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Abstract: In a mixture of two kinds of identical bosons, there are two types of pairs: identical bosons’
pairs, of either species, and pairs of distinguishable bosons. In the present work, the fragmentation
of pairs in a trapped mixture of Bose–Einstein condensates is investigated using a solvable model,
the symmetric harmonic-interaction model for mixtures. The natural geminals for pairs made of
identical or distinguishable bosons are explicitly contracted by diagonalizing the intra-species and
inter-species reduced two-particle density matrices, respectively. Properties of pairs’ fragmentation
in the mixture are discussed, the role of the mixture’s center-of-mass and relative center-of-mass
coordinates is elucidated, and a generalization to higher-order reduced density matrices is made.
As a complementary result, the exact Schmidt decomposition of the wave function of the bosonic
mixture is constructed. The entanglement between the two species is governed by the coupling of
their individual center-of-mass coordinates, and it does not vanish at the limit of an infinite number
of particles where any finite-order intra-species and inter-species reduced density matrix per particle
is 100% condensed. Implications are briefly discussed.

Keywords: Bose–Einstein condensates; mixtures; identical-boson pairs; distinguishable-boson pairs;
natural geminals; natural orbitals; reduced density matrices; intra-species reduced density matrices;
inter-species reduced density matrices; fragmentation; condensation; infinite-particle-number limit;
harmonic-interaction models; pair fragmentation; Schmidt decomposition; center-of-mass; relative
center-of-mass

1. Introduction

Condensation and fragmentation are basic and widely-studied concepts of Bose–
Einstein condensates emanating from the properties of the reduced one-particle density
matrix [1–5]. The bosons are said to be condensed if there is a single macroscopic eigenvalue
of the reduced one-particle density matrix [6] and fragmented if there are two or more such
macroscopic eigenvalues [7]. These eigenvalues are commonly called natural occupation
numbers, and the respective eigenfunctions of the reduced one-particle density matrix are
referred to as natural orbitals. The fragmentation of Bose–Einstein condensates has been
investigated, e.g., in [8–27].

The condensation and especially fragmentation of the reduced two-particle density
matrix of interacting identical bosons is less studied; see, e.g., [28]. Here, the analysis
of the reduced two-particle density matrix would determine whether pairs of bosons
are condensed or fragmented. The respective eigenfunctions of the reduced two-particle
density matrix are often called natural geminals. We note that natural geminals in electronic
systems have long been explored; see, e.g., [29–40].

Consider now a mixture of two kinds of identical bosons, which are labeled species 1
and species 2. Mixtures of Bose–Einstein condensates is a highly investigated topic; see,
e.g., [41–70]. One may ask, just like for the single-species bosons, about the condensation
or fragmentation of each of the species and how, for instance, one species is affected by
the presence of the other species and vice versa. To answer this question, the intra-species
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reduced one-particle density matrices of species 1 and 2 are required, i.e., analyzing the
intra-species occupation numbers and natural orbitals. Following the above line, one
could also investigate the fragmentation of higher-order intra-species reduced density
matrices in the mixture. For instance, to investigate whether pairs of identical bosons,
of either species 1 or species 2, are fragmented, diagonalizing the intra-species reduced
two-particle density matrices is needed. In summary, the fragmentation of identical bosons
and its manifestation in higher-order reduced density matrices stem from the properties of
intra-species quantities.

However, a mixture of Bose–Einstein condensates offers a degree-of-freedom or many-
particle construction which does not exist for single-species bosons, namely, inter-species
reduced density matrices. Now, if the fragmentation of identical bosons and pairs is defined
as the macroscopic occupation of respective eigenvalues following the diagonalization
of intra-species reduced density matrices, we may analogously define the fragmentation
of distinguishable bosons’ pairs as a macroscopic occupation of the eigenvalues of the
inter-species reduced two-particle density matrix. Obviously, the latter is the lowest-order
inter-species quantity, since at least one particle of each species is needed to build an
inter-species entity.

The above discussion defines the goals of the present work, which are: (i) to investigate
the fragmentation of pairs of identical bosons and establish the fragmentation of pairs
of distinguishable bosons in a mixture of Bose–Einstein condensates; (ii) to construct the
respective natural geminals of the mixture, for identical pairs and for distinguishable pairs;
(iii) to show that the fragmentation of distinguishable bosons’ pairs in the mixture persists
with higher-order inter-species reduced density matrices; (iv) to construct the Schmidt
decomposition of the mixture’s wave function and discuss some of its properties at the
limit of an infinite-number of particles where the mixture is 100% condensed; and (v) to
achieve the first four goals analytically, using an exactly solvable model.

To this end, we recruited the harmonic-interaction model for mixtures [71–76], or,
more precisely here, a symmetric version of which [77]. The harmonic-interaction model for
single-species bosons (and fermions) has been used extensively in the literature, including
for investigating the properties of Bose–Einstein condensates [78–92]. In our work, we built
on results obtained and techniques used for the reduced density matrices of single-species
bosons within the harmonic-interaction model [78–82], and, among others, generalized
and extended them for the intra-species and particularly the inter-species reduced density
matrices of mixtures [74].

The structure of the paper is as follows: In Section 2, we construct and investigate the
fragmentation of intra-species and inter-species pair functions in the mixture. In Section 3,
we extend the results and explore the fragmentation of pairs of distinguishable pairs.
Furthermore, a complementary result for the Schmidt decomposition of the mixture’s
wavefucntion at the limit of an infinite number of particles is offered. In Section 4, a
summary of the results and an outlook of some prospected research topics are provided.
Finally, Appendix A collects the details of fragmentation of bosons and pairs in the single-
species system for a comparison with the mixture.

2. Intra-Species and Inter-Species Natural Pair Functions
2.1. The Symmetric Two-Species Harmonic-Interaction Model

We consider a mixture of two Bose–Einstein condensates described by the Hamiltonian
of the symmetric two-species harmonic-interaction model [74,77]:

Ĥ(x1, . . . , xN , y1, . . . , xN) = ∑N
j=1

(
− 1

2m
∂2

∂x2
j
+ 1

2 mω2x2
j

)
+ λ ∑N

1≤j<k
(
xj − xk

)2
+

+∑N
j=1

(
− 1

2m
∂2

∂y2
j
+ 1

2 mω2y2
j

)
+ λ ∑N

1≤j<k
(
yj − yk

)2
+ λ12 ∑N

j=1 ∑N
k=1
(
xj − yk

)2.
(1)

There are N bosons of type 1, N bosons of type 2, and the mass of each boson is m.
λ is the intra-species interaction strength, either between two bosons of type 1 or two
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bosons of type 2, and λ12 is the inter-species interaction strength between type 1 and type 2
bosons. Dimensionality plays no role in the present work; hence, we work in one spatial
dimension. h̄ = 1 is used throughout. Employing Jacoby coordinates for the mixture and
translating back to the laboratory frame, the 2N-boson wave function and corresponding
many-particle density matrix are given by

Ψ(x1, . . . , xN , y1, . . . , yN) =
(

mΩ
π

) N−1
2
(

M12Ω12
π

) 1
4
(

Mω
π

) 1
4

×e−
α
2 ∑N

j=1

(
x2

j +y2
j

)
−β ∑N

1≤j<k(xjxk+yjyk)+γ ∑N
j=1 ∑N

k=1 xjyk ,

(2a)

Ψ(x1, . . . , xN , y1, . . . , yN)Ψ∗(x′1, . . . , x′N , y′1, . . . , y′N) =
(

mΩ
π

)N−1(M12Ω12
π

) 1
2
(

Mω
π

) 1
2

×e−
α
2 ∑N

j=1

(
x2

j +x′j
2+y2

j +y′j
2
)
−β ∑N

1≤j<k

(
xjxk+x′jx

′
k+yjyk+y′jy

′
k

)
+γ ∑N

j=1 ∑N
k=1

(
xjyk+x′jy

′
k

)
,

(2b)

with
Ω =

√
ω2 + 2N

m (λ + λ12), Ω12 =
√

ω2 + 4N
m λ12,

α = mΩ + β, β = m
2N (Ω12 + ω− 2Ω), γ = m

2N (Ω12 −ω),
(2c)

and the relative center-of-mass M12 = m
2N and center-of-mass M = 2mN masses. The wave

function and similarly the many-particle density of the mixture depend on two dressed
frequencies, Ω and Ω12, and consist of three parts: One-body part with coefficient α, intra-
species two-body coupling with coefficient β, and inter-species two-body coupling with
coefficient γ, whereas α and β depend on the intra-species and inter-species interactions, γ
depends on the inter-species interaction only.

Another issue worth mentioning is the stability region of the mixture, namely when
the mixture is bound. The condition that a bound solution of the mixture exists requires that
all 2N degrees-of-freedom (oscillators after diagonalization with the Jacoby coordinates)
are bound. Namely, the 2(N − 1) relative-coordinate oscillators, which depend on both
the intra-species and the inter-species interactions λ and λ12, should be bound; the relative
center-of-mass oscillator, which depends on the inter-species interaction λ12 only, should
be bound; and the center-of-mass oscillator which does not depend on any of the two
interactions and is always bound. Thus, for a bound mixture, both dressed frequencies Ω
and Ω12 must be positive. This implies the conditions λ + λ12 > −mω2

2N and λ12 > −mω2

4N ,
respectively, on the interactions. In other words, the inter-species interaction λ12 is bound
from below, implying that the mutual repulsion between the two species cannot be too
strong but is not bound from above, meaning that the mutual attraction between the two
species can be unlimitedly strong. Furthermore, the intra-species interaction λ can take any
value as long as the inter-species interaction is sufficiently attractive, i.e., λ > −mω2

2N − λ12.
We shall return to the dressed frequencies Ω and Ω12 below. Note that in our work, we use
the notions bound and stable interchangeably. For example, the border of stability of the
mixture is the above-described border of parameters within which the ground state exists.

