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Abstract: The polarization dependence of the photoionization probability was analyzed in the case
when a randomly oriented atom is irradiated by two crossing polarized monochromatic photon
beams with the same frequency. It was found that the angular distributions of photoelectrons
exhibit the effect of circular dichroism (CD), which consists of the dependence of the photoionization
probability on the sign of the circular polarization degree of each beam. We demonstrate that the
CD effect exists only for coherent crossing photon beams. It was shown that CD effects are strongly
dependent on the phase difference between the electric field vectors of the photon beams and have a
quite large magnitude. The possibilities of the experimental observation of CD effects are discussed.
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1. Introduction

CD effects manifest themselves as the dependence of the optical properties of media
on the helicity of the photon beam (i.e., the sign of its circular polarization degree). It is a
common knowledge that CD is absent in the single electron photoionization of randomly
oriented atoms or molecules, which is due to the isotropy of such systems. So far, CD in
a single photon ionization process has been observed in the two-electron ionization of
unpolarized atoms [1–8]. In this case, CD is seen as the difference of angular distributions
of electrons emitted in different directions, recorded for two opposite rotation directions of
the electric field vectors. Note that the CD effect in the double photoionization vanishes
when both electrons are emitted in opposite directions, since this situation is kinematically
equivalent to the conventional single photoionization process. However, there is an excep-
tion [9] which takes place when the ionizing pulse is extremely short (i.e., broadband). In
this case, the CD in the back-to-back emission of electrons is caused by the presence in the
problem of a pseudoscalar carrier-envelope phase parameter.

Nevertheless, for a polarized initial bound state, CD effects do exist in a single electron
atomic photoionization process [10–16] due to the anisotropy of polarized atomic targets.
In molecular photoionization, CD effects can be observed in the angular distributions of
electrons registered in the molecular coordinate frame [17–19]. From the general symmetry
arguments, both the above situations are kinematically equivalent.

It is noteworthy that there are possibilities to observe CD in the atomic photoionization
of unpolarized atoms. The first possibility is to use an axially asymmetric photon beam,
e.g., the one with nonzero optical angular momentum [20]. Another possibility was pointed
out in [21], where it was shown that the CD effect in the photoionization of randomly
oriented atoms by a plane wave photon beam does occur when photoelectrons pass two
slits before reaching the detector.

CD effects also emerge when an unpolarized atom is irradiated by a two-color (ω + 2ω)
photon beam [22]. Similar CD effects in the ionization of helium atoms by biharmonic
few-cycle pulses have been analyzed in a recent work [23]. In this case, the CD is caused by
an interference of the ionization amplitudes corresponding to the single- and two-photon
absorption channels. Apart from that, CD effects take place in the ionization of unpolarized
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atoms by an XUV pulse in the presence of an IR field [24,25]. From the general symmetry
arguments, the reason for such CD effects to occur is that the axial symmetry of the system
is disturbed by the presence of a pseudoscalar phase difference between the ω and 2ω
components of the electromagnetic field.

Based on the first-order perturbation theory, in the present article, we demonstrate that
CD effects can be observed in the angular distributions of electrons emitted by unpolarized
atoms irradiated by two monochromatic photon beams of the same frequency ω crossing
at the atomic target. Unlike the effect described in [22], this new CD effect is linear in the
electric field amplitude of each beam, which means that the beam intensities need not be
very large.

Since we have two photon beams, there are two kinds of CD effects to be distinguished.
Namely, the first kind CD (CD1) is the difference of the ionization probability with respect
to the simultaneous change of sign of the circular polarization degrees, ξ, of both beams,
ξ1,2 → −ξ1,2. The CD of the second kind (CD2) is the difference of the probability with
respect to the change of sign of the circular polarization (CP) degree of one of the beams
(let it be the second pulse), ξ2 → −ξ2. Clearly, when one of the pulses is linearly polarized
(e.g., ξ1 = 0), both effects, CD1 and CD2, coincide. We have found that the magnitude of
CD effects strongly depends on the polarization of crossing beams and the relative phase
of their electric field vectors. Those properties of CD in the photoionization by crossing
beams make the above CD effects to be promising candidates for X-ray polarimetry.

