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Abstract: We have studied the angular time delay in slow-electron elastic scattering by spherical
targets as well as the average time delay of electrons in this process. It is demonstrated how the angular
time delay is connected to the Eisenbud–Wigner–Smith (EWS) time delay. The specific features of both
angular and energy dependencies of these time delays are discussed in detail. The potentialities of
the derived general formulas are illustrated by the numerical calculations of the time delays of slow
electrons in the potential fields of both absolutely hard-sphere and delta-shell potential well of the
same radius. The conducted studies shed more light on the specific features of these time delays.

Keywords: electron scattering from atoms and molecules; Eisenbud–Wigner–Smith (EWS) time
delay; angular time delay

1. Introduction

In the first experiments, the purpose of which was to study the time delays of electrons in
atomic photoeffect, electrons with the wave vector k emitted along the polarization vector e of
the absorbed photon were recorded [1–3]. With this experimental technique, the delay times of
the electrons escaping at an arbitrary angle to the vector e were unknown. Now, investigations
of time delays as a function of the emission angle θ have become available [4–7], and the
corresponding calculations have been able to reproduce this dependence for different
atoms [8–13]. The electron delay time is a function depending on both the photoelectron
emission angle θ with respect to the radiation polarization vector e and the photoelectron
energy E. In most calculations of the time delay, its dependence on the energy E is
analyzed at fixed values of the angle θ, revealing the pronounced angle dependence for
large emission angles.

The angular dependence of the time delay of the wave packet scattered (or emitted)
by a spherical target was obtained by Froissard, Goldberger, and Watson in [14], where the
following expression for the angular time delay of the packet scattered in the direction θ
was derived:

∆t(k, θ) = h̄
∂

∂E
arg f (k, θ), θ 6= 0. (1)

Here, f (k, θ) denotes the amplitude of electron elastic scattering by a target [15]

f (k, θ) =
1

2ik ∑
i
(2l + 1)(exp 2iδl − 1)Pl(cos θ), (2)

where δl(k) is the partial scattering phase shifts and Pl(cos θ) are the Legendre polynomials.
According to (1), the forward scattering θ = 0 must be excluded due to the interference
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effects between the forward scattered wave and the incident wave that give rise to the
optical theorem [15].

The domain of applicability of the angular time delay ∆t(k, θ) (1) is considerably broader
than that of the Eisenbud–Wigner–Smith (EWS) partial-wave time delay [16–18]

τl(k) = 2h̄
∂δl
∂E

. (3)

In particular, Equation (1) serves as the basis for describing the temporal picture of
atomic photoionization processes [17–25]. Equation (1) in this case needs not to be modified
to exclude θ = 0 as the problem of the interference with the unscattered wave does not
exist in the case of photoionization. The scattering amplitude f (k, θ) for this process must
be replaced in Equation (1) by the photoionization amplitude f ph(ω, θ), where ω is the
photon energy

τ(ω, θ) = h̄
∂

∂ω
arg f ph(ω, θ). (4)

The dipole selection rules in photoionization of l-states of atom A lead to emission
into the continuum of the pair of electronic spherical waves Yl+1,m(k) and Yl−1,m(k),
propagating in the potential field of the atomic residue A+ with the phase shifts δl+1(k)
and δl−1(k), correspondingly, where k is the linear photoelectron momentum. The function
f ph(ω, θ), therefore, is a linear combination of these spherical functions, the coefficients of
which are determined by the corresponding dipole matrix elements Dl±1(ω). The energy
derivative of the function (1) implicitly includes the derivatives of both phase shifts δ′l±1(k)
and matrix elements D′l±1. The prime sign here and further denotes differentiation with
respect to the electron kinetic energy E.

The time delay (4) at some electron emission angles θ was studied in the series of
works on photoionization [19–24]. To the best of our knowledge, the angular dependence
of the time delay in elastic electron scattering (1) has received no attention so far. Our goal
in this article is to close somewhat the gap in the area of investigation of the angular time
delay in electron scattering (1) by spherical targets.