2.2. Intra-Species Natural Pair Functions

The intra-species reduced density matrices are defined when all bosons of the other
type are integrated out. We concentrate in what follows on the reduced one-particle and in
particular the two-particle density matrices of species 1,

ρ
(1)
1 (x, x′) = N

∫
dx2 · · · dxNdy1 · · · dyNΨ(x, x2, . . . , xN , y1, . . . , yN)

×Ψ∗(x′, x2, . . . , xN , y1, . . . , yN),

ρ
(2)
1 (x1, x2, x′1, x′2) = N(N − 1)

∫
dx3 · · · dxNdy1 · · · dyNΨ(x1, x2, x3, . . . , xN , y1, . . . , yN)

×Ψ∗(x′1, x′2, x3, . . . , xN , y1, . . . , yN).

(3)
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In a symmetric mixture, the corresponding reduced density matrices of species 2,
ρ
(1)
2 (y, y′) and ρ

(2)
2 (y1, y2, y′1, y′2), are the same and need not be repeated.

The reduction of the many-particle density (2b) to its finite-order reduced density
matrices is somewhat lengthy and given in [74]. We start from the final expression for the
intra-species reduced one-particle density matrix, which is given by

ρ
(1)
1 (x, x′) = N

(
α+C1,0

π

) 1
2 e−

α
2

(
x2+x′2

)
e−

1
4 C1,0(x+x′)2

= N
(

α+C1,0
π

) 1
2 e−

α+
C1,0

2
2

(
x2+x′2

)
e−

1
2 C1,0xx′ ,

α + C1,0 = (α− β) [(α−β)+Nβ]2−N2γ2

[(α−β)+Nβ][(α−β)+(N−1)β]−N(N−1)γ2 .

(4)

The coefficient C1,0 governs the properties of the intra-species reduced one-particle
density matrix and reminds one that all bosons of type 2 and all but a single boson of
type 1 are integrated out. As might be expected, ρ

(1)
1 (x, x′) depends on the three parts of

the many-boson wave function, i.e., on the α, β, and γ terms (2a). In the absence of inter-
species interaction, i.e., for γ = 0, the coefficient C1,0 boils down to that of the single-species
harmonic-interaction model; see Appendix A for further discussion.

Just as for the case of single-species bosons [81,82], the intra-species reduced one-
particle density matrix (4) can be diagonalized using Mehler’s formula. Mehler’s formula
can be written as follows:[

(1−ρ)s
(1+ρ)π

] 1
2 e
− 1

2
(1+ρ2)s

1−ρ2

(
x2+x′2

)
e
+

2ρs
1−ρ2 xx′

= ∑∞
n=0(1− ρ)ρn 1√

2nn!

( s
π

) 1
4 Hn(

√
sx)e−

1
2 sx2 1√

2nn!

( s
π

) 1
4 Hn(

√
sx′)e−

1
2 sx′2 ,

(5)

with s > 0 and, generally, for intra-species and inter-species reduced density matrices as
well as later on for Schmidt decomposition of the wave function, 1 > ρ ≥ 0. Hn are the
Hermite polynomials.

Comparing the structure of the intra-species reduced one-particle density matrix
ρ
(1)
1 (x, x′) with that of Mehler’s formula one readily has

s(1)1 =
√

α(α + C1,0) =

√
α(α−β)

{
[(α−β)+Nβ]2−N2γ2

}
[(α−β)+Nβ][(α−β)+(N−1)β]−N(N−1)γ2 ,

ρ
(1)
1 =

α−s(1)1

α+s(1)1

=

√
α{[(α−β)+Nβ][(α−β)+(N−1)β]−N(N−1)γ2}

(α−β){[(α−β)+Nβ]2−N2γ2} −1√
α{[(α−β)+Nβ][(α−β)+(N−1)β]−N(N−1)γ2}

(α−β){[(α−β)+Nβ]2−N2γ2} +1
,

1− ρ
(1)
1 =

2s(1)1

α+s(1)1

,

(6)

where 1− ρ
(1)
1 is the condensate fraction of species 1 (and of species 2), i.e., the fraction

of condensed bosons, and ρ
(1)
1 is the depleted fraction, namely, the fraction of bosons

residing outside the lowest, condensed mode. s(1)1 is the scaling, or effective frequency, of
the intra-species natural orbitals. The condensate fraction, depleted fraction, and scaling of
the natural orbitals are all given in closed form as a function of the number of bosons N,
and the intra-species λ and inter-species λ12 interaction strengths. A specific application of
the general expressions (6) for the mixture appears below.
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For the intra-species two-particle reduced density matrix, we have:

ρ
(2)
1 (x1, x2, x′1, x′2) = N(N − 1)

(
α+C1,0

π

) 1
2
(

α+C2,0
π

) 1
2×

×e−
α
2

(
x2

1+x2
2+x′1

2+x′2
2
)

e−β(x1x2+x′1x′2)e−
1
4 C2,0(x1+x2+x′1+x′2)

2
,

α + β + 2C2,0 = (α− β) [(α−β)+Nβ]2−N2γ2

[(α−β)+Nβ][(α−β)+(N−2)β]−N(N−2)γ2 ,

(7)

where C1,0 is the coefficient of the intra-species reduced one-particle density matrix (4), and
the combination (α + β + 2C2,0) would appear shortly after.

To obtain the natural geminals of ρ
(2)
1 (x1, x2, x′1, x′2), we define the variables q1 =

1√
2
(x1 + x2), q2 = 1√

2
(x1 − x2) and q′1 = 1√

2

(
x′1 + x′2

)
, q′2 = 1√

2

(
x′1 − x′2

)
, i.e., the center-of-

mass and relative coordinate of two identical bosons. With this rotation of coordinates, we
have for the different terms in (7):

x2
1 + x2

2 + x′1
2 + x′2

2 = q2
1 + q′1

2 + q2
2 + q′2

2,

x1x2 + x′1x′2 = 1
2

(
q2

1 + q′1
2 − q2

2 − q′2
2
)

,(
x1 + x2 + x′1 + x′2

)2
= 2

(
q2

1 + q′1
2 + 2q1q′1

)
.

(8)

Consequently, one readily finds the diagonal form

ρ
(2)
1 (q1, q′1, q2, q′2) = N(N − 1)

(
α−β

π

) 1
2 e−

α−β
2

(
q2

2+q′2
2
)
×

×
(

α+β+2C2,0
π

) 1
2 e−

α+β+C2,0
2

(
q2

1+q′1
2
)

e−C2,0q1q′1 ,
(9)

where the normalization coefficients before and after diagonalization are, of course, equal
and satisfy (α + C1,0)(α + C2,0) = (α− β)(α + β + 2C2,0).

After the transformation (8), the first term of ρ
(2)
1 (q1, q′1, q2, q′2) is separable as a function

of q2 and q′2, whereas by using Mehler’s formula onto the variables q1 and q′1, the second
term can be diagonalized. Thus, comparing the second term in (9) and Equation (5), we
find

s(2)1 =
√
(α + β)(α + β + 2C2,0) =

√
(α2−β2)

{
[(α−β)+Nβ]2−N2γ2

}
[(α−β)+Nβ][(α−β)+(N−2)β]−N(N−2)γ2 ,

ρ
(2)
1 =

(α+β)−s(2)1

(α+β)+s(2)1

=

√
(α+β){[(α−β)+Nβ][(α−β)+(N−2)β]−N(N−2)γ2}

(α−β){[(α−β)+Nβ]2−N2γ2} −1√
(α+β){[(α−β)+Nβ][(α−β)+(N−2)β]−N(N−2)γ2}

(α−β){[(α−β)+Nβ]2−N2γ2} +1
,

1− ρ
(2)
1 =

2s(2)1

α+s(2)1

.

(10)

With expressions (10), the decomposition of the intra-species reduced two-particle
density matrix in terms of its natural geminals is explicitly given by

ρ
(2)
1 (x1, x2, x′1, x′2) = N(N − 1)∑∞

n=0

(
1− ρ

(2)
1

)(
ρ
(2)
1

)n
Φ(2)

1,n(x1, x2)Φ
(2),∗
1,n (x′1, x′2),

Φ(2)
1,n(x1, x2) =

1√
2nn!

(
s(2)1
π

) 1
4

Hn

(√
s(2)1

2 (x1 + x2)

)
e−

1
4 s(2)1 (x1+x2)

2

×
(

α−β
π

) 1
4 e−

1
4 (α−β)(x1−x2)

2
.

(11)

Equation (11) is a general result on the intra-species natural geminals of the mixture.
Together with (10), they imply that 1− ρ

(1)
2 is the fraction of condensed pairs of species 1
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(and of species 2), ρ
(2)
1 is the fraction of depleted pairs, i.e., the fraction of pairs residing

outside the lowest, condensed natural geminal, and s(2)1 is the scaling, or effective frequency,
of the intra-species natural pair functions. The intra-species natural geminals along with
their condensate and depleted fractions are prescribed as explicit functions of the number of
bosons N, and the intra-species λ and inter-species λ12 interactions. A specific application
of the general decomposition (10) and (11) to natural geminals of the mixture is provided
below. Finally, we point out that the generalization to higher-order intra-species reduced
density matrices and corresponding natural functions follow the above pattern and are not
discussed further here.

