
atoms

Article

Relativistic Configuration-Interaction and Perturbation Theory
Calculations for Heavy Atoms

Igor M. Savukov * , Dmytro Filin, Pinghan Chu and Michael W. Malone

����������
�������

Citation: Savukov, I.M.; Filin, D.;

Chu, P.; Malone, M.W. Relativistic

Configuration-Interaction and

Perturbation Theory Calculations

for Heavy Atoms. Atoms 2021, 9, 104.

https://doi.org/10.3390/atoms9040104

Academic Editor: Kanti M. Aggarwal

Received: 30 September 2021

Accepted: 24 November 2021

Published: 30 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Los Alamos National Laboratory, Los Alamos, NM 87545, USA; dfilin@udel.edu (D.F.); pchu@lanl.gov (P.C.);
mwmalone@lanl.gov (M.W.M.)
* Correspondence: isavukov@lanl.gov

Abstract: Heavy atoms present challenges to atomic theory calculations due to the large number of
electrons and their complicated interactions. Conventional approaches such as calculations based
on Cowan’s code are limited and require a large number of parameters for energy agreement. One
promising approach is relativistic configuration-interaction and many-body perturbation theory
(CI-MBPT) methods. We present CI-MBPT results for various atomic systems where this approach
can lead to reasonable agreement: La I, La II, Th I, Th II, U I, Pu II. Among atomic properties, energies,
g-factors, electric dipole moments, lifetimes, hyperfine structure constants, and isotopic shifts are
discussed. While in La I and La II accuracy for transitions is better than that obtained with other
methods, more work is needed for actinides.

Keywords: CI-MBPT; parametric configuration-interaction many-body perturbation theory; strong
state mixing; transition rates

1. Introduction

Heavy atoms, such as actinides, are highly challenging for atomic calculations for at
least the following reasons: (1) most actinides and lanthanides have many valence electrons,
including f-electrons, and hence a large number of closely spaced fine-structure states.
Together with a significant configuration mixing, this leads to difficulties in identification
of states and accurate calculations of properties that depend on configurations and terms.
To achieve adequate accuracy, all-order methods, such as configuration-interaction (CI)
methods, are needed to account for valence-valence interactions. (2) The valence electrons
strongly interact with a large number of core electrons. This interaction cannot be ignored
and needs to be treated beyond the second order in many-body perturbation theory (MBPT),
if the calculations are carried out in the CI-MBPT framework. Here, several options exist
for improvement of accuracy: scaling second-order MBPT corrections [1–3], including
higher-order effects as in CI-all-order approach [4,5], or including upper core electrons into
the valence space [6]. (3) Relativistic effects are significant and lead to deviation from the
LS coupling scheme. Because, for example, electric-dipole transitions conserve the total
spin in non-relativistic approximation, the mixing of states of different S has a strong effect
on the magnitude of the electric dipole transitions and is one reason for large uncertainty
in the computed values. Codes, such as Cowan’s popular code, treat relativistic effects
quite approximately, for example, by including spin-orbit terms but neglecting many other
important terms. To amend this, generalization lead to relativistic analogs of Cowan’s code,
such as the Los Alamos suite of relativistic atomic physics codes [7]. Even relativistic MBPT
approach, which is based on the Dirac–Hartree–Fock (DHF) starting potential, does not
include a number of significant relativistic effects beyond DHF.

In the case of actinides, the experimental data are limited owing to difficulties of
dealing with radioactive atoms. Uranium, with the relatively stable isotope U-238, is
extensively studied because of its roles in global security [8–10], atomic energy [11], and
more. The spectroscopy of the uranium atom can be used for detection and characterization
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of its isotopic content for nuclear forensics [8–10] and treaty monitoring. Uranium isotopes
are also of interest for measuring the stellar ages [12]. While many energy levels were
identified and their energy accurately measured [13], transition rates or oscillator strengths
were not yet reliably determined. Similar spectroscopic data were also acquired for the
related element plutonium [14,15]. More generally, additional motivations for studying
actinides include nuclear chronometry in astrophysics and the search for a nuclear clock
transitions in thorium.

The method of valence-valence CI with all-order valence-core corrections was used by
Safronova et al. [4] to calculate energies of Th I, Th II, and Th III, but unfortunately transition
probabilities or lifetimes for Th II were not presented. The CI-all order approach is a method
to include valence-core interaction beyond the second order in an ab initio way. This can
be necessary when experimental energies are not available, e.g., in super heavy atoms. The
CI-all order approach is quite promising, but it requires massive computer resources and
is noticeably slower than simpler models. The starting point for this approach is that in
single-valence atoms, like Fr I, a good accuracy was achieved by including single-double
excitations.

