Supplementary Materials

Structural Analyses on the Deamidation of N-Terminal Asn in the Human N-Degron Pathway

Joon Sung Park ¹, Jae-Young Lee ², Yen Thi Kim Nguyen ¹, Nae-Won Kang ¹, Eun Kyung Oh ¹, Dong Man Jang ¹, Hyun-Jung Kim ³, Dae-Duk Kim ¹ and Byung Woo Han ^{1,*}

- ¹ Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; wingpjs@snu.ac.kr (J.S.P.); kimyen@snu.ac.kr (Y.T.K.N.); nwkangkr@snu.ac.kr (N.-W.K.); oek614@snu.ac.kr (E.K.O.); jdm721@snu.ac.kr (D.M.J.); ddkim@snu.ac.kr (D.-D.K.)
- ² College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; jaeyoung@cnu.ac.kr
- ³ College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; hyunjungkim@cau.ac.kr
- * Correspondence: bwhan@snu.ac.kr; Tel.: +82-2-880-7899

Received: 29 November 2019; Accepted: 13 January 2020; Published: date

Figure S1. NTAN1 protein expression by the Rosetta 2(DE3) strain. (a) SDS-PAGE analysis of NTAN1 protein expression at 37 °C with wild-type NTAN1 DNA sequences. NTAN1 was rarely expressed and observed. '-' and '+' represent non-induced and IPTG-induced NTAN1 samples. 's' and 'p' represent soluble and insoluble (pelleted) fractions from the IPTG-induced NTAN1 samples, respectively. 'M' represents a protein molecular weight marker (PageRulerTM, Thermo Scientific). (b) SDS-PAGE analysis of NTAN1 protein expression at 37 °C with the codon-optimized NTAN1 DNA sequences. NTAN1 bands are marked with a red box in the gel. (c) SDS-PAGE analysis of NTAN1 protein expression at 18 °C with codon-optimized NTAN1 DNA sequences. NTAN1 bands are marked with a red box in the gel.

Figure S2. The catalytic triads of NTAN1 and three other proteins structurally similar to NTAN1. The catalytic triad histidines of CheD, BLF1, and CNF1 are superposed on His92 of NTAN1. Carbon atoms of NTAN1, CheD, BLF1, and CNF1 are colored in light blue, green, magenta, and orange, respectively.

Figure S3. Deamidation of pentapeptides catalyzed by NTAN1. QRAAA and VRAAA pentapeptides were used as controls that do not contain Nt-Asn. The peptides were incubated with NTAN1 and their concentrations were plotted against incubation times. Error bars indicate standard-deviation values of three independent experiments.

