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Abstract: The approximate solution of the nonlinear Thomas–Fermi (TF) equation for ions is found
by the Fermi method. The solution is based on the new asymptotic representation of the TF ion size
valid for any ionization degree. The two universal functions and their derivatives, introduced by
Fermi, are calculated by recent effective algorithms for the Emden–Fowler type equations with the
accuracy sufficient for majority of applications. The comparison of our results with those obtained
previously shows high accuracy and validity for arbitrary values of ionization degree. This study
could potentially be of interest for the statistical TF method applications in physics and chemistry.

Keywords: Thomas–Fermi equation; free positive ion; asymptotic representation; approximating
functions

1. Introduction

The Thomas–Fermi (TF) statistical approach [1–28] is widely used in studies of many-
electron systems (atoms, ions, molecules, metals, crystals). By virtue of its importance for
physics and chemistry, the TF equation (TFE) was solved by different methods – analytically,
semi-analytically, and numerically [1–28]. The results of these numerous and diverse studies
show that maximum accuracy is achieved by the analytical-numerical methods [13–17,19–28].

In the TF statistical model [8], the electrostatic potential V within the ion with N
bound electrons and nuclear charge Z is defined by the expression

V =
Ze
r

φ + V0,

where V0 = (Z − N)e/r0 is the potential at the TF ion boundary r0. The φ(x) is the TF
function that satisfies the TF equation, where x = r/rTF is measured in TF unit
rTF = 1

4 (
9π2

2Z )1/3a0, a0 is the Bohr radius. This nonlinear ordinary differential equation
(ODE), which is the foundation of TF method, has the following dimensionless form:

x1/2φ′′ = φ3/2, (1)

together with boundary conditions φ(0) = 1 and φ(x0) = 0. Here, x0 = r0/rTF – is the
dimensionless ion size (boundary radius) in the TF model, which has to satisfy the condition

− x0φ′(x0) = q. (2)

The ionization degree q is determined by the number of bound electrons N and nuclear
charge Z: q = (Z − N)/Z. It could be formally shown that if N = Z, and hence q = 0
(i.e., for neutral atom), the dimensionless boundary radius x0 stems to infinity. In this case,
the Equation (1) will determine the TF function for the neutral atom. Conventionally, this
solution is designated by the function φ0, and it is evidently universal for all Z.

For the free positive ions, the TF Equation (1) solution φ(x) depends only on the
ionization degree q. According to Fermi [4], the approximate solution of (1) could be
represented as a sum of two functions
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φ(x) = φ0(x) + δ(x), (3)

where δ(x) is assumed small in comparison with the function φ0(x). It is evident, that
δ(0) = 0. Expanding the right hand side part of (1) in series up to the first order over δ/φ0,
with account of (3), one can get the linear ODE for δ:

δ′′ =
3
2

(
φ0

x

)1/2
δ. (4)

Next, it is assumed [4] that

δ(x) = k(q) · η0(x), (5)

where k(q) – is the coefficient depending on the ionization degree q, while η0(x) – is the
universal function independent from q. Then it follows from (4)

η′′0 =
3
2

(
φ0

x

)1/2
η0, (6)

with the initial conditions η0(0) = 0 and η′0(0) = 1. The solution of Equation (6), satisfying
the fitting boundary conditions, could be put in the form [4]

η0 =

(
φ0 +

xφ′0
3

) ∫ x

0

(
φ0 +

tφ′0
3

)−2

dt. (7)

The values of η0(x) and η′0(x) could be determined as from (7), as by the direct
numerical integration of (6) [4]. The latter way was realized in [5,6,8–12], and the results
were tabulated. The interpolation formulas for the coefficient k(q) < 0 were proposed as
well. So, in [6] k = −0.083q3, and in [12] k = −0.0542q2.86. However, such interpolation
expressions as shown in the present work give satisfactory results only in the range of
values q ≤ 0.3.