Th II has also been investigated using CI and CI-MBPT approaches. Flambaum and
Dzuba [16] showed that the number of states in Th II, as well as in Th I, grows exponentially
with the energy of the states, which is a useful property for nuclear clocks, while it also
indicates the complexity of the spectrum, making the precise calculations difficult. Another
study showed that a nuclear clock transition with Th II can be enhanced through the
electronic bridge process [17].

In many applications, transition probabilities are of great interest and they are also
valuable for testing theories. A large compilation of transition probability data for 70 ele-
ments, including uranium and thorium, is given in [18].

2. CI-MBPT Framework

The CI-MBPT framework is convenient for the analysis of complex atoms. The main
idea is to divide all atomic electrons into two groups: valence electrons and core electrons.
This is quite natural for atoms because the valence electrons have much smaller binding
energy than core electrons, and the interaction between core and valence electrons is
much weaker than between valence electrons. CI-MBPT can both accurately treat valence-
valence interactions via CI and efficiently treat valence-core interactions via MBPT. In
general, the required size of the CI matrix scales exponentially with the number of included
electrons, while MBPT scales much slower with the number of considered valence and
core electrons. This scaling depends on the number of excited core electrons, and in many
cases single- and double-core excitations are most important. Unfortunately, in the case of
heavy atoms, valence electrons start to interact considerably with the core electrons, and
ab initio second-order MBPT is not sufficient to reproduce fine structure splittings. Thus,
some modifications (parametric CI-MBPT, e.g.,) are needed, which will be discussed below.

2.1. CI-MBPT Formalism

To calculate energies and wavefunctions, a CI-MBPT method developed for open shell
atoms with multiple valence electrons described in, e.g., [19] can be used. The effective
CI-MBPT Hamiltonian for an atom is split into two parts:

He f f =
M

∑
i=1

h1i +
M

∑
i 6=j

h2ij. (1)

In addition to the VN−M DHF potential, the one-electron contribution

h1 = cα · p + (β− 1)mc2 − Ze2/r + VN−M + Σ1 (2)

contains the valence electron self-energy correction, Σ1 [20]. Here, c is the speed of light, m
is the electron mass, Z is the nuclear charge, α and β are matrices encountered in Dirac’s
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equation. In the CI-MBPT program, the self-energy correction Σ1 is calculated with the
second-order MBPT. It can be scaled with nine factors for one-electron relativistic angular
momentum numbers: s1/2, p1/2, p3/2, d3/2, d5/2, f5/2, f7/2, g7/2, and g9/2. These factors
when different from unity take into account both many high-order MBPT corrections and
relativistic effects, including the one-particle Hartree–Fock–Breit term, which also can be
included in the CI-MBPT program. The two-electron Hamiltonian is

h2 = e2/|r1 − r2|+ Σ2 (3)

where Σ2 is the Coulomb interaction screening term arising from the presence of the
core [21], which is calculated in the second order by MBPT. Fitting with additional scaling
factors was introduced for zero-, first-, and beyond-order multipolarity of the Coulomb
interaction. Further details on the CI-MBPT approach can be found in ref. [22].

2.2. CI-MBPT Numerical Procedure

For numerical calculations, firstly, the VN−M DHF potential is calculated. The number
of removed electrons M can be chosen by the user. When all valence electrons are removed,
it is the most theoretically consistent starting potential, but not the most optimal because
with smaller M the starting potential is closer to the physical potential to give the best single-
electron approximation, but the subtraction-diagram MBPT terms were not programmed.
The potential when the valence electrons are included is symmetrized by assuming a
spherically symmetric closed shell with a scaling factor introduced to take into account the
actual number of valence electrons. For example, d3 would be a 0.3 portion of a spherically
symmetric d10 potential. This scaling factor is not included into the optimization procedure
and is fixed by the number of valence electrons included into the starting potential.

Secondly, the basis in the frozen VN−M potential is calculated using a B-spline subrou-
tine, with a cavity of some radius R chosen for the ion or the atom: R ≈ 30/(Z + 1) where
Z is the positive charge of an ion, and zero for a neutral atom. For example for U I CI-MBPT
calculations, R can be chosen 30 a.u. In this basis, the CI-MBPT terms of Equation (1)
are evaluated. The final step in the calculation of energy states and wavefunctions is the
solution of eigenvalue problem for the effective Hamiltonian matrix.