Let us work out an explicit application where we shall find and analyze fragmentation
of identical boson’s pairs. Consider the specific scenario where λ + λ12 = 0, i.e., that
the intra-species interaction is inverse to and ‘compensates’ the effect of the inter-species
interaction on each of the species in the manner that the intra-species frequency is that of
non-interacting particles, Ω = ω. This implies that the frequency of 2N − 1 oscillators,
the 2(N − 1) relative-coordinate oscillators, and the center-of-mass oscillator is ω, and
that only the relative center-of-mass oscillator carries an interaction-dressed frequency
which is Ω12. We would see the consequences below. Then, the coefficients of the three
parts of the wave function simplify, and one has α = mω + β = mω

[
1 + 1

2N

(
Ω12
ω − 1

)]
and β = γ = m

2N (Ω12 −ω). Consequently, the expressions (6) and (10) simplify, and
the intra-species reduced one-particle and two-particle density matrices can be evaluated
further. Thus, we readily find

s(1)1 = mω

√
1+ 1

2N

(
Ω12

ω −1
)

1+ 1
2N

(
ω

Ω12
−1
) ,

ρ
(1)
1 =

√[
1+ 1

2N

(
Ω12

ω −1
)][

1+ 1
2N

(
ω

Ω12
−1
)]
−1√[

1+ 1
2N

(
Ω12

ω −1
)][

1+ 1
2N

(
ω

Ω12
−1
)]

+1
,

1− ρ
(1)
1 = 2√[

1+ 1
2N

(
Ω12

ω −1
)][

1+ 1
2N

(
ω

Ω12
−1
)]

+1

(12a)

for the intra-species reduced one-particle density matrix, where α+C1,0 = mω 1
1+ 1

2N

(
ω

Ω12
−1
)

is used, and

s(2)1 = mω

√
1+ 1

N

(
Ω12

ω −1
)

1+ 1
N

(
ω

Ω12
−1
) ,

ρ
(2)
1 =

√[
1+ 1

N

(
Ω12

ω −1
)][

1+ 1
N

(
ω

Ω12
−1
)]
−1√[

1+ 1
N

(
Ω12

ω −1
)][

1+ 1
N

(
ω

Ω12
−1
)]

+1
,

1− ρ
(2)
1 = 2√[

1+ 1
N

(
Ω12

ω −1
)][

1+ 1
N

(
ω

Ω12
−1
)]

+1

(12b)

for the intra-species reduced two-particle density matrix, where α+ β = mω
[
1 + 1

N

(
Ω12
ω − 1

)]
and α+ β+ 2C2,0 = mω 1

1+ 1
N

(
ω

Ω12
−1
) are utilized. We see that the fragmentation of identical

pairs and bosons are governed by the ratio Ω12
ω and its inverse ω

Ω12
, meaning that it takes

place both at the attractive and repulsive sectors of interactions. Moreover, the condensed
and depleted fractions of the pairs and bosons are symmetric to interchanging Ω12

ω and ω
Ω12

;
see discussion below.

Let us analyze explicitly macroscopic fragmentation of geminals, i.e., when there
is a macroscopic occupation of more than a single intra-species natural pair function of
ρ
(2)
1 (x1, x2, x′1, x′2). As a reference, we also refer to the corresponding and standardly
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defined macroscopic fragmentation of the intra-species natural orbitals of ρ
(1)
1 (x, x′). The

structure of the eigenvalues, emanating from Mehler’s formula and its applicability to the
various reduced density matrices, suggests that, say, the ‘middle’ value ρ = 1− ρ = 1

2 , i.e.,
when the condensed and depleted fractions are equal, is a convenient manifestation of
macroscopic fragmentation. Indeed, for this value the first few natural occupation fractions
(1− ρ)ρn, n = 0, 1, 2, 3, 4, . . . are

1
2

,
1
4

,
1
8

,
1

16
,

1
32

, . . . , (13)

namely, there is 50% occupation of the first natural geminal, 25% occupation of the second,
12.5% of the third, 6.25% of the fourth, 3.125% of the fifth, and so on. For brevity, we refer
to the fragmentation values in (13) as 50% fragmentation.

Now, one can compute for which ratio Ω12
ω , or, equivalently, for which inter-species in-

teraction λ12 = mω2

4N

[(
Ω12
ω

)2
− 1
]

, the intra-species reduced two-particle and one-particle

density matrices are macroscopically fragmented as in (13). Thus, solving (12a) for 50%
natural-orbital fragmentation, we find

ρ
(1)
1 =

1
2

=⇒ Ω12

ω
=

(
1 +

8N2

N − 1
2

)
±

√√√√(1 +
8N2

N − 1
2

)2

− 1, (14)

and working out (12b) for 50% natural-geminal fragmentation, we obtain

ρ
(2)
1 =

1
2

=⇒ Ω12

ω
=

√
1 +

4N
mω2 λ12 =

(
1 +

4N2

N − 1

)
±

√(
1 +

4N2

N − 1

)2

− 1. (15)

There are two ‘reciprocate’ solutions for both the natural geminals and natural orbitals:
We see that 50% fragmentation occurs for strong attractions, i.e., when Ω12

ω is large, or near
the border of stability for repulsions, which is when Ω12

ω is close to zero. In addition, to
achieve the same degree of 50% with a larger number N of species 1 (and species 2) bosons,
a stronger attraction or repulsion is needed. Finally, comparing the natural-geminal with
the natural-orbital fragmentation at the same 50% value, one sees from (15) and (14) that
slightly weaker interactions, attractions or repulsions, are needed for the former.

It is also useful to register the one-particle and two-particle densities, i.e., the diagonal
parts ρ

(1)
1 (x) = ρ

(1)
1 (x, x′ = x) and ρ

(2)
1 (x1, x2) = ρ

(2)
1 (x1, x2, x′1 = x1, x′2 = x2), which read

ρ
(1)
1 (x) = N

(
α+C1,0

π

) 1
2 e−(α+C1,0)x2

= N

(
mω

π
[
1+ 1

2N

(
ω

Ω12
−1
)]
) 1

2

e
− mω

1+ 1
2N

(
ω

Ω12
−1
) x2

,

ρ
(2)
1 (x1, x2) = N(N − 1)

(
α−β

π

) 1
2 e−

α−β
2 (x1−x2)

2
(

α+β+2C2,0
π

) 1
2 e−

α+β+2C2,0
2 (x1+x2)

2

= N(N − 1)
(mω

π

) 1
2 e−

mω
2 (x1−x2)

2

(
mω

π
[
1+ 1

N

(
ω

Ω12
−1
)]
) 1

2

e
− mω

2
[

1+ 1
N

(
ω

Ω12
−1
)] (x1+x2)

2

.

(16)

From the densities (16), we can infer a measure for the size of identical pairs’ and
bosons’ clouds using the widths of the respective Gaussian functions therein. Thus, we have

σ
(1)
1,x =

√
1+ 1

2N

(
ω

Ω12
−1
)

2mω ,

σ
(2)

1, x1+x2√
2

=

√
1+ 1

N

(
ω

Ω12
−1
)

2mω , σ
(2)

1, x1−x2√
2

=
√

1
2mω .

(17a)
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We can understand intuitively why the width σ
(2)

1, x1−x2√
2

is the typical length of the

harmonic trap. For this, recall that σ
(2)

1, x1−x2√
2

is associated with the relative two-boson

coordinate q2, q′2. The general intra-species two-particle reduced density matrix (9) is
diagonal in this relative coordinate. The respective exponent is α− β = mΩ. Then, since
for the specific case studied λ + λ12 = 0 the exponent boils down to that of the bare
harmonic potential, i.e., Ω = ω, we readily obtain the result.

To assess the combined impact of the intra-species and inter-species interactions atop
the fragmentation of the reduced density matrices, it is useful to compute the sizes (17a)
for large inter-species attractions or inter-species repulsions at the border of stability. One
finds, respectively,

lim Ω12
ω →∞

σ
(1)
1,x =

√
1− 1

2N
2mω , σ

(1)
1,x −→ ∞ for Ω12

ω → 0+,

lim Ω12
ω →∞

σ
(2)

1, x1+x2√
2

=

√
1− 1

N
2mω , σ

(2)

1, x1+x2√
2

−→ ∞ for Ω12
ω → 0+,

(17b)

where σ
(2)

1, x1−x2√
2

as discussed above is independent of the interactions. Interestingly, the

size of the densities for strong inter-species attractions, which is accompanied by strong
intra-species repulsions because λ + λ12 = 0, saturates at about the trap’s size and does
not depend on the strengths of interactions. In other words, a high degree of fragmentation
is possible in the mixture without shrinking of the density due to strong inter-species
attractive interaction or expansion of the intra-species densities due to strong intra-species
repulsive interaction. For the sake of comparative analysis, it is instructive to make contact
with the fragmentation of single-species bosons in the harmonic-interaction model; see
Appendix A.

2.3. Inter-Species Natural Pair Functions

As mentioned above, in a mixture of two types of identical bosons, there are other
kinds of pairs, namely, pairs of distinguishable particles. If we are to examine the lowest-
order inter-species reduced density matrix, we can ask regarding distinguishable pairs
questions analogous to those asked concerning identical pairs. The purpose of this subsec-
tion is to derive the relevant tools and answer such questions.

The inter-species reduced two-particle density matrix, i.e., the lowest-oder inter-
species quantity, is defined from the all-particle density matrix as

ρ
(2)
12 (x, x′, y, y′) = N2

∫
dx2 · · · dxNdy2 · · · dyNΨ(x, x2, . . . , xN , y, y2, . . . , yN)

×Ψ∗(x′, x2, . . . , xN , y′, y2, . . . , yN).
(18)

For the harmonic-interaction model of the symmetric mixture, it can be computed
analytically and, starting from (2b), is given by [74]

ρ
(2)
12 (x, x′, y, y′) = N2

[
(α1+C1,1)

2−D2
1,1

π2

] 1
2
×

×e−
α1
2

(
x2+x′2+y2+y′2

)
e−

1
4 C1,1

[
(x+x′)2+(y+y′)2

]
e+

1
2 D1,1(x+x′)(y+y′)e+

1
2 D′1,1(x−x′)(y−y′),

(19a)

where
α + C1,1 ∓ D1,1 = (α− β) (α−β)+N(β∓γ)

(α−β)+(N−1)(β∓γ)
,

D′1,1 = γ.
(19b)

We see that the structure of the inter-species reduced two-particle density matrix is
more involved than that of the intra-species reduced two-particle density matrix, as well as



Atoms 2021, 9, 92 9 of 25

that of the product of the two, species 1 and species 2 intra-species reduced one-particle
density matrices. Nonetheless, it can be diagonalized.