A relatively simple analytical approximate solution of Equation (4), applicable for the
determination of φ(x) in the interval from 0 to x0, was obtained by Sommerfeld in [7]:

φ =
1

(1 + z)λ1/2

[
1−

(
1 + z
1 + z0

)λ1/λ2
]

, (8)

here z =
(

x
3√144

)λ2
, λ1 ≈ 7.772 and λ2 ≈ 0.772. The equation for determination of z0 and

the boundary ion radius x0 follows from (2) and (8):

z0

(1 + z0)λ1/2+1 =
q

λ1
. (9)

The expression in front of the square brackets in (8) is the Sommerfeld approximate solution
of TFE for the neutral atom φ0 [7]. The solution (8) of Equation (1) could be significantly
improved if the exact numerical values are used for the function φ0 [8]. Then, if to perform
the corresponding replacement, Equation (9) for the determination of z0(x0) is changed

z0

1 + z0
φ0(x0) =

q
λ1

. (10)

However, as was established in the present work, the x0(q) dependence determination
from Equations (9) and (10) is possible only for values of q less than certain qmax.

The representation (3) for φ is formally invalidated if the correction δ becomes compa-
rable with the value of φ0, i.e., for values of x close to x0. In order to avoid this and improve
the approximate solution of Equation (1) according to the Fermi method, Gombas [8]
proposed to define the coefficient k(q) from the equality φ(x0) = φ0(x0) + kη0(x0) = 0,
that is
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k = −φ0(x0)

η0(x0)
, (11)

using the exact values of boundary radius x0. However, the exact values of x0 are not
known beforehand and should be determined during the procedure of the solution of
Equation (1) taking into account (2). This complexity could be overcome using the asymp-
totic representation for x0(q).

The aim of the present paper is an improvement of the Fermi method for solution
of Equation (1) for the positive ions in order to get results applicable for practically any
values of q with adequate accuracy for applications. That is why the functions φ0(x),
η0(x) and their derivatives were calculated with high accuracy by the recently developed
algorithms [27,28] and tabulated (see Appendix A). The coefficients k(x0) are determined
from (11) based on tabulated values of φ0(x) and η0(x), presented in the Appendix A (see
Section 2). The asymptotic representation is obtained for the dependence x0(q) and hence
for k(q), applicable for the wide range of the q variation and convenient in practical use
(see Section 3). The comparison of k(q) and x0(q) dependencies with those obtained from
the direct numerical solution of TFE and other known data is performed (see Section 3).
The accuracy estimations of the derived approximate solution are also presented in the
Section 3. The obtained results are summarized in Section 4.

2. Calculations of k(q) Coefficients

The coefficient k (see expression (5)) is the necessary element of the approximate
solution of Equation (1) with the help of the representation (3). As we pointed out in the
introduction, this coefficient could be determined from the equality k = −φ0(x0)/η0(x0).
In addition, x0 and k depend on the ionization degree q. The exact value of boundary
radius x0 for an arbitrary ion is not known beforehand, as it determined from the additional
condition (2) during the solution of Equation (1). There are two ways to avoid this difficulty.
The first version is to find the numerical solution of Equation (1) together with x0 for some
values of the ionization degree, and after k, and next with the help of interpolation to find
those quantities for any q. The second one is to use for x0(q) the asymptotic representation.
Both versions are considered below.

Following [10], Equation (1) could be represented via the equivalent system of two
ODEs of the first order: 

dp
dt

= t · g,
dg
dt

= 4p3/2.
(12)

In (12) t =
√

x, p(t) = φ(x), g(t) = 2φ′(x); the initial conditions are: p(0) = 1,
g(0) = 2φ′(0). The numerical solutions of the system (12) for different φ′(0) were found by
the Runge–Kutta method of the eighth order [29]. The values of x0 (condition (2)) and k
(the equality (11) and data from Tables A1 and A2) were determined correspondingly and
presented in the Table 1 (compare with [12,16]).