	β1	α	ι α.	2 -	β2 β3	β4	β5	β6	_	β7
			···· ····		40		1	 70 ***		
HsNTAN1 MmNtan1 RnNtan1 XlNtan1 SsNtan1 OmNtan1 DmNtan1	MPULVEGRRV MPULVDGQRV MPULVDGRRV MPULVGGQRL MPULIQNRRI MPULIQNRII MPULIQNRII	R-LPQSAGDL R-LPRSAVEL R-LPLSATEL D-VTLSALQI E-RPGSTVDL E-RPGSTVDL DDCPMDTNSL	VRAHEPLEER VRAHEPLEER VRAHELLEER VQLHEQLQER FARYEHLQEN FARYEHLQEN FLQHEVYRDY	ARLLRGQSVQ ARLLRGQSVQ ARLLRGQSVQ AKALTSQPTQ ARVFRSKPVV ARVFRSKAVV AQQLHSIQAK	QVGPQGLLYV QVGPQGLLYV QVGPQGLLYV TFGPKGFLYV DVDPKCLLYI DVDPKCLLYI SVGPVGLLYV	QRELAVTSP QQRELAVTSP QQRELAVTSP QQRELAVTTP QQREFAATTP QQREFAATTP QQREFAATTP GQREMAASAP	KDGSISILGS KDGSISILGS KDGSVSILGS NDRVVSVLGS ADNSVAVLGS ADNSVAVLGS HDKHVNIIGA	DDATTCHIVV DDATTCHIVV DDATTCHIVV DDATTCHIVV DDATTCHIVI DDATTCHIVI DDATTCHIVI	LRHTGNGATC LRHTGNGATC LRHTGNGATC LRHTGSGATC VRHTGSGAAC VRHTGSGAAC VRHTGSGAAC	LTHCDGTDTK LTHCDGSDTK LTHCDGSDTK LAHCDGSDTK LAHCDGSSTW LAHCDGSSTW LAHCDGSSTW LAHCDGSSTW
	α3		β8	_	α4	β9	η1 β10	β11	β12	β13
	 100	 110	 120	 130	 140	 150	 160		 180	 190
HsNTAN1 MmNtan1 RnNtan1 XlNtan1 SsNtan1 OmNtan1 DmNtan1	AEWPLIMNSI AEWPLIMSSI AEWPLIMNSI NEWAAVLHAV SEWPLIVKAV SEWPLIVKAV EAWCTMVSEV	KSFS-DHAQC KSFS-EHAEC KSFS-EHAEC KSLT-NNTDE TSLSKDPAKE TSLSKDPAKE OELAVGYPE-	GRLEVHLVGG GRLEVHLVGG GRLELHLVGG GRLELHLVGG GRLELHLVGG GRLDLHLVGG GRLELOLIGG	FSDDRQLSQK FSDDRQLSQK FSDDRQLSQK FIDSKQYSQT FDDESKMSHK FDDESKTSHK YRDAKGYGED	LTHQLLSEFD LTHQLLSEFD LSSELFSAFD LSSELFSAFD LSLNLLSAFQ VFFSIMOSEH	RQEDDIHEVT KQDDDIHEVT KQDDDIHEVT NVLDEVHELT RQKEDIHET RQKEDIHET NHLLEIDETO	LOVTELNDRE LOVTELNDRE LOVTELNDRE COVSELNDKE CCITEMNDVL CCITEMNDVL ACVGELNTMM	ENENHFEVIY ENENHFEIIY ENENHFEIIY EDGIHYPIIY VDGVHRFGVQ VDGAHRPGVH RGEINCPIIY	GIAVNIKTAE GIAVNIKTAE GIAVNIKTAE GIAVNVKTGQ GIGVNIKTGE GVGVNIKTGE	IYRASFQDRG IYRASFQDRG IYRASFQDRG IFKATLQNRG VFPASFPHKG VFPASFPYKG IFPASFPDRG
	α5	~	β14		α6	α7		α8		β15
		···· ···· 210	11	230	 240	···· ···· 250 **	••••	···· ···· 270	 280	····· ···· 290