The paper is organized as follows: In Section 2, we present the parametrization
of the photoionization amplitude and probability in terms of scalar products of photon
polarization vectors and the unit vector of photoelectron momentum p̂ = p/p. It is
demonstrated in Section 2 that the photoionization probability can be factorized into a
product of a dynamical part, independent of the polarization properties of the photon
beams, and the geometrical (or kinematical) part, which determines the polarization and
angular dependence of the probability. Remarkably, the geometrical part of the probability
is the same for any atomic target as long as the initial bound state has zero angular
momentum (i.e., an S-state). The parametrizations derived in Section 2 are valid for an
arbitrary angle between the ionizing beams. Next, in Section 3, we consider in detail the
CD effects in the ionization by two purely CP beams for the case of orthogonal beams;
see Figure 1a. In Section 4, the angular distributions of photoelectrons in the ionization
by orthogonal circularly and linearly polarized (LP) beams are analyzed. The conclusions
(Section 5) contain a brief summary of the derived results and an outline for the future
research. Atomic units are used throughout the text.
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Figure 1. Ionization geometry. A is the atomic target, first and second photon beams propagate along
the x- and y-axis, respectively. The z-axis is perpendicular to the beam propagation plane xy. Panel
(b) is the top view of the geometry on panel (a). For atoms located in the x′z plane, the phase shift
between two beams is constant. θ is the polar angle of the photoelectron momentum vector in the
detection x′z-plane, 0 ≤ θ ≤ 2π.
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2. Parametrizations of the Photoionization Amplitude and Probability

For an atom located at the origin of the coordinate frame, the electric field strength
acting on atomic electrons within the dipole approximation can be written as

F(t) = Fe−iωt = F1(e1 + f eiφe2)e−iωt, f = F2/F1, (1)

where Fj and ej are the amplitude and the complex polarization vector of the j-th photon
beam, j = 1, 2, and φ is the relative phase of the two beams.

It is convenient to use the following parametrization of the polarization vectors (below
we omit subscript indices “1,2”):

e = (ε̂ + iη[k̂× ε̂])/
√

1 + η2, (e · e∗) = 1, (2)

where η is the ellipticity parameter and ε̂ is the unit vector along the major axis of the
polarization ellipse of the photon beam propagating along the unit vector k̂. For right (left)
rotation of the electric field, we have η > 0 (η < 0). Note that η = +1 for a right-hand
CP field, while η = −1 for a left-hand circularly polarized field, and η = 0 for a linearly
polarized (LP) field polarized along the ε̂ axis. The circular and linear polarization degrees
are denoted as ξ and `, respectively, and are defined by

ξ = i(k̂ · [e× e∗]) =
2η

1 + η2 , ` = (e · e) = 1− η2

1 + η2 . (3)

Within the first-order perturbation theory, the photoionization amplitude is defined
by the matrix element

A = 〈p|(F · d)|i〉 = F1〈p|(e1 + f eiφe2) · d|i〉, (4)

where |p〉 is the final state of the emitted electron + residual ion, |i〉 is the initial bound
state, F is the electric field strength, and d is the dipole momentum operator.

For an initial S-state, the photoionization amplitude (4) can be written as

A = A[(e1 · p̂) + f eiφ(e2 · p̂)], (5)

where A is the dynamical parameter that depends on the photon energy ω and pho-
toelectron momentum p but not on the polarization properties of light as well as the
ionization geometry.

The conventional (i.e., single beam) photoionization process is characterized by the
differential cross section, which is the probability per time unit related to the incoming
photon flux. In our case, however, there are two photon beams coming from different
directions. Therefore, below we describe the ionization process by the (doubly differential)
probability (DP) per unit of time and element of the solid angle of an escaping electron
dΩp [26]:

d2W
dtdΩp

= 2π|A|2 = 2π|A|2
∣∣∣(e1 · p̂) + f eiφ(e2 · p̂)

∣∣∣2. (6)

As can be seen, the angular dependence of the DP is not affected by the magnitude of
the dynamical parameter A, and it remains the same for any atomic or molecular target.
Consequently, below we only analyze the polarization-angular part of the DP defined by

W ≡ 1
2π|A|2

d2W
dtdΩp

= |e1 · p̂|2 + f 2|e2 · p̂|2 + 2 f Re [eiφ(e∗1 · p̂)(e2 · p̂)]. (7)

The first two terms on the right-hand side of this equation are, in fact, the sum of
probabilities corresponding to the absorption of a single photon either from the first or
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the second photon beam. Each of those terms depends only on the LP degree of the
corresponding photon beam. Indeed, taking into account (2) and (3), we obtain

|ej · p̂|2 = `j(ε̂j · p̂)2 +
1− `j

2
[k̂j × p̂]2, j = 1, 2. (8)