The dependence of k coefficient on the ionization degree q is shown in Figure 1. The
solid line corresponds to k values shown in Table 1. The dotted curve corresponds to
results obtained in [12] for the k values in the course of numerical solution of Equation (1).
The dashed curve and the dash-dotted one are related to the two interpolation formulas,
k = −0.083q3 [6] and k = −0.0542q2.86 [12], respectively. It is seen clearly in the figure that
these interpolation formulas suit well only for q less than 0.3. The k values obtained in this
work and shown in the Table 1 correspond well to data from [12]. However, it is worth
noting that the data of Table 1 encircle the ionization degree values 0.01 ≤ q ≤ 0.99, in
contrast to [12], where the k values are calculated only for q ≤ 0.65.
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Table 1. The boundary ion radius x0 and k coefficient (Equation (11)), corresponding to the different
values of the ionization degree q, are calculated using the numerical solution of the ODE system (12).

q x0 log10(|k|) q x0 log10(|k|) q x0 log10(|k|)
0.01 34.2658 −6.999 0.34 4.5050 −2.383 0.67 1.8529 −1.131
0.02 25.1693 −6.160 0.35 4.3823 −2.336 0.68 1.7975 −1.096
0.03 20.7772 −5.660 0.36 4.2642 −2.291 0.69 1.7429 −1.061
0.04 18.0472 −5.303 0.37 4.1502 −2.247 0.70 1.6892 −1.026
0.05 16.1026 −5.021 0.38 4.0397 −2.203 0.71 1.6361 −0.991
0.06 14.6268 −4.789 0.39 3.9335 −2.161 0.72 1.5833 −0.955
0.07 13.4520 −4.591 0.40 3.8302 −2.119 0.73 1.5314 −0.919
0.08 12.4863 −4.418 0.41 3.7307 −2.077 0.74 1.4799 −0.883
0.09 11.6718 −4.264 0.42 3.6340 −2.036 0.75 1.4287 −0.847
0.10 10.9720 −4.125 0.43 3.5400 −1.996 0.76 1.3783 −0.810
0.11 10.3613 −3.998 0.44 3.4488 −1.957 0.77 1.3280 −0.773
0.12 9.8220 −3.882 0.45 3.3606 −1.918 0.78 1.2780 −0.735
0.13 9.3410 −3.774 0.46 3.2743 −1.879 0.79 1.2286 −0.696
0.14 8.9072 −3.673 0.47 3.1905 −1.841 0.80 1.1792 −0.657
0.15 8.5136 −3.579 0.48 3.1089 −1.803 0.81 1.1300 −0.617
0.16 8.1539 −3.490 0.49 3.0293 −1.766 0.82 1.0810 −0.576
0.17 7.8243 −3.405 0.50 2.9519 −1.729 0.83 1.0318 −0.534
0.18 7.5191 −3.325 0.51 2.8761 −1.692 0.84 0.9833 −0.491
0.19 7.2366 −3.249 0.52 2.8019 −1.656 0.85 0.9343 −0.447
0.20 6.9733 −3.176 0.53 2.7298 −1.620 0.86 0.8851 −0.401
0.21 6.7273 −3.107 0.54 2.6589 −1.584 0.87 0.8359 −0.353
0.22 6.4964 −3.039 0.55 2.5895 −1.548 0.88 0.7864 −0.304
0.23 6.2795 −2.975 0.56 2.5217 −1.513 0.89 0.7363 −0.252
0.24 6.0747 −2.913 0.57 2.4555 −1.478 0.90 0.6857 −0.197
0.25 5.8811 −2.852 0.58 2.3901 −1.443 0.91 0.6344 −0.138
0.26 5.6978 −2.794 0.59 2.3262 −1.408 0.92 0.5822 −0.076
0.27 5.5234 −2.738 0.60 2.2635 −1.373 0.93 0.5285 −0.007
0.28 5.3578 −2.683 0.61 2.2020 −1.338 0.94 0.4735 0.068
0.29 5.1998 −2.630 0.62 2.1415 −1.304 0.95 0.4163 0.152
0.30 5.0486 −2.578 0.63 2.0820 −1.269 0.96 0.3561 0.251
0.31 4.9040 −2.527 0.64 2.0232 −1.235 0.97 0.2918 0.371
0.32 4.7655 −2.478 0.65 1.9656 −1.200 0.98 0.2212 0.528
0.33 4.6328 −2.430 0.66 1.9088 −1.165 0.99 0.1383 0.778

Now consider the determination of the x0(q) asymptotic representation, based on the
consideration of the TFE (1) analytical solution for ions in the two limiting cases of low and
high ionization degree q.