To diagonalize ρ
(2)
12 (x, x′, y, y′), one must couple and make linear combinations of co-

ordinates associated with distinguishable bosons. Defining u = 1√
2
(x + y), v = 1√

2
(x− y)

and u′ = 1√
2
(x′ + y′), v′ = 1√

2
(x′ − y′), we have for the different terms in (19):

x2 + y2 + x′2 + y′2 = u2 + u′2 + v2 + v′2,

(x + x′)2 + (y + y′)2 = (u + u′)2 + (v + v′)2 = u2 + u′2 + v2 + v′2 + 2(uu′ + vv′),

(x± x′)(y± y′) = 1
2

[
(u± u′)2 − (v± v′)2

]
= 1

2

(
u2 + u′2 − v2 − v′2

)
± (uu′ − vv′).

(20)

Consequently, we readily find the decomposition

ρ
(2)
12 (u, u′, v, v′) = N2

(
α1+C1,1−D1,1

π

) 1
2 e−

α1+
C1,1

2 −
D1,1+D′1,1

2
2

(
u2+u′2

)
e−

1
2 [C1,1−(D1,1−D′1,1)]uu′

×
(

α1+C1,1+D1,1
π

) 1
2 e−

α1+
C1,1

2 +
D1,1+D′1,1

2
2

(
v2+v′2

)
e−

1
2 [C1,1+(D1,1−D′1,1)]vv′ ,

(21)

where the normalizations after and before diagonalization are, of course, equal. As
might be expected, since the structure of ρ

(2)
12 (x, x′, y, y′) is more involved than that of

ρ
(2)
1 (x1, x2, x′1, x′2), the diagonalization of the former is more intricate. Fortunately, we can

do that using the application of Mehler’s formula twice, on the appropriately-constructed
inter-species ‘mixed’ coordinates u, u′ and v, v′. We thus obtain

s(2)12,± =

√(
α∓ D′1,1

)
(α + C1,1 ∓ D1,1) =

√
(α∓ γ)(α− β) (α−β)+N(β∓γ)

(α−β)+(N−1)(β∓γ)
,

ρ
(2)
12,± =

(α∓D′1,1)−s(2)12,±

(α∓D′1,1)+s(2)12,±
=

(α∓γ)[(α−β)+(N−1)(β∓γ)]
(α−β)[(α−β)+N(β∓γ)]

−1
(α∓γ)[(α−β)+(N−1)(β∓γ)]

(α−β)[(α−β)+N(β∓γ)]
+1

,

1− ρ
(2)
12,± =

2s(2)12,±

(α∓D′1,1)+s(2)12,±
,

(22)

where the “+” terms quantify the fragmentation in the u, u′ part of the inter-species reduced
two-particle density matrix and the “−” terms quantify the fragmentation in the v, v′ part
of the inter-species reduced two-particle density matrix; also see below. Equation (22) is one
of the main results of the present work and bears a clear and appealing physical meaning:
that pairs made of distinguishable bosons can be fragmented and that this fragmentation is
governed by the center-of-mass and by a relative coordinate of distinguishable bosons. We
shall return to this point in what follows.

We can now prescribe the decomposition of the inter-species reduced two-particle
density matrix to its distinguishable natural pair functions, which is given by

ρ
(2)
12 (x, x′, y, y′)

= N2 ∑∞
n+=0 ∑∞

n−=0

(
1− ρ

(2)
12,+

)(
1− ρ

(2)
12,−

)(
ρ
(2)
12,+

)n+
(

ρ
(2)
12,−

)n−
Φ(2)

12,n+ ,n−(x, y)Φ(2),∗
12,n+ ,n−(x′, y′),

Φ(2)
12,n+ ,n−(x, y) = 1√

2n+n+ !

(
s(2)12,+

π

) 1
4

Hn+

(√
s(2)12,+

2 (x + y)

)
e−

1
4 s(2)12,+(x+y)2

× 1√
2n−n− !

(
s(2)12,−

π

) 1
4

Hn−

(√
s(2)12,−

2 (x− y)

)
e−

1
4 s(2)12,−(x−y)2

.

(23)
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All in all, (23) implies that the distinguishable-pair ‘condensed fraction’ is given by(
1− ρ

(2)
12,+

)(
1− ρ

(2)
12,−

)
and the respective depleted fraction by 1−

(
1− ρ

(2)
12,+

)(
1− ρ

(2)
12,−

)
=

ρ
(2)
12,+ + ρ

(2)
12,− − ρ

(2)
12,+ρ

(2)
12,−. Each of the inter-species ‘mixed’ coordinates x±y√

2
carries its own

scaling, s(2)12,±. The distinguishable natural geminals Φ(2)
12,n+ ,n−(x, y) are, needless to say,

orthonormal to each other.
We proceed now for an application. We considered above the specific case of λ + λ12 = 0,

which leads to Ω = ω, α = mω
[
1 + 1

2N

(
Ω12
ω − 1

)]
, and β = γ = m

2N (Ω12 −ω). Recall that
this implies that the frequency of 2N − 1 coordinates, the 2(N − 1) relative coordinates,
and the center-of-mass coordinate is ω and that only the relative center-of-mass coordinate
has an interaction-dressed frequency, Ω12. To evaluate ρ

(2)
12 (x, x′, y, y′), we also need the

combinations (α + C1,1 − D1,1) = mω and
(

α− D′1,1

)
= mω for the “+” branch, as well

as (α + C1,1 + D1,1) = mω 1
1+ 1

N

(
ω

Ω12
−1
) and

(
α + D′1,1

)
= mω

[
1 + 1

N

(
Ω12
ω − 1

)]
for the

“−” branch.
Thus, expressions (22) can readily be evaluated, and the following picture of inter-

species fragmentation is found:

s(2)12,+ = mω, ρ
(2)
12,+ = 0, 1− ρ

(2)
12,+ = 1, (24a)

indicating that there is no contribution to fragmentation from the symmetric ‘mixed’
coordinate u, u′. On the other end,

s(2)12,− = mω

√
1+ 1

N

(
Ω12

ω −1
)

1+ 1
N

(
ω

Ω12
−1
) ,

ρ
(2)
12,− =

√[
1+ 1

N

(
Ω12

ω −1
)][

1+ 1
N

(
ω

Ω12
−1
)]
−1√[

1+ 1
N

(
Ω12

ω −1
)][

1+ 1
N

(
ω

Ω12
−1
)]

+1
,

1− ρ
(2)
12,− = 2√[

1+ 1
N

(
Ω12

ω −1
)][

1+ 1
N

(
ω

Ω12
−1
)]

+1
,

(24b)

namely, that the fragmentation fully originates from the asymmetric ‘mixed’ coordinate
v, v′. We conclude that, whereas the fragmentation of identical pairs is associated with
their center-of-mass coordinate, the fragmentation of distinguishable pairs is linked, in
this explicit case, only with a relative coordinate between two distinguishable bosons.
Interestingly, the degree of intra-species and inter-species pair fragmentation is the same in
the specific case considered, despite pertaining to different parts of the mixtures’ many-
boson wave function. Furthermore, there are different numbers of pairs: N

2 intra-species
identical pairs (for each of the species) and N inter-species pairs of distinguishable bosons.

Now, one can compute the ratio Ω12
ω =

√
1 + 4N

mω2 λ12 for which the inter-species

reduced two-particle density matrix is 50% fragmented as in (13). Since ρ
(2)
12,+ = 0 does not

contribute, the only contribution to fragmentation comes from ρ
(2)
12,−. Thus, solving (24b)

for 50% distinguishable-pair-function fragmentation, we obtain

ρ
(2)
12,− =

1
2

=⇒ Ω12

ω
=

(
1 +

4N2

N − 1

)
±

√(
1 +

4N2

N − 1

)2

− 1. (25)

As above, there are two ‘reciprocate’ solutions: one for strong inter-species attraction
and the second close to the border of stability for intermediate-strength inter-species
repulsion. We remind that since λ + λ12 = 0 in our example, the respective intra-species
interaction is opposite in sign. In addition, to achieve the same degree of 50% fragmentation
with a larger number N of distinguishable pairs, a stronger inter-species attraction or
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repulsion is needed. Furthermore, as discussed above, comparing distinguishable-pair
and identical-pair fragmentation at the same 50% value in this example, one sees from (25)
and (15) that the same interaction is needed.

Finally, we prescribe the inter-species two-particle density, namely, the diagonal part
ρ
(2)
12 (x, y) = ρ

(2)
12 (x, x′ = x, y, y′ = y), which is given by

ρ
(2)
12 (x, y) = N2

(
α1+C1,1−D1,1

π

) 1
2 e−

α1+C1,1−D1,1
2 (x+y)2

×
(

α1+C1,1+D1,1
π

) 1
2 e−

α1+C1,1+D1,1
2 (x−y)2

= N2(mω
π

) 1
2 e−

mω
2 (x+y)2

(
mω

π
[
1+ 1

N

(
ω

Ω12
−1
)]
) 1

2

e
− mω

2
[

1+ 1
N

(
ω

Ω12
−1
)] (x−y)2

.

(26)

Next, the size of the distinguishable pairs’ cloud can be assessed from the density (26)
using the widths of the respective Gaussian functions. Accordingly, we find

σ
(2)
12, x+y√

2

=

√
1

2mω
, σ

(2)
12, x−y√

2

=

√√√√1 + 1
N

(
ω

Ω12
− 1
)

2mω
. (27a)

The explanation why the width σ
(2)
12, x+y√

2

is also the typical length of the harmonic

potential is somewhat less intuitive. The distinguishable pair center-of-mass coordinate
u, u′ appears in the general inter-species reduced two-particle density matrix (21) in a
coupled form which requires diagonalization via Mehler’s formula. We find in the specific
case λ + λ12 = 0 that γ = β. This leads to a neat cancellation of terms, and the retaining of
a single term in the Mehler’s expansion with the typical length of the harmonic potential.