We will see further that when only one scattering phase is different from zero in the
scattering amplitude (2), the angular time delay (1) does not depend on the scattering angle.
Here, we analyze the scattering amplitude f (k, θ) containing two Legendre polynomials
only, i.e., we will consider model targets, in which, as in the case of the dipole photoelectric
effect, only one pair of phase shifts is different from zero.

In Section 2, the angle dependence of the angular time delays ∆t(k, θ) for some fixed
electron momenta k is investigated. In Section 3, the time delay is studied as a function of k
for some fixed polar angles θ of the scattering of an incident plane wave train. Finally, the
function ∆t(k, θ) is averaged over the distance of the order of the de Broglie wavelength,
and the average angular time delay 〈∆t(k)〉 is obtained in Section 4.

2. Angular θ-Dependence of the Function ∆t(k, θ)

The argument of the amplitude f (k, θ) is determined by the ratio of the imaginary
part of the function (2) = f (k, θ) to its real part < f (k, θ)

arg f (k, θ) = arctan
= f (k, θ)

< f (k, θ)
(5)

whereas the angular time delay (1) is described by the general expression

∆t(k, θ) =
d

dE
arg f (k, θ) =

(= f )
′
(< f )− (< f )

′
(= f )

| f |2 (6)
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Here, and everywhere below, we use the atomic system of units. Let us first consider
the case when all the phase shifts in (2), with the exception of δl(k), are equal to zero. In
this case,

f (k, θ) =
1
2k

(2l + 1)Pl(cos θ) sin 2δl + i
1
k

Pl(cos θ) sin2 δl ,

arg f (k, θ) = arctan(tan δl), (7)

∆t(k, θ)l =
dδl
dE
≡ δ

′
l .

It is seen that the angular time delay does not depend on the scattering angle θ and it
is equal to half of the EWS-partial time delay (3).

Suppose that only two scattering phases δ0(k) and δ1(k) are nonzero. In this case, the
scattering amplitude and its argument are represented as

f (k, θ) =
1
2k

(P0 sin 2δ0 + 3P1 sin 2δ1) + i
1
k
(P0 sin2 δ0 + 3P1 sin2 δ1)

arg f (k, θ) = arctan
2(P0 sin2 δ0 + 3P1 sin2 δ1)

(P0 sin 2δ0 + 3P1 sin 2δ1)
, P0,1 ≡ P0,1(cos θ). (8)

Differentiating the argument of the scattering amplitude (8), we obtain the expression
for the time delay

∆t(k, θ)01 =
P0[P0 sin2 δ0+3P1 sin(2δ0−δ1) sin δ1]δ

′
0+3P1[3P1 sin2 δ1+P0 sin(2δ1−δ0) sin δ0]δ

′
1

P2
0 sin2 δ0+6P0P1 sin δ0 sin δ1 cos(δ0−δ1)+9P2

1 sin2 δ1
(9)

as a function of both scattering angle θ and electron momentum k =
√

2E.
Repeating the calculations similar to those in formulae (8), we obtain the expression

for the time delay in the case of nonzero phases δ0(k) and δ2(k)

∆t(k, θ)02 =
P0[P0 sin2 δ0+5P2 sin(2δ0−δ2) sin δ2]δ

′
0+5P2[5P2 sin2 δ2+P0 sin(2δ2−δ0) sin δ0]δ

′
2

P2
0 sin2 δ0+10P0P2 sin δ0 sin δ2 cos(δ0−δ2)+25P2

2 sin2 δ2
. (10)

It is easy to demonstrate that when only two scattering phases δl(k) and δl′(k) are
nonzero in the electron scattering amplitude (2), the angular delay time (5) is determined
by the following combination of the Legendre polynomials Pl(cos θ) and Pl′(cos θ):