The program can generate a set of configurations for single-, double-, etc. excitations
of the input configurations limited by a given maximum angular momentum lmax and prin-
ciple number Nmax. Alternatively, a list of nonrelativistic input configurations can be given
that includes the dominant configurations, and no or fewer excitations can be used. The
effective Hamiltonian matrix generation is repeated multiple times for different scaling fac-
tors (in the parametric CI-MBPT method) and an optimization procedure described below
is used until some optimum is reached. For the matrix element evaluation, random-phase
approximation (RPA) corrections are added to take into account core-polarization effects.

2.3. Ab Initio CI-MBPT

In ab initio CI-MBPT, the scaling MBPT coefficients are set to one. It works well for
light atoms, which have valence-core interactions sufficiently small that they can be taken
into account in the second order of MBPT. For example, Si I ab initio CI-MBPT calculations
resulted in close agreement with experiment for energies and transition probabilities [23,24].
Good agreement is also found in CI-MBPT calculations for Ge, Sn, and Pb [19], although
the level of accuracy is decreased. An additional problem for CI-MBPT is that the starting
potential can be insufficiently accurate and the convergence of CI is too slow. CI-MBPT has
reasonable accuracy for four-valence-electron atoms, but if an atom has more, the number
of determinants becomes too large, so a more efficient starting potential is needed which
includes some valence electrons, as described in the next subsection.

2.4. Ab Initio Relativistic CI

When many valence electrons are present, for example in case of U I, it is difficult to
saturate the basis using closed-shell starting potential for which CI-MBPT was consistently
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developed. The most efficient way to achieve fast convergence is to include almost all
valence electrons into the starting potential. This will result in a set of states that for lowest-
energy states can be described by almost pure configurations. Moreover, the excitation
over principle quantum numbers does not need to be high in relativistic CI (RCI), and
small-size basis sets can be quite adequate for low-energy states.

One issue is that not all states can be well approximated with a single starting potential.
For example, U I 5 f 36d7s2 and 5 f 36d27s states have different optimal starting potentials.
When the state is pure, then one potential can be chosen for this state to calculate its
property, but when the states are mixed or when a transition needs to be calculated, some
compromise is needed. For example, a transition from the ground state J = 6 5 f 36d7s2 to
J = 5 5 f 36d7s7p can be calculated using the VN−1 5 f 37s2 potential, which at least for 7s and
7p electrons give the effective charge +1. For technical reasons, the CI-MBPT program used
did not allow a 5 f 36d7s starting potential. Another possibility is a 5 f 4 starting potential
with charge +2 for U I electrons. In both cases, because the starting potentials are not ideal,
the RCI basis set needs to include higher n to correct the radial functions. For example, the
configurations 5 f 36d7s8s, 5 f 37d7s2, and 5 f 26 f 6d7s2 can be included. This RCI method was
tested in hyperfine constant calculations of U I, and good agreement was obtained [25].

2.5. Parametric CI-MBPT

Parametric CI-MBPT can improve the accuracy of ab initio CI-MBPT to match theo-
retical and experimental energies, and hence, facilitate the identification of the states. In
heavy atoms, this approach is useful, especially for highly excited states.

The main challenge is that optimization of the parameters requires a large number
of CI-MBPT calculations. Depending on the size of the Hamiltonian matrix, this can take
a long time. Various optimization algorithms can be used, but in general they have to be
efficient. Below are examples of parametric CI-MBPT calculations.

2.5.1. Energies of Even Th I States

The first test of actinides by parametric CI-MBPT was done for Th I atom. This
atom is relatively regular and the spectroscopic database is detailed. Th I is important for
various applications and the Th I spectrum is used for the calibration purpose. CI-MBPT
calculations were carried out using a VN−4 starting potential. The interaction of four
valence electrons were accounted with CI with the basis set. The configuration set started
with basic configurations such 6d27s2, 6d37s, 5 f 7s27p, 6d4, 5 f 6d7s7p, and included the
lowest single excitations: 6d27s8s, etc. Single and double excitations from these listed
nonrelativistic configurations were also allowed to 8s,8p,7d,6f. The optimization of the
parameters was done with the following simple algorithm: (1) a minimum was determined
for the first parameter; (2) its value was substituted and the minimum was determined
for the second parameter; (3) the procedure was repeated until all nine parameters were
optimized in sequence; (4) their values were substituted and the steps 1–3 were repeated
until the changes in the energy deviations became small. This algorithm was not very
efficient and required repetition of CI-MBPT calculations in sequence for many hours.

A large number of Th I even states were calculated with parametric CI-MBPT [1].
With nine adjustable parameters, 7 for single-electron self energy and 2 for Coulomb
screening, an agreement of 100–200 cm−1 was achieved for 16 levels for each J = 1 to
6. Furthermore, the agreement for g-factors was also close for the first 7 states of each
J. However, higher-energy levels were less consistent, which is expected for the limited
number of the parameters used. Also, compared to CI-all-order method [4], the agreement
between theory and experiment is similar.