To show the combined effect of the intra-species and inter-species interactions ac-
companying the fragmentation of ρ

(2)
12 (x, x′, y, y′), it is useful to compute the sizes (27a)

for large inter-species attractions or inter-species repulsions at the border of stability. We
obtain, respectively,

lim
Ω12

ω →∞
σ
(2)
12, x−y√

2

=

√
1− 1

N
2mω

, σ
(2)
12, x−y√

2

−→ ∞ for
Ω12

ω
→ 0+, (27b)

where σ
(2)
12, x+y√

2

as discussed above is independent of the interactions. We see that the size

of the inter-species density saturates as does the trap’s size and does not depend on the
strengths of interactions in the limit of strong inter-species attractions. Analogously to
identical pairs, a strong fragmentation of distinguishable pairs is possible in the mixture
without the shrinking of the inter-species density due to strong inter-species attractive
interaction. At the other end, when the inter-species repulsion is close to the border
of stability, the inter-species density expands boundlessly. Summarizing, inter-species
fragmentation is governed by the ratio Ω12

ω and takes place both at the attractive and
repulsive sectors of interactions. For the sake of analysis, we compared the results for
inter-species pair fragmentation with intra-species pair fragmentation and discussed the
similarity and differences between the respective two-particle densities (16) and (26).

3. Pair of Distinguishable Pairs and Schmidt Decomposition of the wave function

Following the results of the previous section on the fragmentation of distinguishable
pairs, there are two questions that warrant answers. The first is whether inter-species
fragmentation persists beyond distinguishable pairs, say, to pairs of distinguishable pairs?
Inasmuch as single-species and intra-species fragmentations take place at the lowest-level
reduced one-particle density matrix and persist at higher-level single-species reduced
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density matrices, we wish to establish the result of inter-species fragmentation at the level
of higher-order reduced density matrices. After all, the reduced two-particle density matrix
is the lowest-order inter-species one. The second question deals with the nature of the
inter-species coordinates governing fragmentation. At the level of distinguishable-pair
fragmentation, i.e., within the inter-species reduced two-particle density matrix, one cannot
unambiguously tell whether the relative center-of-mass coordinate of the two species is
involved or whether other relative inter-species coordinates govern fragmentation. This
is because in a pair of distinguishable particles, one cannot distinguish between the two
types of coordinates.

As seen in the previous section, the inter-species reduced two-particle density matrix
is more intricate than the intra-species ones, and consequently, its diagonalization is
more involved. We derive now the inter-species reduced four-particle density matrix
and examine which ‘normal coordinates’ govern its diagonalization. Then, the natural
four-particle functions are obtained explicitly and investigated.

Finally, and as a complementary result of the techniques used for inter-species frag-
mentation, we carry the connection between inter-species and intra-species center-of-mass
coordinates, in conjunction with the usage of Mehler’s formula within a mixture, fur-
ther. This is performed by constructing the Schmidt decomposition of the mixture’s wave
function and discussing the consequences of this decomposition at the limit of an infinite
number of particles.

3.1. Inter-Species Fragmentation in Higher-Order Reduced Density Matrices

The inter-species reduced four-particle density matrix is defined as

ρ
(4)
12 (x1, x2, x′1, x′2, y1, y2, y′1, y′2) = N2(N − 1)2 ∫ dx3 · · · dxNdy3 · · · dyN

×Ψ(x1, x2, x3, . . . , xN , y1, y2, y3, . . . , yN)Ψ∗(x′1, x′2, x3, . . . , xN , y′1, y′2, y3, . . . , yN).
(28)

Note that here we only treat the four-particle quantity with two identical bosons per
each species. Integrating the harmonic interaction-model for symmetric mixtures, we find
the final expression explicitly

ρ
(4)
12 (x1, x2, x′1, x′2, y1, y2, y′1, y′2) = N2(N − 1)2

[
(α+C1,1)

2−D2
1,1

π2

] 1
2
[
(α+C2,2)

2−D2
2,2

π2

] 1
2

×e−
α
2

(
x2

1+x2
2+x′1

2+x′2
2+y2

1+y2
2+y′1

2+y′2
2
)

e−β(x1x2+x′1x′2+y1y2+y′1y′2)

×e−
1
4 C2,2

[
(x1+x2+x′1+x′2)

2
+(y1+y2+y′1+y′2)

2]
×

×e+
1
2 D2,2(x1+x2+x′1+x′2)(y1+y2+y′1+y′2)e+

1
2 D′2,2(x1+x2−x′1−x′2)(y1+y2−y′1−y′2),

(29a)

where
α + β + 2(C2,2 ∓ D2,2) = (α− β) (α−β)+N(β∓γ)

(α−β)+(N−2)(β∓γ)
,

D′2,2 = γ,
(29b)

and α+C1,1∓D1,1 are given in (19b). The combinations of parameters α+ β+ 2(C2,2 ∓ D2,2)
would appear below shortly.

To diagonalize ρ
(4)
12 (x1, x2, x′1, x′2, y1, y2, y′1, y′2), we need to mix and rotate the coordi-

nates of the two species into new coordinates appropriately. Thus, defining the new coordi-
nates as the center-of-mass, relative center-of-mass, and relative coordinates of two identical
pairs, one for each of the species, u1 =

1
2 [(x1 + x2) + (y1 + y2)], v1 =

1
2 [(x1 + x2)− (y1 + y2)],

u2 = 1√
2
(x1 − x2), v2 = 1√

2
(y1 − y2) and u′1 = 1

2
[(

x′1 + x′2
)
+
(
y′1 + y′2

)]
, v′1 = 1

2 [
(

x′1 + x′2
)

−
(
y′1 + y′2

)
], u′2 = 1√

2

(
x′1 − x′2

)
, v′2 = 1√

2

(
y′1 − y′2

)
, we have for the different terms in (29a):
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x2
1 + x2

2 + y2
1 + y2

2 + x′1
2 + x′2

2 + y′1
2 + y′2

2 = u2
1 + u′1

2 + v2
1 + v′1

2 + u2
2 + u′2

2 + v2
2 + v′2

2,

x1x2 + x′1x′2 + y1y2 + y′1y′2 = 1
2

(
u2

1 + u′1
2 + v2

1 + v′1
2 − u2

2 − u′2
2 − v2

2 − v′2
2
)

,(
x1 + x2 + x′1 + x′2

)2
+
(
y1 + y2 + y′1 + y′2

)2
= 2

[(
u1 + u′1

)2
+
(
v1 + v′1

)2
]
,[

(x1 + x2)±
(

x′1 + x′2
)][

(y1 + y2)±
(
y′1 + y′2

)]
=
(
u1 ± u′1

)2 −
(
v1 ± v′1

)2.

(30)

Relations (30) imply that one could equally define inter-species linear combinations

of the relative coordinates, since u2
2 + v2

2 =
[
(x1−x2)+(y1−y2)

2

]2
+
[
(x1−x2)−(y1−y2)

2

]2
and

u′2
2 + v′2

2 =

[
(x′1−x′2)+(y′1−y′2)

2

]2
+

[
(x′1−x′2)−(y′1−y′2)

2

]2
. We chose the former combinations.

Plugging (30) into (29), we readily find for the transformed inter-species reduced
four-particle density matrix

ρ
(4)
12 (u1, u′1, v1, v′1, u2, u′2, v2, v′2) = N2(N − 1)2

×
(

α−β
π

) 1
2 e−

α−β
2

(
u2

2+u′2
2
)(

α−β
π

) 1
2 e−

α−β
2

(
v2

2+v′2
2
)

×
[

α+β+2(C2,2−D2,2)
π

] 1
2 e−

α+β+C2,2−(D2,2+D′2,2)
2

(
u2

1+u′1
2
)

e−[C2,2−(D2,2−D′2,2)]u1u′1

×
[

α+β+2(C2,2+D2,2)
π

] 1
2 e−

α+β+C2,2+(D2,2+D′2,2)
2

(
v2

1+v′1
2
)

e−[C2,2+(D2,2−D′2,2)]v1v′1 ,

(31)

where the normalization coefficients before and after diagonalization are, naturally, equal
and fulfill [α + (C1,1 ∓ D1,1)][α + (C2,2 ∓ D2,2)] = (α− β)[α + β + 2(C2,2 ∓ D2,2)].

As can be seen in (31) and (21), the similarities and differences between the structures
of ρ

(4)
12 (u1, u′1, v1, v′1, u2, u′2, v2, v′2) and ρ

(2)
12 (u, u′, v, v′) clarify the issue of which coordinates

are coupled and identify the coordinates that are not. In particular, just like for the two-
particle quantity, we can apply Mehler’s formula twice, on the appropriately constructed
inter-species ‘mixed coordinates’ u1, u′1 and v1, v′1, to diagonalize the inter-species reduced
four-particle density matrix. When this is performed, one obtains

s(4)12,± =

√(
α + β∓ 2D′2,2

)
[α + β + 2(C2,2 ∓ D2,2)]

=

√
(α + β∓ 2γ)(α− β) (α−β)+N(β∓γ)

(α−β)+(N−2)(β∓γ)
,

ρ
(4)
12,± =

(α+β∓2D′2,2)−s(4)12,±

(α+β∓2D′2,2)+s(4)12,±
=

(α+β∓2γ)[(α−β)+(N−2)(β∓γ)]
(α−β)[(α−β)+N(β∓γ)]

−1
(α+β∓2γ)[(α−β)+(N−2)(β∓γ)]

(α−β)[(α−β)+N(β∓γ)]
+1

,

1− ρ
(4)
12,± =

2s(4)12,±

(α+β∓2D′2,2)+s(4)12,±
,

(32)

where the “+” terms quantify, the fragmentation in the u1, u′1 part of the inter-species
reduced four-particle density matrix and the “−” terms determine the fragmentation in the
v1, v′1 part of the inter-species reduced four-particle density matrix. As found and shown
in (31), there is no fragmentation due to the relative-coordinate parts u2, u′2 and v2, v′2.
Equation (32) adds to the main results of the present work and bears a transparent and
appealing physical meaning: in the mixture, inter-species fragmentation is quantified by
the eigenvalues obtained from Mehler’s formula when the latter is applied to the mixture’s
center-of-mass and relative center-of-mass coordinates of distinguishable pairs of pairs.
Extensions to larger distinguishable aggregates of species 1 and species 2 identical bosons
in the mixture is possible along the above lines and are not pursued further here.
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We can now prescribe the decomposition of the inter-species reduced four-particle
density matrix, inasmuch as the reduced two-particle density matrix was decomposed,
into its natural four-particle functions made of distinguishable particles. The final result is
given by

ρ
(4)
12 (x1, x2, x′1, x′2, y1, y2, y′1, y′2) = N2(N − 1)2 ∑∞

n+=0 ∑∞
n−=0

(
1− ρ

(4)
12,+

)(
1− ρ

(4)
12,−

)
×
(

ρ
(4)
12,+

)n+
(

ρ
(4)
12,−

)n−
Φ(4)

12,n+ ,n−(x1, x2, y1, y2)Φ
(4),∗
12,n+ ,n−(x′1, x′2, y′1, y′2),

Φ(4)
12,n+ ,n−(x1, x2, y1, y2)

= 1√
2n+n+ !