∆t(k, θ)ll′ =
∑i=l,l′ ∑j=l,l′ [(2i + 1)(2j + 1)PiPj sin(2δi − δj) sin δj]δ

′
i

∑i=l,l′ ∑j=l,l′(2i + 1)(2j + 1)PiPj sin δi sin δj cos(δi − δj)
. (11)

Explicit expressions for the time delays for selected nonzero scattering phase pairs
(11) are given in [26], where the results of the calculations of the θ- and E-dependencies
of the corresponding angular time delays are also given. We use both hard-sphere and
delta-shell potentials as potential functions for the model targets. For these potentials, the
analytical expressions for the scattering phases are known. When an electron is scattered
by the model target in the form of an ideally repulsive solid sphere of radius R, the phase
shifts of the electron are determined by the formula [27]

tan δl(k) =
jl(kR)
nl(kR)

, (12)

where jl(kR) and nl(kR) are the spherical Bessel functions.
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The scattering phase shifts of an electron for another model target taken in the form of
an attractive delta-shell (delta-shell potential well [28]) are determined by the expression
(see Equation (10) in [29])

tan δl =
xj2l (x)

xjl(x)nl(x)− 1/R∆L
, (13)

where the variable x = kR. The parameter ∆L in (13) is the jump of the logarithmic
derivative of the electron wave functions at the point r = R where the delta-shell potential
U(r) = −U0δ(r− R) is infinitely negative. In the numerical calculations of phase shifts
(12) and (13), the radii R and the parameter ∆L have the same values as those used in
our article [29], where the EWS time delay of slow electrons scattered by a C60 cage was
calculated.

Figure 1 shows the results of the calculation by formula (9) of the angular time delay
∆t(k, θ)01 as a function of the scattering angle θ for some fixed electron momenta k. The left
panel corresponds to the scattering on the solid sphere. The right panel corresponds to the
delta-shell target. The angular time delays in these figures are given in atomic units. The
atomic unit of time is equal to 24.2 attoseconds. Despite the different scales of the graphs
on both panels, they show qualitatively similar behavior. The only exceptions are for the
curves at k = 0.68. The graph of the angular dependence for the hard-sphere is almost
a straight line passing from a positive to a negative half-plane at the angle of about 60◦,
whereas on the right panel, this curve almost coincides with the x-axis. According to both
panels, at low electron energies (k = 0.17 and 0.34), the time delay of the scattering packet
is negative at all the scattering angles. The rest of the curves (except the hard-sphere target
at k = 0.85) are alternating for both targets. At the momenta k = 0.51 and k = 1.0, the time
delays on the right panel reach its maximum (∼ 298 atomic units (au) at θ = 95◦ in the
first case and ∼140 au at the same angle in the second one). The appearance of these sharp
peaks in the curves in Figure 1 is due to the almost vanishing of the denominator in the
expression (9). The curves at k = 0.85 and k = 1.0 on the left panel cross the x-axis into the
positive half-plane in the region of 90◦, forming a peak with a height of ~30 atomic units.
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Figure 1. Angular time delay ∆t(k, θ)01 (9) as a function of the polar angle θ for fixed electron wave
vectors k. The functions P0(cos θ) and P1(cos θ) used in (9) is the pair of Legendre polynomials in the
amplitude of electron elastic scattering f (k, θ) (2).
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Figure 2 depicts the curves corresponding to the pair of polynomials P0(cos θ) and
P2(cos θ). We see here the results of the calculation with formula (10) of the angular time
delay ∆t(k, θ)02 as a function of the scattering angle θ. As the sum of the orbital moments
(indices of the Legendre polynomials) is an even number, the curves ∆t(k, θ)02 in Figure 2
are symmetric relative to the angle θ = 90◦. The curves on the left panel, except for the
curve at k = 0.34, lie entirely in the lower half-plane. The situation is quite different when
the wave packet scatters by the delta-shell target. The behavior of the curve at k = 1.0 on
the right panel is particularly interesting. This curve lies entirely in the positive half-plane,
which allows it to be depicted in polar coordinates (see the inset in the right panel). The
3D-picture of the function ∆t(k, θ)02 is a figure of rotation of this curve around the polar
axis z, along which the incident plane wave train hits the target. The “wings of the star”
shown there correspond to the polar scattering angles θ = 57◦ and 123◦. The qualitative
similarity of the curves on both panels of Figure 2 is obvious.
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Figure 2. Angular time delay ∆t(k, θ)02 (10) as a function of the polar angle θ for fixed electron wave
vectors k. The functions P0(cos θ) and P2(cos θ) used in (10) is the pair of Legendre polynomials in
the amplitude of electron elastic scattering f (k, θ) (2). The inset in the right panel is the plot at k = 1.0
in a polar coordinate system. The 3D-plot of the function ∆t(k, θ)02 is a figure of rotation of this curve
around the polar axis z, along which the incident plane wave train hits the target.