The third term on the right-hand side of (7) is caused by the interference of the
two channels of the ionization process, which leads to the occurrence of CD effects. For
noncoherent beams, their relative phase φ varies in time randomly, and the Equation (7)
should be averaged over φ. Since an average of the function exp iφ is zero, we conclude
that CD effects vanish in the photoionization by noncoherent photon beams. For coherent
beams, the phase φ is stable in time and two kinds of CD effects take place. These effects are
similar to CD effects in the scattering of X-ray photons by randomly oriented atoms [27]. As
was mentioned above, CD of the first kind (CD1) is the difference of the DP with respect to
the simultaneous change of the helicity of both photon beams (i.e., right-hand CP becomes
left-hand CP, and vice versa). The absolute magnitude of the CD1 effect is defined by the
angular parameter

∆CD1(ξ1, ξ2) =W(ξ1, ξ2)−W(−ξ1,−ξ2), (9)

whereW(ξ1, ξ2) is the angular part of the DP for the photon beams with the CP degrees
ξ1 and ξ2. Noting that, according to (3), the replacement ξ → −ξ is equivalent to the
replacement e→ e∗, we obtain from (9), (7),

∆CD1(ξ1, ξ2) = 4 f sin φ [ Im (e1 · p̂)(e∗2 · p̂)]. (10)

Thus, the CD1 occurs when both beams are circularly (or elliptically) polarized and
their relative phase is not equal to πm, m = 0,±1,±2, . . ..

The CD of the second kind (CD2) consists of the difference of the DP with respect to
the change of the helicity of one of the photon beams (let it be the first one). Accordingly,
the CD2 is determined by the angular parameter

∆CD2(ξ1, ξ2) =W(ξ1, ξ2)−W(−ξ1, ξ2). (11)

which, noting Equation (7), writes

∆CD2(ξ1, ξ2) = 4 f [ Im (e1 · p̂)] [ Im eiφ(e2 · p̂)]. (12)

From (11) and this equation, it is seen that CD2 is absent for the LP first beam (η1 = 0).
When the second beam is polarized linearly, η2 = 0, the CD2 parameter (12) becomes

∆CD2(ξ1, 0) =
4 f η1√
1 + η2

1

sin φ (ε̂2 · p̂)([ε̂1 × k̂1] · p̂)], (13)

where ε̂2 is the unit polarization vector of the LP beam. Remarkably, in this case, the
CD2 parameter is proportional to the same phase factor sin φ as in the CD1. Thus, both
CD1 and CD2 (the latter only for EP + LP beams) effects are maximal when the phase
shift, φ, between the electric fields of the two beams is equal to ±3π/2, 5π/2, . . .. If
the photon beams are obtained by means of the beam splitting technique, the condition
sin φ = ±1 demands the optical path difference to comprise an odd number of half-waves
(i.e., ∆L = λ/2, 3λ/2, . . .). By contrast, if the optical path difference is equal to an integer
number of wavelengths (∆L = λ, 2λ, . . .), then sin φ = 0 and CD effects vanish (except the
CD2 effect for an elliptically polarized second beam, ξ2 6= 0).

Note that the above Equations (5)–(13) are valid for beams crossing at an arbitrary
angle. For the sake of simplicity, below we analyze only the situation when two photon
beams propagate in perpendicular directions and have the same intensity, so that F1 = F2
( f = 1). We do not consider the general case of elliptically polarized photon beams since
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it leads to rather cumbersome expressions, especially when major axes of polarization
ellipses are tilted with respect to the propagation plane of the photons (i.e., to the z-axis in
Figure 1).

Another problem is that the relative phase φ between two electric fields depends
on the position of atoms in space. Since atoms are placed in space randomly, one has to
average the DP (6) over the phase φ. Clearly, this cancels out the interference term in (7)
and, hence, the CD effects. To overcome this difficulty, we propose to follow the procedure
described in [28]. Namely, for crossing photon beams with planar wavefronts, one can
choose the plane at their intersection in such a way that the relative phase of the crossing
waves would be the same in each point in this plane. For example, for two plane waves
propagating along the orthogonal x and y axes (see Figure 1), the relative phase is zero for
points located in a plane tilted at an angle 45◦ with respect to the x or y axis (it is the x′z
plane in Figure 1). Thus, the relative phase of the ionizing photon beams is the same for
atoms located in that plane. Indeed, in the x′z plane, one has x = y, and the spatial part
of the relative phase is zero, ∆φ = k(x− y) = 0, where k is the wavenumber. Therefore,
below we analyze only the angular distributions of electrons emitted in the x′z plane. For
electrons emitted in the x′z plane, the projections of the unit vector p̂ of the photoelectron
momentum on the axes of the coordinate frame have the form

(p̂ · ex) = (p̂ · ey) = 2−1/2 sin θ, (p̂ · ez) = cos θ. (14)

Note that hereafter θ is the polar angle of the vector p̂ in the detection x′z-plane, which
varies from 0 to 2π; see Figure 1a.