(
s(4)12,+

π

) 1
4

Hn+

(√
s(4)12,+
2 [(x1 + x2) + (y1 + y2)]

)
e−

1
8 s(4)12,+ [(x1+x2)+(y1+y2)]

2

× 1√
2n−n− !

(
s(4)12,−

π

) 1
4

Hn−

(√
s(4)12,−
2 [(x1 + x2)− (y1 + y2)]

)
e−

1
8 s(4)12,− [(x1+x2)−(y1+y2)]

2

×
(

α−β
π

) 1
4 e−

α−β
4 (x1−x2)

2
(

α−β
π

) 1
4 e−

α−β
4 (y1−y2)

2
.

(33)

Equation (33) means that the pair-of-distinguishable-pairs ‘condensed fraction’ is
given by the product

(
1− ρ

(4)
12,+

)(
1− ρ

(4)
12,−

)
and the respective depleted fraction is

1−
(

1− ρ
(4)
12,+

)(
1− ρ

(4)
12,−

)
= ρ

(4)
12,+ + ρ

(4)
12,− − ρ

(4)
12,+ρ

(4)
12,−. The center-of-mass and relative

center-of-mass coordinates of the two pairs, (x1+x2)±(y1+y2)
2 , carry the respective scalings

s(4)12,±. The natural four-particle functions Φ(4)
12,n+ ,n−(x1, x2, y1, y2) are enumerated by the

two quantum numbers n+, n− and are obviously orthonormal to each other.
We proceed now to examine the fragmentation in this higher-order inter-species re-

duced density matrix. We investigate, as mentioned above, the specific case of λ + λ12 = 0.
To compute ρ

(4)
12 (x1, x2, x′1, x′2, y1, y2, y′1, y′2), we require the quantities [α + β + 2(C2,2 − D2,2)]

= mω and
(

α + β− 2D′2,2

)
= mω for the “+” branch, as well as [α + β + 2(C2,2 + D2,2)] =

mω 1
1+ 2

N

(
ω

Ω12
−1
) and

(
α + β + 2D′2,2

)
= mω

[
1 + 2

N

(
Ω12
ω − 1

)]
for the “−” branch.

Now, expressions (32) can readily be evaluated, and the following picture of higher-
order inter-species fragmentation is found:

s(4)12,+ = mω, ρ
(4)
12,+ = 0, 1− ρ

(4)
12,+ = 1, (34a)

indicating that there is no contribution to fragmentation from the center-of-mass ‘mixed
coordinate’ u1, u′1. This is additional to the no contribution to fragmentation coming from
the relative coordinates u2, u′2 and v2, v′2; see (31). For the relative center-of-mass ‘mixed
coordinate’ v1, v′1, on the other end, one finds

s(4)12,− = mω

√
1+ 2

N

(
Ω12

ω −1
)

1+ 2
N

(
ω

Ω12
−1
) ,

ρ
(4)
12,− =

√[
1+ 2

N

(
Ω12

ω −1
)][

1+ 2
N

(
ω

Ω12
−1
)]
−1√[

1+ 2
N

(
Ω12

ω −1
)][

1+ 2
N

(
ω

Ω12
−1
)]

+1
,

1− ρ
(4)
12,− = 2√[

1+ 2
N

(
Ω12

ω −1
)][

1+ 2
N

(
ω

Ω12
−1
)]

+1
,

(34b)

namely, that the fragmentation of pairs of distinguishable pairs fully originates from the
relative center-of-mass ‘mixed coordinate’ v1, v′1. We see that also the higher-order inter-
species fragmentation is governed by the ratio Ω12

ω and takes place both at the attractive and
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repulsive sectors of interactions. In conclusion, the higher-order inter-species fragmentation
is proved.

Now, one can compute the ratio Ω12
ω =

√
1 + 4N

mω2 λ12 for which the inter-species

reduced four-particle density matrix is 50% fragmented, as in (13). Since ρ
(4)
12,+ = 0 does

not contribute in this specific case, the only contribution to fragmentation comes from
ρ
(4)
12,−. Thus, solving (34b) for 50% distinguishable-four-particle-function fragmentation, we

obtain

ρ
(4)
12,− =

1
2

=⇒ Ω12

ω
=

(
1 +

2N2

N − 2

)
±

√(
1 +

2N2

N − 2

)2

− 1. (35)

As for distinguishable pairs, there are two ‘reciprocate’ solutions: one for strong
attractions and the second close to the border of stability for repulsions. In addition, to
achieve the same degree of 50% fragmentation with a larger number N

2 of distinguishable
four-boson aggregates, a stronger attraction or repulsion is needed. Furthermore, com-
paring distinguishable-four-boson and distinguishable-two-boson fragmentation at the
same 50% value, one sees from (35) and (25) that slightly weaker interactions–attractions
or repulsions–are needed for the former. This behavior of the fragmentation of increasing
orders of inter-species reduced density matrices is analogous to and generalizes that of
intra-species and single-species reduced density matrices; see the previous section and the
appendix, respectively.

Finally, we present for completeness the inter-species four-particle density, i.e., the
diagonal part ρ

(4)
12 (x1, x2, y1, y2) = ρ

(4)
12 (x1, x2, x′1 = x1, x′2 = x2, y1, y2, y′1 = y1, y′2 = y2),

which is given by

ρ
(4)
12 (x1, x2, y1, y2) = N2(N − 1)2

(
α−β

π

)
e−

α−β
2 (x1−x2)

2
e−

α−β
2 (y1−y2)

2

×
[

α+β+2(C2,2−D2,2)
π

] 1
2 e−

α+β+2(C2,2−D2,2)
4 [(x1+x2)+(y1+y2)]

2

×
[

α+β+2(C2,2+D2,2)
π

] 1
2 e−

α+β+2(C2,2+D2,2)
4 [(x1+x2)−(y1+y2)]

2

= N2(N − 1)2(mω
π

) 3
2 e−

mω
2 (x1−x2)

2
e−

mω
2 (y1−y2)

2
e−

mω
4 [(x1+x2)+(y1+y2)]

2

×
(

mω

π
[
1+ 2

N

(
ω

Ω12
−1
)]
) 1

2

e
− mω

4
[

1+ 2
N

(
ω

Ω12
−1
)] [(x1+x2)−(y1+y2)]

2

.

(36)

To proceed, the size of the distinguishable four-boson cloud can be estimated from the
widths of the respective Gaussian functions in the density (36). Thus, we obtain

σ
(4)

12, x1−x2√
2

=
√

1
2mω , σ

(4)

12, y1−y2√
2

=
√

1
2mω , σ

(4)

12, (
x1+x2)+(y1+y2)

2

=
√

1
2mω ,

σ
(4)

12, (
x1+x2)−(y1+y2)

2

=

√
1+ 2

N

(
ω

Ω12
−1
)

2mω .

(37a)

The explanations why the widths σ
(4)

12, x1−x2√
2

, σ
(4)

12, y1−y2√
2

with intra-species relative co-

ordinates and, separately, the width σ
(4)

12, (
x1+x2)−(y1+y2)

2

with inter-species center-of-mass

coordinate are all the typical length of the harmonic potential follow those given above,
alongside Equations (17a) and (27a), respectively, and are not reproduced here.

To show the combined effect of the inter-species and intra-species interactions accom-
panying the fragmentation of ρ

(4)
12 (x1, x2, x′1, x′2, y1, y2, y′1, y′2), it is instrumental to compute
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the sizes (37a) for large inter-species attractions or inter-species repulsions at the border of
stability. We obtain, respectively,

lim
Ω12

ω →∞
σ
(4)

12, (
x1+x2)−(y1+y2)

2

=

√
1− 2

N
2mω

, σ
(4)

12, (
x1+x2)−(y1+y2)

2

−→ ∞ for
Ω12

ω
→ 0+, (37b)

where σ
(4)

12, x1−x2√
2

, σ
(4)

12, y1−y2√
2

, and σ
(4)

12, (
x1+x2)+(y1+y2)

2

, as mentioned above, do not depend on the

interactions. We see that the size of the inter-species four-boson density also saturates at
about the trap’s size, and does not depend on the strengths of interactions in the limit
of strong inter-species attractions. As for the pair of distinguishable bosons, a strong
fragmentation is possible in the mixture with hardly any shrinking of the density in
comparison with that of the bare trap due to the condition λ + λ12 = 0, namely when
strong inter-species attractive interaction is accompanied by strong intra-species repulsion
of equal magnitude. In summary, inter-species fragmentation in higher-order reduced
density matrices is also governed by the ratio Ω12

ω and takes place both at the attractive and
repulsive sectors of interactions.

3.2. Inter-Species Entanglement and the Limit of an Infinite Number of Particles

In the previous sections, the reduced density matrices for identical and distinguishable
pairs of bosons were diagonalized, and the intra-species and inter-species fragmentations
explored. Both kinds of fragmentations are critical phenomena in the sense that, going
to the limit of an infinite number of particles while keeping the interaction parameters
(products of the number of particles times the interaction strengths) constant, the respective
reduced density matrix per particle becomes 100% condensed [74]. This can be easily found
from the leading natural eigenvalues of the natural functions explicitly obtained above; see
the general (6), (10), (22), (32) and specific (12), (24), (34) expressions, which are all equal to
1 in this limit.