The construction of a solution of Equation (1) for ions with the low ionization degree
(q� 1) is based on the expansion in powers of small parameter [17,19]. Skipping the details
of calculations it is possible to show that, in the present case, the analytical dependence of
x0(q) could be put in the form (see [17,19]):

x0 = Λ2/3
0 q−1/3

(
1 +

∞

∑
k=1

dkqkλ2/3

)
, (13)

where Λ0 ≈ 32.7294, λ2 ≈ 0.772. The first two coefficients of expansion dk in (13) are
d1 = −0.91670 and d2 = 0.02608.

The expansion of solution of Equation (1) in the functional series for ions with the high
ionization degree (q → 1) [14,15] over powers of ratio N/Z = 1− q � 1 is also known.
This approach allows us to obtain the expansion for the boundary radius x0 in the form:
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x0 =

(
16
π

)2/3(N
Z

)2/3 ∞

∑
m=0

x0m

(
N
Z

)m
, (14)

where x0m are the certain coefficients of the expansion (14).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

8
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4

3

2
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0

1
lo

g 1
0(

|k
|)

Figure 1. Coefficient k as a function of the ionization degree q. The solid line corresponds to k
values shown in the Table 1. The dotted curve corresponds to obtained in [12] k values in the course
of numerical solution of Equation (1). The dashed and dash-dotted curves correspond to the two
interpolation formulas, |k| = 0.083q3 and |k| = 0.0542q2.86 obtained in [6,12], respectively.

The dependence of the boundary radius x0 on the ionization degree was also studied
in the Thomas–Fermi–Dirac model in [20]. By numerical integration of corresponding
equations the set of dependencies x0(q) were obtained for the different values of Z− N. It
is shown there that for the increasing ionization degree (Z− N)→ ∞ (Z � N) the set of
obtained curves converge to the curve x0(q), obtained in the TF model without the account
of exchange. In so doing, the function x0(q) has the asymptotics

x0 =

(
16
π

1− q
q

)2/3
. (15)

Joining expressions (13) and (15) it is possible to derive the simple asymptotic representation
for x0(q) suitable for practical calculations

10.232
q1/3

(
1− 0.917q0.257

)
, q ≤ 0.45;

2.960
(

1− q
q

)2/3
, q > 0.45.

(16)

The comparison with the data of Table 1 shows that (16) allows us to calculate the
x0(q) values with the root-mean-square error about 0.6% and maximal relative error not
exceeding 1.2%.

The dependence of x0 value on the ionization degree q is presented in the Figure 2.
The x0 values from the Table 1 form the solid line. The dotted curve corresponds to x0
values, calculated along with the asymptotic representation (16). The dashed and dash-
dotted curves are related to solutions of Equations (9) and (10), correspondingly. For
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solution of Equation (10) the data of Table A1 for the function φ0(x) is used. The analysis
of solutions of Equation (9) (the Sommerfeld’s solution) and (10) (the solution of Sommer-
feld–Fermi) shows that the determination of self-consistent x0(q) dependence is possible
only until the certain limiting value qmax. For Equation (9) qmax is around 0.65 and for
Equation (10) qmax is about 0.72. However, the Sommerfeld solution corresponds well to
the values x0(q), obtained by the numerical solutions of Equation (1) only for the low ion-
ization degrees q ≤ 0.15. The modified solution of Sommerfeld–Fermi fits to the numerical
x0(q) values (Table 1) far better, almost up to the corresponding value qmax ≈ 0.72.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0

2

4

6

8

10

12

14

x 0

Figure 2. The boundary ion radius x0 as the function of the ionization degree q. The solid curve
corresponds to x0 values presented in the Table 1. The dotted line is related to the x0 values calculated
using the asymptotic representation (16). The dashed and dash-dotted curves correspond to the
solution of Equations (9) and (10), accordingly. In the course of the solution of Equation (10), the data
of Table A1 for φ0 were used.