3. CD Effects for CP Beams

For purely circularly polarized beams, we have η1,2 = ξ1,2 = ±1, and according to the
Figure 1, the polarization vectors can be written as combinations of unit Cartesian basis
vectors:

e1 =
1√
2
(ez − iξ1ey),

e2 =
1√
2
(ez + iξ2ex),

(15)

Equations (14) and (15) lead to the explicit expression for the interference term in the
DP (7)

(e1 · p̂)(e∗2 · p̂) =
1
2

(
cos2 θ − ξ1ξ2

2
sin2 θ − i

ξ1 + ξ2√
2

cos θ sin θ

)
. (16)

This expression and Equation (8) allow us to rewrite the DP in terms of the polar
angle θ,

W(ξ1, ξ2) =
1 + cos2 θ

2
+ cos φ

[
cos2 θ − ξ1ξ2

2
sin2 θ

]
− ξ1 + ξ2√

2
sin φ cos θ sin θ. (17)

Inserting Equation (16) into the general Equation (10) defining the absolute magnitude
of the CD1 effect, we obtain:

∆CD1(ξ1, ξ2) = −
√

2(ξ1 + ξ2) sin φ cos θ sin θ. (18)

It is seen that the CD1 vanishes for the phase shift equal to an integer number of π (i.e.,
the optical path difference of the beams is an integer number of waves) or for oppositely
polarized CP beams, i.e., for ξ1 = −ξ2.

Now, let us turn to the analysis of the CD2 effect defined by (12). For the detection
geometry shown in Figure 1, the photon polarization vectors have the form (15), and
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the components of the unit electron momentum vector p̂ are given by (14). As a result,
the general expression (12) for the CD parameter reduces to

∆CD2(ξ1, ξ2) = −ξ1 sin θ
(√

2 sin φ cos θ + ξ2 cos φ sin θ
)

. (19)

From this parametrization, it follows that CD2 cannot be completely suppressed
neither by varying the phase shift φ nor by changing the rotation direction of the electric
field of the CP beam (i.e., by changing the sign of ξ1,2). This is in contrast with the CD1
effect, which vanishes for sin φ = 0.

Interestingly, for φ corresponding to the minima or maxima of the field intensity,
I = |F|2, the CD1 parameter is zero, and only the CD2 effect is present. Indeed, for CP + CP
beams with equal intensities (F1 = F2), according to Equations (1) and (15), we have

I = F2
1 (2 + cos φ). (20)

The interference minima/maxima of I correspond to cos φ = ±1, when sin φ = 0 and
the CD1 parameter (18) are zero, while ∆CD2 = ∓ξ1ξ2 sin2 θ. It is also noteworthy that for
CP + CP beams the field intensity I does not depend on the pulse helicities.

In Figure 2, we show the magnitudes of the geometric DP and CD parameters W
and ∆CD for two values of the relative phase, φ = π/2 and π/4. As can be seen in
Figure 2a,b, the shape of the DP polar diagrams for W(±1,±1) remains essentially the
same for different values of the relative phase φ, while their tilt angle with respect to the
z-axis varies noticeably. Another observation is that the CD1 parameter has the same
angular dependence for φ = π/2 and φ = π/4 with only its amplitude changing; see
Figure 2c,d. It is also seen in Figure 2c that for φ = π/2, CD1 and CD2 parameters have
the same angular dependence. This is the consequence of expressions (19) and (18) for CD
parameters. Indeed, for ±π/2,±3π/2, . . . we have cos φ = 0; therefore, the second term
on the right-hand side of (19) vanishes, and both ∆CD1 and ∆CD2 become proportional to
cos θ sin θ.
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Figure 2. Magnitudes of angular parts of DP’s (7) and CD’s (9), (13) for the ionization by CP + CP
beams and two values of their relative phase, φ = π/2 and π/4. Upper row: polar diagrams of the
DP parametersW for φ = π/2 (panel (a)) and for φ = π/4 (panel (b)). Lower row: CD parameters
∆CD(1,2) as functions of the polar angle θ (see Figure 1) for two values of the relative phase: φ = π/2
in panel (c) and φ = π/4 in panel (d).