In the present, concluding subsection, we touch upon a property of the mixture which
does not diminish at the limit of an infinite number of particles. Classifying properties of
Bose–Einstein condensates and their mixtures at the limit of an infinite number of particles,
and especially when many-body and mean-field theories do not coincide, is an active field
of research, where variances of observables and the overlap between the many-body and
mean-field wave functions are discussed elsewhere; see [75–77,93–101]. Here, combining
the techniques used in the previous sections, we apply Mehler’s formula to perform the
Schmidt decomposition of the wave function.

Let us examine the mixture’s wave function, for which the coordinates of the two
species are coupled to each other owing to the inter-species interaction; see the last term
in (2a). As a reminder, the wave function is obtained by representing the Hamiltonian (1)
with the mixture’s Jacoby coordinates, for which it is fully diagonalized, and translating it
back to the laboratory frame. To decouple the coordinates of each species, in the sense of
prescribing the Schmidt decomposition of the wave function, it is useful to go ‘half a step’
backward, and express (2a), using the individual species’ Jacoby coordinates.

The Jacoby coordinates of each species are given by

Xk =
1√

k(k+1)
∑k

j=1
(
xk+1 − xj

)
, 1 ≤ k ≤ N − 1, XN = 1√

N ∑N
j=1 xj,

Yk =
1√

k(k+1)
∑k

j=1
(
yk+1 − yj

)
, 1 ≤ k ≤ N − 1, YN = ± 1√

N ∑N
j=1 yj,

(38)

where, for the derivation given below, it is useful to distinguish between the two cases
for the definition of, say, YN : The plus sign is assigned to positive γ, namely, to attractive
inter-species interactions for which Ω12 > ω, and the minus sign is assigned to negative γ,
i.e., to repulsive inter-species interactions where Ω12 < ω.
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For the symmetric mixture, given the above Jacobi coordinates of each species, Equa-
tion (38), the wave function reads

Ψ(X1, . . . , XN , Y1, . . . , YN) =
(

mΩ
π

) N−1
2
(

M12Ω12
π

) 1
4
(

Mω
π

) 1
4

×e−
1
2 mΩ ∑N−1

k=1 (X2
k+Y2

k )e−
1
2 m(Ω12+ω)

2 (X2
N+Y2

N)e±
1
2 m(Ω12−ω)XNYN .

(39a)

Indeed, all relative coordinates are decoupled, and the only coupling due to the
inter-species interaction is between the center-of-mass XN of species 1 bosons and the
center-of-mass YN of species 2 bosons. Consequently, applying Mehler’s formula to the
terms with the intra-species center-of-mass Jacoby coordinates XN and YN the Schmidt
decomposition of (39a) is readily performed and given by

Ψ(X1, . . . , XN , Y1, . . . , YN) = ∑∞
n=0

√
1− ρ2

SDρn
SDΦ1,n(X1, . . . , XN)Φ2,n(Y1, . . . , YN),

Φ1,n(X1, . . . , XN) =
(

mΩ
π

) N−1
4 e−

1
2 mΩ ∑N−1

k=1 X2
k 1√

2nn!

( sSD
π

) 1
4 Hn

(√
sSDXN

)
e−

1
2 sSDX2

N ,

Φ2,n(Y1, . . . , YN) =
(

mΩ
π

) N−1
4 e−

1
2 mΩ ∑N−1

k=1 Y2
k 1√

2nn!

( sSD
π

) 1
4 Hn

(√
sSDYN

)
e−

1
2 sSDY2

N ,

√
1− ρ2

SD =
2
√

Ω12
ω

1+ Ω12
ω

, ρSD =

(
Ω12

ω

)±1
−1(

Ω12
ω

)±1
+1

, sSD = m
√

ωΩ12.

(39b)

We repeat that the plus sign is for attraction and the minus for repulsion, which

is what guarantees that ρSD and consequently the Schmidt coefficients
√

1− ρ2
SDρn

SD,
n = 0, 1, 2, 3, . . . are always positive. sSD defines the inverse width of the individual species’
center-of-mass Gaussians in the Schmidt basis Φ1,n(X1, . . . , XN) and Φ2,n(Y1, . . . , YN).

Let us concisely discuss the properties of the Schmidt decomposition of the mixture,
Equation (39b). Clearly and interestingly, the Schmidt coefficients are independent of
the intra-species dressed frequency Ω, which only appears in conjunction with intra-
species relative coordinates, i.e., the Schmidt coefficients depend solely on the inter-species
interaction. Furthermore, there is a kind of symmetry between respective attractive and
repulsive inter-species interactions, as one obtains the same Schmidt coefficients for the

inter-species frequency Ω12
ω =

√
1 + 4Nλ12

mω2 and inverse frequency ω
Ω12

= 1√
1+ 4Nλ12

mω2

.

Last but not least, the same Schmidt coefficients are obtained when the product of the
number of bosons in each species times the inter-species interaction strength, Nλ12, is held
fixed, and N is increased to infinity. In other words, whereas identical and distinguishable
bosons, pairs, four-particle aggregates, etc. are 100% condensed at the limit of an infinite
number of particles, i.e., the leading eigenvalue of all finite-order intra-species and inter-
species reduced density matrices per particle is 1, the mixture’s wave function exhibits a
fixed amount of entanglement at the infinite-particle-number limit. This is a good place to
bring the present study to an end.

4. Summary and Outlook

The present work aims at developing and combining concepts from quantum theory
of many-particle systems with novel results on the physics of trapped mixtures of Bose–
Einstein condensates. The notions of natural orbitals and natural geminals are fundamental
to many-particle systems made of identical particles. These natural functions entail the
diagonalization of the reduced one-particle and two-particle density matrices, respectively.
In a mixture of two kinds of identical particles—here explicitly two types of bosons—
there are, naturally, identical bosons and pairs made of indistinguishable bosons of either
species. To find their natural orbitals and natural geminals, the construction and subsequent
diagonalization of respective intra-species reduced density matrices is necessary. In the
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mixture, there are, additionally, pairs made of distinguishable bosons. Analogously, their
theoretical description would require assembling, diagonalizing, and analyzing the inter-
species reduced two-particle density matrix. In the present work, we have investigated
pairs made of identical or distinguishable bosons in a mixture of Bose–Einstein condensates,
covering both the structure of the respective natural pair functions, on the more formal
theoretical side, and the exploration of pairs’ fragmentation. Like identical bosons, which
can, depending on whether the reduced one-particle density matrix has one or more
macroscopic eigenvalues, be condensed or fragmented, so do the pairs of bosons. We
showed in the present work that, in the mixture, both pairs made of identical bosons and
pairs consisting of distinguishable bosons can be condensed and moreover fragmented.

To tackle the above and other questions, we employed a solvable model, the symmetric
harmonic-interaction model for mixtures. The natural geminals for pairs made of identi-
cal or distinguishable bosons were explicitly contracted as a function of the inter-species
and intra-species interactions. This was performed by diagonalizing the corresponding
intra-species and inter-species reduced two-particle density matrices using applications
of Mehler’s formula on appropriately constructed linear combinations of intra-species
and inter-species coordinates. Here, the role of the mixture’s center-of-mass and rela-
tive center-of-mass coordinates was identified and explained. The structure of identical
and distinguishable pairs in the mixture was discussed, and a generalization to pairs
of distinguishable pairs using the inter-species reduced four-body density matrix was
made. A particular case, where attractive and repulsive inter-species and intra-species
interactions are (opposite in sign and) equal in magnitude, was worked out explicitly. The
fragmentation of bosons, pairs, and pairs of pairs in the mixture was proven, and the size
of the respective densities analyzed. Last but not least, as a complementary investigation,
the exact Schmidt decomposition of the mixture’s wave function was performed. The
entanglement between the two species was shown to be governed by the coupling of their
individual center-of-mass coordinates and, consequently, not to vanish at the limit of an
infinite number of particles where any finite-order intra-species and inter-species reduced
density matrix per particle is 100% condensed.

The results reported in this work were obtained analytically, because the one-body
trapping potential and the two-body inter-particle interactions are all harmonic. It is
relevant to inquire whether the results would be robust in general. We know that fragmen-
tation of single-species bosons takes place in traps of various shapes; see, e.g., [13], for the
inter-particle interactions of various ranges [24], and at the level of the one-particle and two-
particle reduced density matrices [28]. Furthermore, as seen in Appendix A, fragmentation
of bosons and pairs occurs, respectively, at the level of the one-particle and two-particle
reduced density matrices within the single-species harmonic-interaction model. We can
therefore quite confidently foresee that the results obtained here analytically, of intra-
species and inter-species pairs’ fragmentation using the (symmetric) harmonic-interaction
model for mixtures, would persist for trapped interacting bosonic mixtures in general.
Demonstrating that explicitly we would have to resort to many-body numerical tools, see,
e.g., in [50,59,62,67]. Similarly, our analytical and numerical experience for studying single-
species trapped bosons at the limit of an infinite-number of particles [95,96,99,101], along
with the corresponding analytical results for variances and overlaps in mixtures [75,77],
strongly suggest that a similar generality would hold true for the Schmidt decomposition
of trapped interacting mixtures at the infinite-particle-number limit.

The present investigations suggest several directions for further developments. We
have treated the symmetric mixture, and an anticipated extension to generic trapped mix-
tures, with different numbers of bosons, masses, and interaction strengths for each species,
would be in place. In what capacity can the fragmentation of identical pairs in the different
species be made to differ, and to what extent would the fragmentation of distinguishable
pairs become more complex? Do the center-of-mass and relative center-of-mass coordinates
keep their role in the diagonalization of inter-species reduced density matrices for a generic
mixture? It also makes sense, in a generic mixture, to investigate the fragmentation of aggre-
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gates with unequal numbers of bosons from each species, such as, for instance, the analysis
of inter-species reduced three-particle density matrices. Another foreseen extension is
about mixtures with more species and, if feasible, about generic multi-species mixtures
where, e.g., one species could serve as a bridge between two baths. Take for instance
the (symmetric) three-species harmonic-interaction model. The diagonalization of the
Hamiltonian would require relative coordinates for each of the species, the center-of-mass
coordinate of all bosons, and two relative center-of-mass coordinates to be determined [71].
The major challenge would be the reduction of the all-particle density matrix to the various
intra-species and inter-species reduced density matrices. Recall that, for single-species
bosons, the reduction of the all-particle density matrix leads to ‘vector’ recursive relations
(the coefficients of the reduced density matrices depend on one index) [78] and that for
a two-species mixture, the reduction of the all-particle density matrix results in ‘matrix’
recursive relations (the coefficients of the various intra-species and inter-species reduced
density matrices depend on two indices) [74]. It is thus reasonable to expect that in the
three-species mixture, the reduction of the all-particle density matrix would require ‘tensor’
recursive relations. Finally, for a three-species mixture, the question whether an extended
or general Schmidt decomposition [102] is at all feasible would become relevant, and if the
answer is positive, whether in conjunction, the three individual species’ center-of-mass
coordinates would become disentangled. Surely, exciting generalizations are awaiting for
further investigations.