2.5.2. Energies and Transitions of La II and La I

La II is particularly interesting for the parametric CI-MBPT because the CI part for
2 valence electrons can be easily saturated and the main focus can be placed on the valence-
core interaction. In La II parametric CI-MBPT calculations [2], parameters were adjusted
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to improve the accuracy of the valence-core interaction beyond second-order MBPT. For
optimization of Σ2 parameters first and some reoptimization of some Σ1 and Σ2 parameters,
the particle swarm method [26,27] was used. This method has an advantage that it can
accelerate the optimization by engaging multiple computer cores.

The crucial test was to calculate transition matrix elements, which often present
difficulties for semi-empirical calculations. If the model correctly describes physics, tran-
sition matrix elements will be reproduced well. The parametric CI-MBPT of [2] indeed
accounted accurately for valence-core interaction, leading to a consistent agreement for
electric-dipole transition probabilities for a large number of transitions. In fact, the accuracy
was systematically better than of a previous parametric theory based on Cowan code with
core-polarization corrections [28].

Although La I is quite similar to La II in terms of valence-core interactions, calculations
of La I transitions are more challenging [3]. There are many cases of closely spaced levels of
the same symmetry which are strongly mixed. A special method was applied to improve
accuracy for matrix elements of strongly mixed states, which lead to consistent agreement
between theory and experiment for a large number of transitions and lifetimes. Other
calculations, such as relativistic Hartree–Fock (the approach of Cowan’s code) with core-
polarization HFR+CP [29] and multiconfiguration Hartree–Fock with Breit-Pauli correction
(MCHF+BP) [30] gave less accurate results. The analysis of theoretical accuracy was
introduced based on uncertainties of optimized parameters and mixing angles [3]. The
theoretical error bars were consistent with experimental errors, validating the method.

2.5.3. Lifetimes of Th II

Many transition oscillator strengths and lifetimes of Th II were measured [31–34].
Some uses include cosmological applications [35], nuclear clocks [36], and calibration
standards [37]. While the Th II ion is an analog of the La I atom, with three valence electrons
above the core, Th II transition lifetime calculations have significant uncertainty [38]. One
reason for this is strong mixing between three or more states. This becomes evident
because after averaging over the mixed states, theoretical lifetimes start to agree well with
the experimental values (Figure 1). Another useful conclusion from the work was that
experimental intensities given by NIST for Th II can be used in conjunction with theory
to obtain lifetimes. Many lifetimes of low-energy levels, for which theory is more reliable,
were not measured, so this method can provide additional lifetime data. With the help of
local thermal equilibrium (LTE) approximation, level populations for different levels can
be related, so only one proportionality coefficient k and one temperature T are needed to
obtain the radiative decay rates Aexp,I

i for different levels i from normalized intensities Ii,j:

Aexp,I
i = k ∑

j
IijeEi/T . (4)

Radiative decay rates are related to lifetimes, τi = 1/Ai. Figure 1 shows the fit, which
for the most part is quite close to the experimental points. From the fit, lifetime values were
listed in [38] for J = 2.5 odd states:

τ
exp,I
i = 1/(k ∑

j
IijeEi/T). (5)

The fitting parameters k and T can be found from comparison with theoretical lifetimes,

τTh
i = 1/(∑

j
ATh

ij ), (6)

to obtain the experimental intensity-derived lifetimes. A similar analysis was performed
for J = 1.5 odd states.
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Figure 1. Comparison between theory and experiment for lifetimes of J = 2.5 odd states of Th II.
Because of strong mixing of 20,120, 20,310, 20,686 cm−1 states and 24,463 cm−1 and 24,873 cm−1

states, their average lifetimes were plotted with average energy used in the LTE equation. Lifetimes
derived from experimental intensities “Lifetimes from I” (sum of intensities given by NIST for
transitions from a specific level) were scaled with Boltzmann factor exp[-E/T] and multiplied by a
coefficient for best match: T = 4000 cm−1 and k = 32.