Note the similarity of the curves in Figure 2 and the angular spectra in Figure 1a,b of
the article in [10] (devoted to the study of angular resolved time delays in photoemission
from different atomic sub-shells of noble gases). A direct comparison of the function
∆t(k, θ) for the processes of photoionization and elastic scattering cannot be conducted.
An exclusion is the case when the dipole matrix element of photo-transitions varies slightly
with the radiation frequency, and their derivatives with respect to the photon energy are
negligible. Nevertheless, photoelectron spectra are similar to the scattering spectra in that
they are symmetric relative to the angle θ = 90◦. Qualitative behavior of the scattering
spectrum on the delta-shell at k = 0.51 in Figure 2 and the photoelectron spectrum in panel
(a) of Figure 1 is similar. The same is to be for the curves at k = 0.85 in Figure 1 and those
in panel (b) of Figure 1 in [10].

Summarizing, we note that according to Figures 1 and 2, the angular θ-dependencies
of the function ∆t(k, θ) are represented by nontrivial rapidly oscillating curves lying at low
electron energies mainly in the negative half-plane. The situation changes with increasing
the electron energy where the dependencies become smooth.
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3. k-Dependence of Function ∆t(k, θ)

We now investigate the angular time delay ∆t(k, θ) as a function of the electron energy
E for some fixed values of polar angles θ. The calculation results by formulas (9) and (10)
are shown in Figure 3.
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Figure 3. The angular time delay ∆t(k, θ) as a function of the electron energy E for some fixed values
of the polar angle θ. P0(cos θ)-P1(cos θ) is the pair of Legendre polynomials in the upper panels.
P0(cos θ) and P2(cos θ) are the polynomials used in both lower panels.

All curves in this figure tend to infinity at small electron momenta. The reason for this
is that the scattering phase shift in short-range potentials must follow the Wigner threshold
law δl(E) ∝ El+1/2 [30]. In the case of s-phase shift, we have δ0(E → 0) ∝ π − E1/2. The
time delay ∆t(k, θ)01 and ∆t(k, θ)02, that contain the derivative of the s-phase shift, for
k→ 0 tends to infinity: δ′0(E→ 0) ∝ −E−1/2. For the orbital moments l > 0 the derivative
of the phase shifts does vanish at the threshold as δ′0(E→ 0) ∝ −El−1/2.

The left column of the figures corresponds to the electron scattering by the hard-
sphere potential. The figures in the right column correspond to scattering by the delta-shell
potential. In the upper right panel of Figure 3, the curves practically coincide with each
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other at small scattering angles θ, up to the angle of 45◦. The graphs corresponding
to the angles of 135◦ and 180◦ have alternating signs, and they are characterized by
the peaks in both positive and negative half-planes of the coordinate system. We see
a qualitatively similar picture in the lower panel of this column where the curves for
∆t(k, θ)02 are presented. The presence of the derivative of the s-phase shift in formula (
10) also leads this function to infinity at small electron energies. The curves for angles
30◦ and 180◦ almost coincide in this figure. The curve at θ = 90◦ is characterized by
the maximum negative amplitude of oscillations. In the lower-left panel of Figure 3, we
observe strong resonance behavior of all curves, except for the one at θ = 90◦ and energy
E ≈ 0.4 atomic units.