4. CD Effects for CP + LP Beams

For CP and LP beams, we have η1 = ξ1 = ±1 and η2 = 0. According to the definitions
(9), (11), in this case, both CD2 and CD1 parameters are the same, and the magnitude of
this CD effect is defined by (13).

The beam propagation directions are shown in Figure 1a, but the second beam is
now LP, and its real unit polarization vector e2 = ε̂2 lies in the xz plane. As above,
the photon polarization vector of the first CP beam is defined by (15), and we consider
only the situation when electrons are emitted in the x′z plane (see Figure 1), so that the
components of p̂ are given by (14). Consequently, the general Equation (13) defining the
CD parameter becomes

∆(ξ1) = ∆CD2(ξ1, 0) = ∆CD1(ξ1, 0) = −2ξ1(ε̂2 · p̂) sin φ sin θ. (21)

Similarly to the CD1 effect for CP + CP beams, the magnitude of ∆(ξ1) is determined
by the phase factor sin φ.

For the ionization by CP + LP beams, an expression for the geometric partW of the
DP can be derived from the general Equation (7) noting Equations (14) and (15) for e1 and
e2 = ε̂2,

W(ξ1) =
cos2 θ + 1

2
+ (ε̂2 · p̂)2 + (ε̂2 · p̂)

(√
2 cos φ cos θ − ξ1 sin φ sin θ

)
. (22)

It is instructive to write the field intensity I for CP + LP beams (F1 = F2 below):

I = F2
1

(
2 +
√

2(ez · ε̂2) cos φ−
√

2ξ1(ey · ε̂2) sin φ
)

. (23)

We note that, when the angle between polarization planes of CP and LP beams is equal
to 0 or π/2, the field intensity is independent of ξ. Namely, for perpendicular polarization
planes, we have ε̂2 = ey and (ez · ε̂2) = (ey · ε̂2) = 0, which yields I = 2F2

1 , i.e., the
intensity is independent of the phase φ. For parallel polarization planes, ε̂2 = ez (see
Figure 1a), and Equation (23) becomes

I = F2
1

(
2 +
√

2 cos φ
)

. (24)
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which is similar to the Equation (20) for CP + CP fields. When the angle between polar-
ization planes of CP and LP beams is neither 0, nor π/2, the field intensity does depend
on the helicity of the CP beam. This is in contrast to the case of CP + CP beams when I is
independent of ξ1, ξ2.

In Figure 3a,b, we present results for the DP parameterW for two values of the phase
difference: φ = π/2 (Figure 3a) and φ = π/4 (Figure 3b). In both figures, parametersW
are shown for two polarizations of the LP beam as indicated by the index z or x in the figure
legend: (i) “z” means that the polarization vector of the LP beam lies in the polarization
plane of the CP beam, e2 = ε̂z (see Figure 1), and (ii) “x” means e2 = ez, i.e., the LP beam
is polarized along the propagation direction of the CP beam. One observes that, when
the polarization planes of the LP and CP beams are perpendicular (case (i)), the angular
distributions are substantially different for different helicities of the CP beam. By contrast,
in case (ii), when the polarization planes of the CP and LP beams are parallel, the angular
distributions for ξ1 = ±1 have the same shape and are only slightly rotated with respect to
each other.
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Figure 3. Magnitudes of geometric DP and CD parameters for the ionization by CP + LP beams and
two values of their relative phase, φ = π/2 and π/4. (a,b): polar diagrams of the DP parameter
W(ξ = ±1). “z” indices to the right ofW and ∆ correspond to the parallel polarization planes of
CP and LP beams, i.e., e2 = ε̂z in Figure 1. “x” indices correspond to the perpendicular polarization
planes of CP and LP beams, i.e., e2 = ε̂x in Figure 1. (c,d): the CD parameters ∆ = ∆(ξ = +1) as
functions of the polar angle θ (see Figure 1). In panel (c), the dash-dotted line (∆, zx) shows the
parameter ∆ for the case of an LP beam whose polarization plane is tilted at an angle 45◦ with respect
to the polarization plane of the CP beam, e2 = (ε̂x + ε̂z)/

√
2.
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The geometric CD factors ∆ are shown in Figure 3c,d as functions of the polar angle θ
for the same parameters of the photon beams as in Figure 3a,b. It is seen that maxima and
minima of ∆ coincide for both cases (i) and (ii). In Figure 3c, the dash-dotted curve “∆, zx”
shows the parameter ∆ corresponding to the LP beam whose polarization plane is tilted at
an angle of 45◦ with respect to the polarization plane of the CP beam, which is the yz plane
in Figure 1. (In this case, the polarization vector of the LP beam is e2 = (ε̂z + ε̂x)/

√
2.)