2.5.4. U I

The neutral uranium atom (U I) is of significant interest owing to important applica-
tions, such as detection of uranium and characterization of its isotopic content. This atom
has six valence electrons and is difficult even for approximate calculations. Parametric CI-
MBPT or parametric RCI (pRCI) can be used to get some agreement of energies, g-factors,
configuration assignment, and hyperfine constants. Here, U I calculations are presented in
some detail. Table 1 shows a comparison of several methods for eight U I J = 7 odd states:
(1) the V(N−2)5 f 4 DHF starting potential with configurations A defined in the table caption
and one set of 7 optimized parameters; (2) the same starting potential and configurations
but with another set of 7 optimized parameters; (3) the same starting potential but different
configurations B; (4) parametric CI-MBPT with VN−6 starting potential (valence electrons
removed) and 10 fitting parameters. It is expected that a VN−2 starting potential is better
than VN−6, and this can be clearly seen from much better agreement for energies of cases
1–3 over case 4. For example, case 1 has energy differences smaller than 100 cm−1 for
the first six states, while case 4 has even the second state inaccurate by 699 cm−1, despite
many more fitting parameters being used in case 4. The case 1 model is quite similar to
the models of cases 2 and 3, but the case 1 model has more configurations than case 3, A
vs. B, and also, case 2 has a larger deviation of parameters from zero. Zero parameters
mean ab initio RCI, and nonzero coefficients do not have physical meaning except that
they approximately take into account MBPT corrections and valence–valence interactions
beyond those represented in the model space.

Within the VN−25 f 4 starting potential, cases 2 and 3 have better agreement of quadrupole
hyperfine constants for the first four J = 7 odd states, while case 1 has states 4 and 5 exchanged.
The same is true for case 4. The quadrupole instead of dipole constant is chosen due to better
stability of the quadrupole constant with the variation of parameters. Thus even though
energies and g-factors are accurate in case 1, the quadrupole constant indicates the state
reversal. The probability of reversal or mixing increases with the state energy.
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Table 1. Energies (in cm−1 from the lowest presented level) and other properties of U I odd J = 7 states.
Calculations are performed with (parametric) pCI-MBPT and pRCI methods described here. Configu-
ration A: 5 f 36d7sns(n = 7 . . . 10) + 5 f 3nd7s2(n = 6 . . . 11) + 5 f 26 f6d7s2 + 5 f 36d27s; Configuration B:
5 f 36d7s2, 5 f 36d7s8s, 5 f 37d7s2, 5 f 26 f6d7s2, 5 f 36d27s, 5 f 36d28s, 5 f 36d7d7s, 5 f 26 f6d27s; Configuration C:
5 f 36d7s2, 5 f 36d7s8s, 5 f 36d8s2, 5 f 37d7s2, 5 f 37d7s8s, 5 f 36d27s, 5 f 36d28s, 5 f 36d7d7s, 5 f 36d7d8s, 5 f 26 f6d27s.
Conf.DB are configuration notations taken from Data Base [13], and Conf.th are configurations obtained
by CI-MBPT; g is Landé g-factor from Data Base [13]. BHFS(th) and BHFS(expt) are current CI-MBPT and
experimental [39] quadrupole hyperfine constants (in MHz), respectively.

Potential Coeff.: s1/2, p1/2, d3/2, d5/2
f5/2, f7/2, L = 0, L = 1

VN−25 f 4 A −0.0478, 0.0000, 0.4770, 0.0000, 0.6547
0.0000, 0.0903, 0.9506, 1.3276, 0.6

Conf.DB Conf.th Eth. Eexpt. ∆E g ∆g× 104 BHFS(th) BHFS(expt)
ds2 ds2 0 0 0 0.925 22. 4485 4112
ds2 ds2 3528 3525 3 1.020 16 1363 1239
d2s d2s 4336 4317 19 0.845 5 1661 2412
ds2 d2s 6274 6268 5 0.930 94 791 2744
ds2 ds2 7791 7876 −85 1.095 −132 2861
d2s d2s 9081 9025 56 0.890 206 181
d2s ds2 9435 9546 −111 0.985 171 −297
ds2 ds2 9919 9767 151 1.010 19 2115

Potential Coeff.: s1/2, p1/2, d3/2, d5/2
f5/2, f7/2, L = 0, L = 1

VN−25 f 4 A −0.0602, 0.0000, 0.1, 0.0000, 0.2756
0.0000, 0.0904, 0.9868, 1.4277, 1.7654

Conf.DB Conf.th Eth. Eexpt. ∆E g ∆g× 104 BHFS
ds2 ds2 0 0 0 0.925 3 4578 4122
ds2 ds2 3692 3525 167 1.020 27 1089 1239
d2s d2s 4359 4317 42 0.845 −28 1817 2412
ds2 ds2 6745 6268 477 0.930 22 3163 2744
ds2 d2s 7619 7876 −258 1.095 −99 1079
d2s ds2 8742 9025 −283 0.890 228 762
d2s ds2 9542 9546 −4 0.985 138 377
ds2 d2s 10,029 9767 262 1.010 98 230