HsNTAN1 MmNtan1 RnNtan1 XlNtan1 SsNtan1 OmNtan1 DmNtan1	200 PEECLRAART PEECLRAARA PEECLRAARA PEECLRAARA PAEELRSART PAEELRSART PAEELRSART	210 LAGGP-MISI LAGGP-MISI LAGGP-MISI LTGGM-MVNT FTGGQ-MADI FTGGQ-MADI FTGQQ-MADI	220 YDAETEQLRI YDAKTEQLRI YDAKTEQLRI YDSKTEQLSF YDSNKGVVKI YDSNKGVVKI YDSNKGVVKI YDSSLGMLRI	230 GPYSWTEFPH GPCSWTPFPP GPCSWTPFPH GPYSWTPFPH GPCKWSPNLD GPCKWSPNLD GPFNYDPLRG	VDFWLHODDK VDFWLQODDK VDFWLQODDK IDFWLQODDK IDFWLEOEDE ISFWLSODD ADLWLSODD	250 ** QIDENLSTSP QIDESLSTSP QIDESLSTSP QIDENLSTSP TILKYLSTSP TILKYLSTSP FILQHLSSSP	LAEPPHEVEH LAEPPHEVEH LAEPPHEVEH LAEPPHEVEH TAEPPHEVSH TAEPPHEVQH DVEPPHEAPQ	270 IRSTLMFLKK IRSTLMFLKK IRSTLMFLKK IRSTLGFLKA IKSTIQFLLE IKSTIQFLLE TRATIRFIQE	280 HPSPAHTLES FPSPENILEP FPSPENILEP NPRPLKSLEP HPSS-DSTEP NQFPAVTVPR	290 GNKALLYKKN GNKALLYKKN ONKPHVYTMD GGQPQHYRRT GGQPQHYRRT DNRPRYFRRD
HsNTAN1 MmNtan1 RnNtan1 X1Ntan1 SsNtan1 OmNtan1 DmNtan1	200 PEEQLRAART PEEQLRAARA PEEQLRAARA PDEDLRSAYI PAEELRSART PAEELRSART PDRELRDARI	210 LAGGP-MISI LAGGP-MISI LAGGP-MISI LTGGM-MVNT FTGGQ-MADI FTGQQ-MADI FTGQQ-MADI	VIAETEQLRI VDAETEQLRI VDAKTEQLRI VDSKTEQLSF VDSNKGVVKI VDSNKGVVKI VDSNKGVVKI VDSNKGVVKI	CPCSWTPFPH GPCSWTPFPQ GPCSWTPFPH GPCSWTPFPH GPCSWSPNLD GPCKWSPNLD GPCKWSPNLD GPFNYDPLRG	VDFWLHQDDK VDFWLQQDDK VDFWLQQDDK IDFWLQQDDK IDFWLQQDDK ISFWLSQDD ADLWLSQTDE	250 ** QILENLSTSP QILENLSTSP QILENLSTSP LILQYFSTSP TILKYLSTSP FILQHLSSSP	LASPPHEVEH LASPPHEVEH LASPPHEVEH TASPPHEVDH TASPPHEVQH TASPPHEVQH DVSPHEVQH	270 IRSTLMFLKK IRSTLMFLKK IRSTLMFLKK IRSTLGFLKA IKSTLQFLLE IKSTLQFLLE TRATIRFLQE	 280 HPSPAHTLES FPSPENILEP PPSPENILEP NPRPLKSLEP HPSS-DSIEP NQFPAVTVPR	290 GNKALLYKKN GNKALLYKKN GNKALLYRKN DNKPHVYTMD GGQPQHYRRT GGQPQHYRRT DNRPRYFRRD
HsNTAN1 MmNtan1 RnNtan1 XlNtan1 SsNtan1 OmNtan1 DmNtan1	200 EECOLRARAT PECOLRARA DEDURARA DEDURARA AEDURARA DEDURARA AEDURARA AEDURARA BAEDURARAT BAEDURARAT β16 300	210 LACGP-MISI LACGP-MISI LACGP-MISI LTCCM-MVNT FTCGQ-MADI FTCGQ-MADI FTCGQ-MADI	220 YDAETEQIRI YDARTEQIRI YDAKTEQIRI YDAKTEQIRI YDSKEQUST YDSNKGVVKI YDSNKGVVKI YDSNKGVVKI YDSSLGMIRI	GPYSWTE FPH GPYSWTE FPQ GPCSWTE FPQ GPCSWTE FPH GPYSWTE FPH GPYSWTE FPH GPCKWSENLD GPCKWSENLD GPCKWSENLD GPCKWSENLD	UPFULGDEK VDFWLGDEK VDFWLGDDK VDFWLGDDK IDFWLGDDK IDFWLGDDK ISFWLSDDD ISFWLSDDD ADLWLSDTDE	250 ** QILESLESS QILESLESS QILESLESS QILENLESS TILENLESS TILESS TILESS TILESS TILESS TILESS	СПОСТВОИСТВОИ СПОСТВОИ	270 IRSTINGLKK IRSTINGLKK IRSTINGLKK IRSTIGTIKE IKSTIGTILE IKSTIGTILE TRATIGTILE		