Figure 3 demonstrates high sensitivity of the magnitude and angular dependence of the
CD effect to the orientation of the polarization plane of the LP beam as well as to the phase
φ between the two beams.

5. Conclusions

We analyzed the polarization dependence of the photoionization probabilities for the
ionization of randomly oriented atoms by a pair of orthogonally propagating, monochro-
matic polarized photon beams. Our consideration was based on the first-order perturbation
theory in the photon–atom interaction and is valid for any atom or ion ionized from a
bound S-state. It was demonstrated that, if at least one of the beams is circularly polarized,
the ionization probability exhibits a significant CD effect, i.e., a pronounced asymmetry
with respect to the change of the CP degree of that beam (see Figures 2 and 3). For two CP
beams, the DP has an asymmetry with respect to the change of helicities of both beams
(the CD1 effect, see Section 3) or one of the beams (the CD2 effect, see Section 4). These
effects are caused by the interference of the two channels of the ionization process, which
correspond to the absorption of a photon from either the first or the second beam. Of course,
this interference exists only for coherent beams, i.e., beams having their relative phase φ
stable in time. In optics, the interference of two coherent light beams is determined by
cos φ. Similarly, in the case of the ionization by two coherent beams, the interference effects
(such as CD) depend on φ. Namely, for CP + CP beams, the CD1 effect is proportional to
sin φ; see Equation (18). The same holds true for the CD effect in the ionization by CP + LP
beams; see Equation (21). It is interesting that, unlike the CD1 effect, the CD2 effect in the
ionization by CP + CP beams cannot be completely eliminated by varying φ.

In Sections 3 and 4, we limited our consideration to beams with equal intensities.
The key result of Section 2, which is the general parametrization (7) of the DP, is valid
in the general case of arbitrary relative intensities and polarizations of photon beams.
Therefore, the results of our analysis of CD effects, presented in Sections 3 and 4, remain
qualitatively valid in the case of beams with unequal intensities. In the presented paper,
we have also assumed that the initial bound state of an atomic target has zero total angular
momentum. However, our treatment can be easily generalized to the case of bound states
with nonzero angular momentum. This can be performed by using the technique described
in [15], where it was shown that for bound states with nonzero angular momentum no
new polarization effects occur in angular distributions as long as an atom is unpolarized.
The only difference is in the occurrence of an additional term in the DP (7), which is
independent of the emission directions of the photoelectron. Thus, the magnitude of
the DP is determined by two dynamical parameters, as in the case of the conventional
single-beam photoionization [15]. However, the angular structure of the interference term
of the DP remains the same, and only the relative magnitude of the CD effects is affected.
Note that the values of the two dynamical parameters of the DP can be extracted from the
calculations of the conventional photoeffect cross sections [29]. The above-described high
sensitivity of angular distributions of photoelectrons to the parameters of ionizing beams
can be utilized for the analysis of polarization properties of crossing monochromatic beams.
We remark that detectors of angular distributions of electrons in atomic photoionization
are employed in polarimeters for XUV and X-ray radiation at FEL [30–33].

In Sections 3 and 4, we analyzed only CD effects in the angular distributions of
electrons emitted in the z′x plane shown in Figure 1. The reason was that for atoms,
located in that plane, the relative phase between plane wave photon beams is constant,
independently of atom’s positions. Otherwise, for atoms in a gas, the relative phase φ
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would depend on the (random) positions of atoms and after the averaging of the DP
over φ the interference effects (such as CD) cancel out. However, for atoms in an optical
lattice [34–36], the relative phase would vary in a regular way, and interference effects in
the ionization by crossing beams, in principle, should be present for any detection geometry.
This fact could be used for both to achieve and control a selective ionization (or excitation)
of atoms trapped in an optical lattice. This, however, would require a thorough analysis
because of the large amount of possibilities of the experimental setup. The DP of the
process depends not only on the orientation of the beam’s propagation plane with respect
to the lattice plane but also on the spacing of atoms. Apart from that, the single photon
ionization requires coherent UV sources, which would be problematic in the experiments
with the optical lattices. In this case, it would be more practical to consider multiphoton
mω + nω ionization by crossing photon beams, provided that m and n are integer numbers
and the beam’s phases are synchronized. This topic is the subject of a forthcoming research.
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