Potential Coeff.: s1/2, p1/2, d3/2, d5/2
f5/2, f7/2, L = 0, L = 1

VN−25 f 4 B 1.8799, 0.1266, 0.4544, 0.2025, 0.4492
0.0000, 0.1094, 1.0078, 1.4146, 0.6032

Conf.DB Conf.th Eth. Eexpt. ∆E g ∆g× 104 BHFS
ds2 ds2 0 0 0 0.925 0 3543 4122
ds2 ds2 3185 3525 −341 1.020 27 1210 1239
d2s d2s 4516. 4317. 198 0.845 −32 2024 2412
ds2 ds2 6681. 6268. 412 0.930 −14 3151 2744
ds2 ds2 7747 7876 −130 1.095 42 211
d2s d2s 8238 9025 −788 0.890 95 1351
d2s ds2 9661 9546 115 0.985 106 604
ds2 d2s 10,378 9767 610 1.010 93 192
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Potential Coeff.: s1/2, p1/2, d3/2, d5/2
f5/2, f7/2, L = 0, L = 1

VN−6 C 0.5522, 0.6029, 0.6583, 0.8514, 0.7550
0.9406, 1.0139, 1.0460, 1.2340, 0.9068

Conf.DB Conf.th Eth. Eexpt. ∆E g ∆g× 104 BHFS
ds2 ds2 0 0 0 0.925 −10 4100 4122
ds2 ds2 2827 3525 −699 1.02 30 1355 1239
d2s d2s 4246 4317 −72 0.845 −33 2855 2412
ds2 ds2 6516 6268 248 0.93 198 694 2744
ds2 ds2 7410 7876 −466 1.095 −187 3487
d2s ds2 8734 9025 −291 0.89 300 228
d2s d2s 9620 9546 74 0.985 −18 1907
ds2 ds2 10,263 9767 496 1.01 88 990

To check the behavior for states of higher energies, one additional calculation was
performed for 20 J = 6 even levels in VN−25 f 4 potential with 10 optimized parameters.
Table 2 shows the resulting pRCI configurations, energies and g-factors. Database (DB)
isotope shifts [13] are also given to confirm that DB configurations are consistent with IS
values. A value close to −550 indicates high purity (almost 100% portion) of configuration
5 f 37s6d2, while a value close to zero the purity of 5 f 37s26d configuration. A value in
between indicates mixing. Reasonable agreement of pRCI with DB can be observed for
the first 7 levels, with correct order of 5 f 36d7s2 and 5 f 36d27s states, considering a limited
number of fitting parameters. The configurations are quite pure according to IS values
for these states. The next 3 levels experience order reversal between the 8th and 10th
levels and strong mixing between 8th and 9th levels due to the small energy intervals and
strong interaction. The strong mixing of 5 f 37s26d and 5 f 37s6d2 configurations is also in
agreement with IS values. So it is not surprising that pRCI dominant configurations are not
in agreement with DB dominant configurations for these strongly mixed levels. The states
with close g-factors and hence similar S and L in the LS coupling approximation interact
most strongly for a given distance between levels. However, when the properties over the
three levels, such as g-factors, are averaged, the resulting values are in better agreement
with the experiment: gexp = 1.0083 vs. gpRCI = 1.0293. This is what was observed in
Th II [38]. More mixing and order reversal occurs in higher levels, as expected, due to
higher density of states. Thus, one conclusion can be made that wavefunctions of 7 lowest
states can be used for calculations of atomic properties, while the upper states require some
averaging procedure as in [38]. A closed-shell VN−6 potential can be chosen as a starting
potential, in which all six valence electrons are removed. Because it significantly deviates
from the best DHF potential, the configurations should include at least single excitations to
8s, 7d, and 6f orbitals to correct zero-order 7s, 6d, and 5f orbitals.
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Table 2. Comparison of parametric RCI (pRCI) configurations, energies, and g-factors with ones
given in database (DB) [13] for 20 J = 6 odd U I states. pRCI parameters are the following: po-
tential: VN−2, 5 f 4; configurations: 5 f 36d7s2 + 5 f 36d27s + 5 f 36d3 + 5 f 47s7p + 5 f 47p6d; coefficients:
s1/2, p1/2, p3/2, d3/2, d5/2, f5/2, f7/2 = 1.1908, 0.3878, 0.4852, 0.3907, 0.2853, 0.0000, 0.0639, 0.0000,
0.0000; L = 0,1,2,3,. . . : 0.3882, 1.3726, 0.7495, 0, 0, 0, 0, 0, 0. ISDB are IS taken from DB. Because
strong mixing (energies are close as well as g-factors) is expected for the 8th,9th, and 10th levels, the
g-factors of these levels are averaged for comparison of pRCI with the experiment. The energies are
given in cm−1; ISDB U238−235 in units of mK (10−3 cm−1).