Thus, the results obtained in this section show that application of the asymptotic
representation for x0(q) (16) or the usage of the numerically calculated values of the k(q)
coefficients together with the values of functions φ0 and η0 from Tables A1 and A2 allows
us to find approximate solution of Equation (1) for the arbitrary ionization degree q.

3. Approximations of Functions φ0(x), η0(x) and Their Derivatives

In cases when the lower accuracy is quite sufficient, it is possible to use the good
approximate formulas for functions φ0(x) and η0(x) instead of the interpolation of known
tabulated data (Tables A1 and A2). For example, the representation of φ0(x) in terms of the
rational functions from [13] is well known

φ0(x) =

(
1 + 1.81061x1/2 + 0.60112x

1 + 1.81061x1/2 + 1.39515x + 0.77112x3/2 + 0.21465x2 + 0.04793x5/2

)2

(17)

The comparison with the data of Table A1 shows that such approximate formula allows to
calculate the values of function φ0(x) with the root-mean-square error about 0.2% and the
maximal relative error not exceeding 0.5%.
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For the function η0(x), we obtained the new approximate formula with the help of
the least-square method

η0(x) = exp
(

z + 0.3837z2 + 0.0892z3 − 0.0170z4
)
− 1, z = ln(1 + x) (18)

The estimate of accuracy of the Formula (18) for the values of functions η0(x) and η′0(x)
along with the data of Table A2 gives the root-mean-square error about 4% and maximal
relative error not exceeding 8%. For example, the graphics of functions η0(x) and η′0(x),
based on the data of Table A2 are shown in the Figure 3 in solid lines, and using the
approximate Formula (18) in dashed lines.

0 10 20 30 40 50
x

10 1

100

101

102

103

104

105

0,
′ 0

0

′
0

Figure 3. The graphics of functions η0(x) and η′0(x), drawn using the data of Table A2 (solid lines)
and the approximate Formula (18) (dashed lines).

Thus, it is possible to construct the approximate solution of Equation (1) for any
value of the ionization degree q (with the accuracy sufficient for the majority of applications).
In order to do this, by setting the q value, it is necessary to determine the value of the
boundary radius x0 with the help of the representation (16). After that, the value of
coefficient k is determined from the relation (11) and the approximate Formulas (17) and
(18). Finally, the solution of Equation (1) for given q is formed from the expressions (5), (3)
with the account of (17) and (18).

The graphics of functions φ(x) and φ′(x) using the numerical solution of the ODE
system (12) (solid lines) and using the approximate solutions (17) and (18) (dotted lines)
are shown in the Figure 4 for the different values of the ionization degree: q = 0.2, 0.4, 0.6
and 0.8. The dash-dotted lines are the functions φ0 and φ′0 (for a neutral atom), plotted
using the data of Table A1. It could be concluded that, in total, this approximate method
of the solution construction provides quite good results. The noticeable deviation of the
approximate solution from the exact numerical one is seen only for the function φ′(x) near
the ion boundary only for q > 0.8. Also, the study demonstrates the consistency of the
boundary conditions (2) and (11), although they are functionally different from each other.
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Figure 4. The graphics of functions ϕ0(x) and ϕ′
0(x), based on the numerical solution of the

ODE system (12) (solid lines) and on the base of the approximate formulas (dotted lines). The
curves for the different values of ionization degree are presented: q = 0.2, 0.4, 0.6 and 0.8. The
dash-dotted lines show the curves for functions ϕ0 and ϕ′

0 based on the Table A1 data.