Finally, one could forecast that the topic of Bose–Einstein condensates and mixtures in
the limit of an infinite number of particles would be enriched by exploring the Schmidt
decomposition of the wave function. Recall that at the infinite-particle-number limit, any
finite-order intra-species and inter-species reduced density matrix per particle is 100%
condensed. Here, studying the variances of observables and overlaps of wave functions
has deepened our understanding of the differences between many-body and mean-field
theories of Bose–Einstein condensates and mixtures at the limit of an infinite number of
particles. However, these properties are already defined for single-species bosons. The
Schmidt decomposition, on the other hand, is a property that enters the topic of the infinite-
particle-number limit starting, obviously, only from a two-species mixture—all of which
paves the way for further intriguing investigations to come.
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Appendix A. Comparison to Fragmentation in the Single-Species System

The Hamiltonian of the single-species harmonic-interaction model is given by [78]

Ĥ(x1, . . . , xN) =
N

∑
j=1

(
− 1

2m
∂2

∂x2
j
+

1
2

mω2x2
j

)
+ λ

N

∑
1≤j<k

(
xj − xk

)2. (A1)

Employing single-species Jacoby coordinates and translating back to the laboratory
frame, the N-boson wave function and corresponding density matrix are given by

Ψ(x1, . . . , xN) =
(

mΩ
π

) N−1
4 (mω

π

) 1
4 e−

α
2 ∑N

j=1 x2
j−β ∑N

1≤j<k xjxk ,

Ψ(x1, . . . , xN)Ψ∗(x′1, . . . , x′N) =
(

mΩ
π

) N−1
2 (mω

π

) 1
2 e−

α
2 ∑N

j=1

(
x2

j +x′j
2
)
−β ∑N

1≤j<k

(
xjxk+x′jx

′
k

)
,

α = mΩ + β = mΩ
[
1 + 1

N
(

ω
Ω − 1

)]
, β = mΩ 1

N
(

ω
Ω − 1

)
, Ω =

√
ω2 + 2λN

m .

(A2)

The stability of the system, i.e., the condition that a bound solution exists, means that
the interaction satisfies λ > −mω2

2N .
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The reduced one-particle density matrix reads

ρ(1)(x, x′) = N
(

α+C1
π

) 1
2 e−

α+
C1
2

2

(
x2+x′2

)
e−

1
2 C1xx′ ,

α + C1 = (α− β) (α−β)+Nβ
(α−β)+(N−1)β

= mΩ 1
1+ 1

N (
Ω
ω−1)

.
(A3)

Comparing the structure of the reduced single-particle density matrix that of Mehler’s
formula [81,82], one readily has

s(1) =
√

α(α + C1) = mΩ
√

1+ 1
N (

ω
Ω−1)

1+ 1
N (

Ω
ω−1)

,

ρ(1) = α−s(1)

α+s(1)
=

√
[1+ 1

N (
ω
Ω−1)][1+ 1

N (
Ω
ω−1)]−1√

[1+ 1
N (

ω
Ω−1)][1+ 1

N (
Ω
ω−1)]+1

,

1− ρ(1) = 2s(1)

α+s(1)
= 2√

[1+ 1
N (

ω
Ω−1)][1+ 1

N (
Ω
ω−1)]

.

(A4)

The reduced two-particle density matrix ρ(2)(x1, x2, x′1, x′2) reads, after the rotation of
coordinates,

ρ(2)(q1, q′1, q2, q′2) = N(N − 1)
(

α−β
π

) 1
2 e−

α−β
2

(
q2

2+q′2
2
)

×
(

α+β+2C2
π

) 1
2 e−

α+β+C2
2

(
q2

1+q′1
2
)

e−C2q1q′1 ,

α + β + 2C2 = (α− β) (α−β)+Nβ
(α−β)+(N−2)β

= mΩ 1
1+ 2

N (
Ω
ω−1)

,

(A5)

where q1 = 1√
2
(x1 + x2), q2 = 1√

2
(x1 − x2) and q′1 = 1√

2

(
x′1 + x′2

)
, q′2 = 1√

2

(
x′1 − x′2

)
.

Comparing the structure of the reduced two-particle density matrix with that of Mehler’s
Formula (5), we readily find

s(2) =
√
(α + β)(α + β + 2C2) = mΩ

√
1+ 2

N (
ω
Ω−1)

1+ 2
N (

Ω
ω−1)

,

ρ(2) = (α+β)−s(2)

(α+β)+s(2)
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√
[1+ 2

N (
ω
Ω−1)][1+ 2

N (
Ω
ω−1)]−1√

[1+ 2
N (

ω
Ω−1)][1+ 2

N (
Ω
ω−1)]+1

,

1− ρ(2) = 2s(2)

(α+β)+s(2)
= 2√

[1+ 2
N (

ω
Ω−1)][1+ 2

N (
Ω
ω−1)]

,

(A6)

where α + β = mΩ
[
1 + 2

N
(

ω
Ω − 1

)]
. We see from (A4) and (A6) that fragmentation of

bosons and pairs is governed, in the single-species harmonic-interaction model, by the
ratio Ω

ω and takes place both at the attractive and repulsive sectors of the interaction.
Similarly to the main text, we compute for which ratio Ω

ω , or, equivalently, for which

interaction λ = mω2

2N

[(
Ω
ω

)2
− 1
]

, the two-particle and one-particle reduced density ma-

trices are macroscopically fragmented as in (13). Note the difference that, here, Ω
ω is the

single-species interaction and in the main text, for the mixture, Ω12
ω is the inter-species

interaction. Thus, solving (A4) for 50% natural-orbital fragmentation, we find

ρ(1) =
1
2

=⇒ Ω
ω

=

(
1 +

4N2

N − 1

)
±

√(
1 +

4N2

N − 1

)2

− 1, (A7)

and working out (A6) for 50% natural-geminal fragmentation, we obtain
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ρ
(2)
1 =

1
2

=⇒ Ω
ω

=

√
1 +

2Nλ

mω2 =

(
1 +

2N2

N − 2

)
±

√(
1 +

2N2

N − 2

)2

− 1. (A8)

There are two ‘reciprocate’ solutions for both the natural geminals and natural orbitals:
Indeed, 50% fragmentation occurs for strong attractions, namely, when Ω

ω is large, or in the
vicinity of the border of stability for repulsions, i.e., when Ω

ω is close to zero. In addition,
to achieve the same degree of 50% fragmentation with a larger number of bosons N, a
stronger attraction or repulsion is needed. Finally, comparing the natural-geminal with
natural-orbital fragmentation at the same 50% value, one sees from (A8) and (A7) that
slightly weaker interactions attractions or repulsions are needed for the former, in a similar
manner to intra-species fragmentation in the mixture discussed in the main text.

Finally, we prescribe the one-particle and two-particle densities, i.e., the diagonal parts
ρ(1)(x) = ρ(1)(x, x′ = x) and ρ(2)(x1, x2) = ρ(2)(x1, x2, x′1 = x1, x′2 = x2) which read

ρ(1)(x) = N
(
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π

) 1
2 e−(α+C1)x2

= N
(
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,
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π

) 1
2 e−
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2 (x1−x2)

2
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) 1
2 e−
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2
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) 1
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2
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) 1
2
e
− mΩ
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N (
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ω −1)]

(x1+x2)
2

.

(A9)

Here, in the single-species case, λ governs the size of the densities which, as we now
show, depending on the interaction stronger than for the mixture; also see the main text for
comparison and further discussion.

We can deduce the size of pairs’ and bosons’ clouds using the widths of the corre-
sponding Gaussian functions in the densities (A9). Hence, we have

σ
(1)
x =

√
1+ 1

N (
Ω
ω−1)

2mΩ ,

σ
(2)
x1+x2√

2

=

√
1+ 2

N (
Ω
ω−1)

2mΩ , σ
(2)
x1−x2√

2

=
√

1
2mΩ .

(A10a)

To describe further effects of the interaction λ accompanying fragmentation of the
reduced density matrices (A4) and (A6), we compute the sizes (A10a) for strong attractions
or repulsions at the border of stability. We obtain, respectively,

lim Ω
ω→∞ σ

(1)
x =

√
1

2mωN , σ
(1)
x −→ ∞ for Ω

ω → 0+,

lim Ω
ω→∞ σ

(2)
x1+x2√

2

=
√

1
mωN , σ

(2)
x1+x2√

2

−→ ∞ for Ω
ω → 0+,

lim Ω
ω→∞ σ

(2)
x1−x2√

2

= 0, σ
(2)
x1−x2√

2

−→ ∞ for Ω
ω → 0+,

(A10b)

as all widths (A10a) depend on the interaction strength. The size of the densities for strong
attractions diminishes to much smaller values than the trap’s size, values that depend
on the number of bosons but not on the strength of interaction. Thus, a high degree of
fragmentation due to the strong attractive interaction is possible in the single-species system
only together with the shrinking of the density. Alternatively, toward the edge of stability
region, the density of the single-species system expands due to repulsive interaction
unlimitedly as the degree of fragmentation increases. These should be compared to and
contrasted with the results in the main text for the intra-species densities and the interplay
between inter-species and intra-species interactions within intra-species fragmentation in
the mixture.
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