S. No DB pRCI EDB EpRCI ∆E gDB gpRCI ISDB

1 s2d s2d 0 0 0 0.75 0.7415 0
2 s2d s2d 4276 3905 371 0.92 0.9177 25
3 sd2 sd2 6249 6247 2 0.625 0.6075 −545
4 s2d s2d 7006 7253 −247 0.95 0.9651 5
5 s2d s2d 10,289 9389 900 1.035 1.0568 37
6 s2d s2d 10,988 10,629 359 1.035 1.0287 28
7 sd2 sd2 11,457 10,735 722 0.81 0.804 −550
8 s2d sd2 12,911 12,650 261 1.015 0.9791 0
9 s2d s2d 13,361 13,244 117 1.015 1.0322 −200

10 sd2 s2d 13,403 13,388 15 0.995 1.0765 −285

8 + 9 + 10 1.0083 1.0293

11 s2d s2d 14,174 14,017 157 1.145 1.2097 56
12 sd2 sd2 14,544 15,216 −672 0.81 1.1017 −503
13 s2d sd2 15,435 15,562 −127 1.05 0.969 −94
14 sd2 sd2 15,804 15,900 −96 1.1 0.9478 −404
15 sd2 s2d 15,906 16,108 −202 1.1313 −463
16 s2d sp 16,376 16,431 −55 1.0097 −20
17 ? s2d 16,847 17,040 −193 1.1057
18 sd2 sd2 17,103 17,337 −234 1.0627 −555
19 s2d sd2 17,573 17,570 3 1.1266 35
20 sd2 s2d 18,006 17,878 128 1.0919 −535

2.6. Hyperfine Constant Calculations

The RCI method was found to be capable of predicting hyperfine structure con-
stants [25]. For example, close agreement for the magnetic dipole hyperfine constant is
obtained for J = 6 and J = 7 f 36d7s2 lowest states, while reasonable agreement was obtained
for the electric quadrupole constants of all considered states. f 36d27s is a difficult con-
figuration for calculations. One possible way to improve the accuracy is to assume that
strong mixing between the f 36d27s 6249 cm−1 and f 36d7s2 7005 cm−1 states exists and to
adjust the coefficient ks in the CI-MBPT code to vary the mixing level while monitoring, for
example, the g-factor during optimization. The value of the mixing was very sensitive to
the coefficient, so the magnetic hyperfine constant is difficult to predict ab initio.

2.7. Isotope Shift

A linear correlation [40] exists between the isotopic shift (IS) and the total density
of s electrons near the nucleus 4πψ2

s (0). It is obtained by summing the contributions
from all of the s orbitals each being weighted by its occupation number (non-relativistic
calculations [41] and relativistic calculations [40]) for different configurations, which can
be explained by the screening of s electrons by the other electrons. In atomic calculations,
often the radial wavefunction P(r) is used which is normalized by

∫ ∞
r=0 P2(r)dr = 1 in

nonrelativistic limit and

4πΨ(0)2 =
P2(r)

r2 |r→0 (7)
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Relativistic effects on IS of heavy atoms were investigated using Hartree with the
statistical exchange code of Cowan [42] where relativistic corrections for s electrons can
be included via the addition of the Darwin and mass-velocity terms to the central field
potential in [40]. They can be significant, and although in general IS did not depend much
on specific coupling, CI effects were important.

The contributions of different s-shells need to be included, but only the contributions
from the outermost shells show dependence on the external valence states. For example,
Hg contributions to 4πΨ(0)2 from different s-electrons tabulated for different HF config-
urations [41] follow this trend. In units of a−3

0 , 6s contribution of state 5d106s was 150.11,
while 5d96s2 was 166.83. The 5s state has a sizable contribution that depends on the valence
states, but the other core states contribute much less.

To obtain various s-state contributions to IS, the calculations of the radial wavefunc-
tions can be obtained in Hartree-Fock approximation, by including specific configuration in
self-consistent calculations of orbitals. Some other theoretical approaches, such as CI-MBPT,
in the frozen-core approximation when the valence electrons are removed do not give the
radial wavefunctions of the core s states that include the interaction with the valence states.
For estimate of the effect of the interaction, a perturbative approach can be used.

Valence states cannot be treated with perturbation theory and it is necessary to use
a CI procedure. Then the FS can be calculated based on the expansion coefficients. The
approach of calculating FS using CI expansion coefficients with adjustable but the same FS
and hence IS (FS dominates in heavy atoms) for the same configurations will be discussed
next on example of Pu II.