The new asymptotic representation of the boundary ion radius x0(q) is obtained.192

The values of k coefficient are determined as from the numerical solution of TFE for193

ion as using the asymptotic representation for x0(q). The values x0(q) and k(q) are194

presented in Table 1. Note that data of the Table 1 most fully cover the range of the195

ionization degree values 0.01 ≤ q ≤ 0.99, in distinction from other known papers.196

The results of the direct k(q) numerical calculations of this work show, that the197

validity of known earlier interpolation formulas for k are limited by values: q < 0.3.198
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The simple analytical approximation of η0(x) is obtained, which along with the204
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Conflicts of Interest: The authors declare no conflict of interest.213

Appendix A. Calculation of functions ϕ0(x), η0(x) and their derivatives214

Here we used results [27,28], based on the parametric representation of TFE so-215

lution, introduced and applied in the even unpublished paper of E. Majorana, recon-216

structed along with his notes in [21]. The main peculiarities of this approach are de-217

scribed in [21]. It was recently rigorously mathematically developed and generalized218

on the Emden–Fowler type of equations in [27,28], where the detailed step by step de-219

scription of the solution construction is given.220

Figure 4. The graphics of functions φ0(x) and φ′0(x), based on the numerical solution of the ODE
system (12) (solid lines) and on the base of the approximate formulas (dotted lines). The curves for
the different values of ionization degree are presented: q = 0.2, 0.4, 0.6 and 0.8. The dash-dotted lines
show the curves for functions φ0 and φ′0 based on the Table A1 data.

4. Conclusions

The approximate φ solution for the free positive ions of the TF equation was found
by the E. Fermi method [4] in the assumption of the φ representation in the form:
φ = φ0 + k · η0.

The values of functions φ0 and η0 are calculated by the new effective analytical-
numerical algorithm [27,28] with high accuracy. The obtained values of φ0, η0 and their
derivatives are given in Tables A1 and A2.

The new asymptotic representation of the boundary ion radius x0(q) is obtained. The
values of k coefficient are determined from the numerical solution of TFE for ion using the
asymptotic representation for x0(q). The values x0(q) and k(q) are presented in Table 1.
Note that data of the Table 1 most fully cover the range of the ionization degree values
0.01 ≤ q ≤ 0.99, in distinction from other known papers.

The results of the direct k(q) numerical calculations of this work show that the validity
of known earlier interpolation formulas for k are limited by values: q < 0.3.

Moreover, it follows from the analysis of the other approximate solutions of Equation (1)
performed here (Sommerfeld solution (9) and Sommerfeld–Fermi solution (10)) that the
determination of the x0(q) dependencies in these solutions is possible only up to the certain
limit value qmax. For Equation (9) qmax ≈ 0.65, and for Equation (10) qmax ≈ 0.72.

The simple analytical approximation of η0(x) is obtained, which along with the known
analytical approximation of φ0(x) and the obtained here asymptotics of x0(q) dependence
opens possibility for the approximate solution of the Equation (1) for any value of ionization
degree q with an accuracy sufficient for major applications. The estimations of the accuracy
of the obtained approximate solution confirm that in total this approach ensures very
good results.

Author Contributions: A.A.M. and A.V.D. worked together during this task, so their contributions
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Appendix A. Calculation of Functions φ0(x), η0(x) and Their Derivatives

Here we used results [27,28], based on the parametric representation of TFE solution,
introduced and applied in the even unpublished paper of E. Majorana, reconstructed along
with his notes in [21]. The main peculiarities of this approach are described in [21]. It
was recently rigorously mathematically developed and generalized on the Emden–Fowler
type of equations in [27,28], where the detailed step by step description of the solution
construction is given.

In [27,28] the algorithm of computing the TFE solution and its derivative of the
many-electron neutral atom and for the given in advance any accuracy value in arbitrary
point of ray is described in detail. We realized this algorithm for computing φ0(x) and
φ′0(x) for the interval x ∈ [0, 50], but don’t repeat its rather lengthy description, referring
to original papers [27,28]. We present in Table A1 only the exact values of functions
φ0(x) and φ′0(x) rounded to the tenth decimal sign (compare with [10,24]). It is worth to
indicate only that in this algorithm the corresponding subsidiary functions of the parametric
representation [27,28] are expanded in the Taylor series that in our case contained 120 terms.