In the second and third sections, we limited ourselves to the specific examples of two
nonzero phases in the expansion of the wave function of a scattered electron (2) into partial
waves. It is very difficult to interpret rapidly oscillating dependence of the time delays
upon the energy E and scattering angle θ even for this simple example. An increase in
the number of included essential scattering phases significantly affects the picture of the
angular time delays. The increase makes the time delays rapidly oscillating when they
are averaged over the energy of incident electrons. As a consequence, the scattering angle
becomes inevitable to make the angular time delay ∆t(k, θ) observable in an experiment.

4. Average Time Delay of Scattering Process

The average angular time delay 〈∆t(k)〉 is obtained from (1) by averaging over the
energy spectrum of the incident wave packet, as well as over the directions weighted by
the differential cross section | f (k, θ)|2. This averaging is reduced to the calculation of the
integral of the product | f (k, θ)|2∆t(k, θ) over all angles of electron scattering by the target
and division of the obtained result by the total cross section of elastic electron scattering
σtot(k). The calculation of the integral is complicated by the fact that, according to (1), the
function ∆t(k, θ) is not defined at θ = 0. It was shown in [31] that the contribution to the
integral from the forward scattering of an electron is determined by the real part of the
scattering amplitude at zero angles. As a result of such averaging, Nussenzweig [31–33]
obtained the expression

〈∆t(k)〉 = 1
σtot(k)

(∫
| f (k, θ)|2∆t(k, θ)dΩ +

2π

k2
d

dE
[k< f (k, 0)]

)
= (14)

=
π

σtotk2 ∑
l
(2l + 1)2δ

′
l =

π

σtotk2 ∑
l
(2l + 1)τl(k).

The second term on the left-hand side of Equation (14) eliminates the contribution of
the forward scattering into the average angular time delay. Thus, the average time delay
for the plane wave train 〈∆t(k)〉 is a linear combination of the EWS time delays τl(k) (3).
The results of the calculation of the function 〈∆t(k)〉 (14) in the case of electrons scattered
by the hard-sphere target are shown in Figure 4.

Figure 4 also shows the dependencies calculated under the assumption that the
statistical weight of τl(k) in the sum (14) is not equal to π(2l + 1)/σtotk2. Instead, it is the
ratio of the electron elastic scattering partial cross section σl(k) to the total cross section
σl(k)/σtot(k). For more information about this assumption see, for example, Equation (10)
in [10] or Equation (8) in [29]. The deep peak of the curve corresponding to the combination
of the Legendre polynomials P0 and P2 is due to the resonant behavior of curves at E ∼ 0.4
au in Figure 3.
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Figure 4. The function (14) in the case of electrons scattered by the hard-sphere target. P0 + P1 and
P0 + P2 are the pairs of Legendre polynomials Pl(cos θ). Note that Equation (10) corresponds to
Formula (10) in [10].

5. Concluding Remarks

Using the instructive soluble example of electron scattering by the hard-sphere po-
tential and delta-shell potential well, we for the first time explicitly obtained the angular
time-delay ∆t(k, θ) in terms of the scattering phase shifts δl(k) and their energy derivatives
δ′l(k). We demonstrated the complexity of ∆t(k, θ) as a function of the incoming electron
energy E and the scattering angle θ. We saw that ∆t(k, θ) and the function 〈∆t(k)〉, even
averaged over proper intervals of E and θ, are more sensitive to the scattering phases than
the absolute cross section σtot(k) and even the differential in angle scattering cross section
that is proportional to | f (k, θ)|2. This is because the time delay functions depend not only
on the cross section phases, but also upon their energy derivatives. This makes theoretical
and experimental investigation of time delays a promising direction of research in the area
of atomic scattering.
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