Figure S4. Sequence alignment of NTAN1s from seven representative organisms. Identical and highly conserved residues are marked with blue and cyan boxes, respectively. Secondary structures of human NTAN1 are shown above the sequence numbers. Helices and β-strands are represented as red tubes and blue arrows, respectively. Residues mutated in our study are indicated with red asterisks. Abbreviations are as follows: HsNTAN1, *Homo sapiens* NTAN1; MmNtan1, *Mus musculus* Ntan1; RnNtan1, *Rattus norvegicus* Ntan1; XlNtan1, *Xenopus laevis* Ntan1; SsNtan1, *Salmo salar* Ntan1; OmNtan1, *Oncorhynchus mykiss* Ntan1; DmNtan1, *Drosophila melanogaster* Ntan1.

Figure S5. Superposition of wild-type NTAN1 and the NTAN1 C75S mutant structures. Wild-type NTAN1 and the NTAN1 C75S mutant are shown in red- and blue-ribbon representations, respectively.

Figure S6. Substrate-recognition mode of NTAN1. *LigPlot*⁺ analyses of bound NLAAR (**a**) and NFAAR (**b**) pentapeptides in the NTAN1 C75S mutant structures.

Figure S7. Proposed catalytic mechanism of NTAN1.

	SeMet NTAN1	NTAN1	NTAN1 C75S	NTAN1 C75S-NLAAR	NTAN1 C75S-NFAAR
	(SAD)	(PDB ID: 6A0E)	(PDB ID: 6A0I)	(PDB ID: 6A0H)	(PDB ID: 6A0F)
Data collection					
Space group	$P2_{1}2_{1}2_{1}$	P212121	P212121	P212121	P212121
Cell dimensions					
a , b, c (Å)	84.86, 85.52, 87.51	83.15, 84.90, 87.20	82.98, 84.34, 87.00	84.00, 85.88, 88.09	84.05, 85.75, 88.30
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90
	Peak				
Wavelength (Å)	0.97928	0.97960	0.97960	0.97933	0.97933
Baselution (Å)	50.00 - 2.85	50.00 - 1.95	50.00 - 2.00	50.00 - 3.20	50.00 - 2.40
Resolution (A)*	(2.90 - 2.85)	(1.98 - 1.95)	(2.03 - 2.00)	(3.26 - 3.20)	(2.44 - 2.40)
No. of unique reflections	15317	45885	42029	11141	25940
Rmerge ^a	0.164 (0.690)	0.091 (0.701)	0.121 (0.602)	0.172 (0.480)	0.092 (0.502)
$R_{ m pim^a}$	0.042 (0.174)	0.037 (0.276)	0.048 (0.247)	0.067 (0.182)	0.035 (0.190)
$\mathrm{I}/\mathrm{\sigma}(\mathrm{I})^a$	35.0 (8.7)	21.2 (3.2)	16.3 (3.0)	9.7 (3.8)	18.4 (3.7)
Completeness (%) ^a	99.9 (100.0)	100.0 (100.0)	100.0 (100.0)	99.8 (100.0)	99.9 (100.0)
Redundancy ^a	15.7 (16.1)	7.3 (7.3)	7.2 (6.8)	7.6 (7.9)	7.8 (7.9)
Refinement					
Resolution (Å)		30.42 - 1.95	38.53 - 2.00	35.52 - 3.19	30.76 - 2.38
$R_{ m work}/R_{ m free}^b$		0.175/0.224	0.164/0.211	0.185/0.242	0.196/0.248
No. atoms		5652	5474	4895	5193
Protein		4984	4885	4775	4799
Ligand/ion ^c		75	147	107	176
Water		593	442	13	218
Average B factors (Å ²)		33.0	35.9	48.5	45.2
Protein		31.8	34.5	48.3	44.8
Ligand/ion		54.3	59.7	60.0	59.5
Water		40.7	43.7	32.1	42.5
Ramachandran plot					
Favored (%)		98.02	98.18	98.00	98.02
Allowed (%)		1.98	1.82	2.00	1.98
Outlier (%)		0	0	0	0
R.m.s. deviations					
Bond lengths (Å)		0.002	0.005	0.002	0.002
Bond angles (°)		0.490	0.726	0.509	0.464

|--|

^{*a*} Values in parentheses are for the highest-resolution shell.

^{*b*} About 5% of the reflections were excluded from the refinement for $R_{\rm free}$ calculation.

^c Ligand/Ion includes five glycerol molecules (with hydrogen atoms) and one phosphate molecule (6A0E); 22 glycerol molecules and three phosphate molecules (6A0I); NLAAR peptide, five glycerol molecules, and six phosphate molecules (6A0H); NFAAR peptide, 13 glycerol molecules, and eight glycerol molecules (6A0F). Glycerol and phosphate molecules might be incorporated from crystallization/cryoprotection solutions.

Peptide sequence	Molar mass (g/mol)	Mass-to- charge ratio (<i>m</i> / <i>z</i>)	Fragmentor voltage (V)	Retention time (min)
NRA	359.39	360.3	120	1.92
NRAA	430.47	431.3	130	1.90
NRAAA	501.55	502.3	120	1.90
NRQVA	586.65	587.3	130	1.91
NRQVAA	657.73	658.4	145	1.91
NRQVAAA	728.81	729.4	170	1.91
NLAAR	543.63	544.4	200	1.92
NFAAR	577.65	578.5	120	1.93
NAAAR	501.55	502.4	170	1.90
NRAAR	586.66	587.5	170	1.85
NPAAR	527.59	528.4	160	1.90
NNAAR	544.57	545.4	120	1.90
NGAAR	487.52	488.3	160	1.90
NDAAR	545.56	546.4	110	1.91
QRAAA	515.28	516.0	130	1.90
VRAAA	486.29	487.4	166	1.91

Table S2. Optimized MS parameters and retention times of substrates peptides.