-photon detuning ∆ = −3500Γ. For a typical experiment, the
launch consisted of 30 Bloch oscillations affected by chirping the relative lattice detuning
at a rate of 500 kHz/ms. With these launch parameters, the time for the atoms to reach the



Atoms 2021, 9, 58 8 of 11

apex occurs to = 25.4 ms after release from the ODT. For an optimal delta-kick, we must
simultaneously satisfy a thin lens criterion, δt� to, as well as the collimation condition,
δt ' 1/(ω2

DKCto).

Figure 6. Delta-kick collimation and characterization sequences. (a) space-time diagram depicting the trajectory of the
expanding atom cloud. The DKC pulse of duration δt is applied at time to after release from the ODT to achieve collimation;
(b) DKC characterization by measuring the size of a refocused atom cloud at time ti after the delta-kick. The black curve is a
best-fit hyperbola, (∆y)2/(∆ymin)

2 − (δt− δtmin)
2/C2 = 1, returning a minimum observable size ∆ymin = 30.6± 2.0 µm

with a corresponding δtmin of 48.6± 1.9 µs. The DKC beam power here is approximately 22 mW.

We determined the capability of this collimation technique in our system from a charac-
terization of our delta-kick lens and its effect on our atom source [23].
For this experimental sequence, we applied the delta-kick at time to, tuned to refocus
the atom cloud at time ti after the pulse, producing an image of the original object (BEC).
By varying the pulse duration, we ascertained a minimum observable spot size,
∆ymin = 30.6 ± 2.0 µm, in the vertical dimension. Under collimation conditions, our
system should have an upper bound on the minimum spread in the velocity distribution
according to ∆vbound = ∆ymin/ti, where ∆v is the RMS velocity of the atoms after applica-
tion of the lens. We can recast this as an upper bound on the minimum attainable spread
of kinetic energy m(∆vbound)

2/2 in the vertical direction. From our measurement (see
Figure 6b) and within the given experimental parameters, we determined the upper bound
for this value to be kB × (2.0± 0.25) nK for our system.

5.2. Ramsey Interferometry and Coherence Time Measurements

As a secondary characterization of our DKC lens, we analyzed the coherence length
of the condensate before and after the DKC pulse. We incorporated a momentum-space
Ramsey interferometer [25] into the sequence, which consisted of two low-amplitude 4 µs
square Kapitza–Dirac pulses separated by a time, TRamsey, as depicted in Figure 7a. The
population of each momentum state was measured at long time of flight (i.e., enough time
to spatially resolve the states) and oscillations were observed in the average fraction in the
higher-momentum states, (N+1 + N−1)/2N. Here, N is the total atom number and N±1 is
the atom number in the momentum state±2h̄k. Only at short times will there be observable
fringes while the various wavefunction components retain sufficient spatial overlap. Thus,
the envelope on these oscillations gives a Ramsey coherence time which is a measure of the
coherence length of the atom source, with the two related through the velocity separation
between the interfering states. Fitting the data to a sinusoid with the expected angular
frequency 4ωrec and an exponential envelope, we measure coherence times of 129± 18 µs
and 23± 3 µs for sequences with and without delta-kick collimation, respectively. Since
the coherence time scales with the inverse of the velocity spread, this indicates a reduction
factor of (129/23) ' 5.6 in the vertical velocity spread. The reduction factor for kinetic
energy in the vertical direction is then (129/23)2 ' 31 below the previously mentioned
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kB × 42 nK value, i.e., kB × 1.3 nK. This is consistent with the upper bound on the kinetic
energy kB × 2 nK, discussed in Section 5.1.

Figure 7. Characterization of DKC by coherence length measurements using Ramsey interferometry. (a) space-time diagram
of a momentum-space Ramsey interferometer composed of two Kapitza-Dirac pulses. Decaying oscillations of population
amplitude, with (b) and without (c) delta-kick collimation. The fit function, f (t) = Ae−t/τ sin(4ωrect + φ) + f0, returns
Ramsey coherence times of τ = 129± 18 µs and 23± 3 µs, respectively.

6. Conclusions

In summary, we have investigated two methods to reduce the vertical velocity spread
of a Yb BEC and applied them towards atom interferometry in vertical fountain geometries.
We developed a gravity compensation optical potential which reduced the vertical velocity
spread by a factor of 1.6, and employed this gain towards demonstrating a vertical double
Mach–Zehnder interferometer. The implementation of delta-kick collimation reduced the
vertical velocity spread by a factor of 5.6, which we measured using a Ramsey interferome-
ter technique in an atomic fountain setup. These first demonstrations of vertical AI with Yb
BECs reported here are performed with fountain times in the tens of milliseconds, and we
expect that the reduction of vertical velocity spread achieved here should greatly benefit
extensions to longer fountain times of hundreds of milliseconds.

Taken together, our results provide useful manipulation tools for ultracold Yb, an
important atom for applications in fundamental physics and next generation time stan-
dards [26,27], precision atom interferometry and sensing [6,8,28–30], quantum simula-
tion [31–35], and quantum information science [36–38]. In particular, we expect the DKC
methods to fruitfully impact future applications of Yb atom interferometers for precision
sensing such as gravity gradiometry and tests of fundamental physics [5,30,39,40].
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