Table A1. Values of functions φ0(x) and φ′0(x) calculated on the basis of the method from [27,28] and rounded to the tenth
decimal sign.

x φ0(x) −φ′0(x) x φ0(x) −φ′0(x)

0.00 1.0000000000 1.5880710226 10.00 0.0243142930 0.0046028819
0.01 0.9854466129 1.3895561166 11.00 0.0202503650 0.0035798152
0.02 0.9719766389 1.3093049632 12.00 0.0170639223 0.0028305364
0.05 0.9351919580 1.1559954352 13.00 0.0145265176 0.0022705246
0.10 0.8816970767 0.9953546461 14.00 0.0124784060 0.0018445014
0.20 0.7930594320 0.7942270092 15.00 0.0108053588 0.0015153231
0.30 0.7206394761 0.6617997801 16.00 0.0094240789 0.0012574353
0.40 0.6595411608 0.5646424441 17.00 0.0082727639 0.0010528868
0.50 0.6069863834 0.4894116126 18.00 0.0073048459 0.0008888311
0.60 0.5611620236 0.4291718717 19.00 0.0064847464 0.0007559214
0.70 0.5207914565 0.3797947453 20.00 0.0057849412 0.0006472543
0.80 0.4849309880 0.3386071561 21.00 0.0051838934 0.0005576616
0.90 0.4528587154 0.3037757561 22.00 0.0046645758 0.0004832257
1.00 0.4240080521 0.2739890516 23.00 0.0042133981 0.0004209437
1.10 0.3979253017 0.2482781190 24.00 0.0038194181 0.0003684892
1.20 0.3742412296 0.2259085936 25.00 0.0034737544 0.0003240430
1.30 0.3526512782 0.2063121826 26.00 0.0031691444 0.0002861695
1.40 0.3329013700 0.1890414262 27.00 0.0028996077 0.0002537267
1.50 0.3147774637 0.1737387990 28.00 0.0026601879 0.0002257990
1.60 0.2980977070 0.1601150078 29.00 0.0024467526 0.0002016471
1.70 0.2827064352 0.1479333856 30.00 0.0022558366 0.0001806700
1.80 0.2684695100 0.1369984380 31.00 0.0020845191 0.0001623762
1.90 0.2552706498 0.1271472890 32.00 0.0019303255 0.0001463611
2.00 0.2430085072 0.1182431916 33.00 0.0017911496 0.0001322900
2.20 0.2209499788 0.1028309760 34.00 0.0016651908 0.0001198846
2.40 0.2017027012 0.0900262759 35.00 0.0015509032 0.0001089121
2.60 0.1848021494 0.0792857632 36.00 0.0014469544 0.0000991772
2.80 0.1698782637 0.0702003884 37.00 0.0013521916 0.0000905149
3.00 0.1566326732 0.0624571309 38.00 0.0012656139 0.0000827855
3.40 0.1342470024 0.0500771162 39.00 0.0011863493 0.0000758704
3.80 0.1161656951 0.0407527383 40.00 0.0011136356 0.0000696680
4.20 0.1013578688 0.0335900970 41.00 0.0010468047 0.0000640915
4.60 0.0890854399 0.0279948614 42.00 0.0009852690 0.0000590661
5.00 0.0788077793 0.0235600750 43.00 0.0009285103 0.0000545274
5.50 0.0681603623 0.0192213484 44.00 0.0008760706 0.0000504195
6.00 0.0594229493 0.0158675495 45.00 0.0008275439 0.0000466941
6.50 0.0521729373 0.0132356072 46.00 0.0007825691 0.0000433088
7.00 0.0460978186 0.0111425318 47.00 0.0007408251 0.0000402270
7.50 0.0409624662 0.0094582646 48.00 0.0007020247 0.0000374164
8.00 0.0365872553 0.0080886030 49.00 0.0006659114 0.0000348487
9.00 0.0295909353 0.0060330747 50.00 0.0006322548 0.0000324989
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In our work the functions η0(x), η′0(x) are obtained by the direct numerical integration
of the system of two ODE of the first order, equivalent to (6):

du
dt

= t · v,
dv
dt

= 6
√

φ0(t) · u.
(A1)

Here u(t) = η0(x), v(t) = 2η′0(x) and t =
√

x. Note that Fermi [4] used namely this
Equation (6) for the determination of the functions η0(x), η′0(x). The system (A1) should
be supplemented by the initial conditions u(0) = 0 and v(0) = 2. The integration of
system (A1) was performed by the explicit Runge-Kutta method of the eighth order [29].
The calculated in this way functions η0(x) and η′0(x) are presented in Table A2 (compare
with [11]).