2.8. Isotope Shift of Pu II

CI-perturbation theory (CI-PT) was used to calculate Pu II energy levels [43]. CI-PT ap-
proach is another promising method for ab initio calculations in cases where many valence
electrons are present. It is quite similar to CI-MBPT, but instead of calculating valence-
core interactions using 2nd-order MBPT, the parts of valence-valence interactions that are
smaller are included into the effective Hamiltonian using 2nd order perturbation theory.

Mixing coefficients obtained from CI-PT can be used to evaluate IS in agreement with
experiment, using two fitting parameters as the IS of single configurations. This indicates
that Pu II has IS dependent mostly on configurations, not much on J and other quantities,
such as L and S. Motivated by needs of weapons research and characterization, Pu I and
Pu II spectroscopic information was acquired over many years [44,45,45–49] and currently
a large number of lines as well as energy levels were identified. In addition to wavelength
measurements and intensities, g-factors and isotope shifts played an important role in
the identification of levels. A large collection of data is reported in [14], with which we
will compare our calculations. (Throughout the paper, we adopt IS units of 10−3 cm−1

or mK, and IS between 239Pu and 240Pu.) The constant ratios can be used to obtain IS for
other isotopes.

Because IS of Pu I and II are strongly dependent on the configurations but only weakly
on the fine structure components, J and coupling schemes, they can be used to determine
the principle configurations and the next leading configurations purely from the experiment
rather than from theoretical interpretation based on parametric fitting. In the Pu atom, the
field shift (FS) is larger than the specific mass shift, and will approximately determine the
dependence of the IS on particular configurations and states. This might be a general rule
for heavy atoms, since their nuclear sizes as well as the density of electrons at the nucleus,
especially of s electrons, increases. A detailed calculation of mass and field shifts in [50]
for Cs and Fr provides some estimate for Pu II. Fr 7s electron is analogous to the Pu II 7s
electron, and the FS of the Fr 7s electron is much larger than that of Cs 6s electron, where
the mass shift is still important.

Some regularities in IS can be illustrated for the lowest J = 3.5 odd Pu II states (Table 3).
Nine experimental ISs of the lowest states were used to fit values assumed for pure
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configurations and the results are in close agreement. However, g-factors agree less, which
can be due to additional dependence of g-factors on terms, L and S.

Table 3. Pu II Energy levels (cm−1), g-factors, and ISs (mK or 10−3 cm−1) of J = 3.5 odd states, which
for pure configurations are assumed to be 941 for 5 f 57s2, 555 for 5 f 56d7s, and 294 for 6d2 from fitting
IS of the nine lowest experimental states. The number of theoretical levels exceeds the number of
identified experimental levels.

Eexp ECI−PT dE Conf. gCI−PT gobs ISCI−PT ISexpt

8709.64 8710 0 5 f 56d7s 0.285 0.308 551 555
11,504.095 10,808 −696 5 f 57s2 0.846 0.859 895 897
14,295.57 14,975 679 5 f 56d7s 0.777 0.79 547 547

15,641.105 16,525 884 5 f 56d7s 0.998 1.04 551 562
16,499.64 17,824 1324 5 f 56d7s 0.761 0.773 494 510

17,532.945 18,549 1016 5 f 56d7s 1.280 1.238 572 571
18,927 5 f 57s2 1.328 846

18,720.09 19,802 1082 5 f 56d7s 0.863 1.06 507 490
19,277.2 20,671 1,393 5 f 56d7s 0.684 0.847 454 457
20,689.1 21,416 727 5 f 56d7s 1.167 1.27 542 543

22,040 5 f 56d7s 0.927 485
22,373 5 f 56d7s 0.8857 488
22,834 5 f 56d7s 1.2303 535

22,652.035 23,366 714 5 f 56d7s 1.1822 1.185 535 539
23,538.65 24,767 1229 5 f 56d7s 1.1069 1.47 530 535

23,671.715 25,336 1665 5 f 56d7s 1.6331 1.38 549 514

3. Conclusions

Here, we reviewed and presented calculations in the framework of relativistic CI-
MBPT for complex atomic systems such as La II, La I, Th II, Th I, U I, Pu II. Most accurate
agreement is obtained for La II and La I, although La I required some additional analysis
due to stronger state mixing. For the actinides, the accuracy is lower. Various properties,
such as energies, g-factors, electric dipole transitions, hyperfine constants, and isotope
shifts were discussed. Further improvements in CI-MBPT accuracy might be possible with
larger basis sets and parallel computing.
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