Table A2. The values of functions η0(x) and η′0(x), obtained in the course of solution of the system
of Equations (A1). For the function φ0(x) the data from Table A1 is used.

x η0(x) η′0(x) x η0(x) η′0(x)

0.00 0.0000 1.0000 10.00 202.6583 63.1040
0.01 0.0100 1.0010 11.00 273.6843 79.3834
0.02 0.0200 1.0028 12.00 362.3564 98.4141
0.05 0.0502 1.0110 13.00 471.5289 120.4630
0.10 0.1012 1.0306 14.00 604.3719 145.7945
0.20 0.2069 1.0846 15.00 764.3028 174.6881
0.30 0.3186 1.1528 16.00 955.0359 207.4327
0.40 0.4378 1.2321 17.00 1180.5679 244.3242
0.50 0.5654 1.3210 18.00 1445.1810 285.6650
0.60 0.7023 1.4187 19.00 1753.4709 331.7663
0.70 0.8494 1.5246 20.00 2110.3680 382.9501
0.80 1.0075 1.6384 21.00 2521.1430 439.5482
0.90 1.1773 1.7599 22.00 2991.3916 501.8995
1.00 1.3597 1.8889 23.00 3527.0042 570.3437
1.10 1.5554 2.0255 24.00 4134.2403 645.2326
1.20 1.7651 2.1696 25.00 4819.7341 726.9275
1.30 1.9895 2.3212 26.00 5590.4890 815.7977
1.40 2.2295 2.4805 27.00 6453.8716 912.2193
1.50 2.4859 2.6474 28.00 7417.6127 1016.5747
1.60 2.7593 2.8222 29.00 8489.8225 1129.2531
1.70 3.0506 3.0048 30.00 9679.0108 1250.6516
1.80 3.3605 3.1954 31.00 10,994.1034 1381.1762
1.90 3.6899 3.3942 32.00 12,444.4521 1521.2416
2.00 4.0396 3.6012 33.00 14,039.8362 1671.2709
2.20 4.8032 4.0406 34.00 15,790.4536 1831.6937
2.40 5.6582 4.5149 35.00 17,706.9028 2002.9441
2.60 6.6116 5.0253 36.00 19,800.1671 2185.4578
2.80 7.6708 5.5730 37.00 22,081.7477 2379.6860
3.00 8.8434 6.1594 38.00 24,563.5873 2586.0847
3.40 11.5604 7.4537 39.00 27,258.1046 2805.1179
3.80 14.8292 8.9197 40.00 30,178.1922 3037.2577
4.20 18.7207 10.5690 41.00 33,337.2044 3282.9824
4.60 23.3105 12.4137 42.00 36,748.9585 3542.7757
5.00 28.6793 14.4660 43.00 40,427.7448 3817.1274
5.50 36.6166 17.3427 44.00 44,388.3414 4106.5335
6.00 46.0833 20.5888 45.00 48,646.0302 4411.4968
6.50 57.2708 24.2302 46.00 53,216.6120 4732.5279
7.00 70.3838 28.2939 47.00 58,116.4192 5070.1454
7.50 85.6401 32.8070 48.00 63,362.3244 5424.8761
8.00 103.2702 37.7972 49.00 68,971.7455 5797.2546
9.00 146.6512 49.3222 50.00 74,962.6446 6187.8231
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The minimal value of the ionization degree q of the ion with the nuclear charge Z is
determined by the value q = 1/Z. The consideration of ions with Z ≈ 100 is of interest
from the practical point of view that corresponds to q = 0.01 and the value of boundary ion
radius x0 ≈ 34 (see Table 1). Thus the represented in Tables A1 and A2 values of functions
φ0(x), φ′0(x), η0(x) and η′0(x) for x ∈ [0, 50], cover in full all x0, corresponding to q ≥ 0.01.
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