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Abstract: In this study, the poly(lactide-ε-caprolactone) (P(LA-CL)) copolymer is synthesized by
ring-opening polymerization with glycol used as a molecular weight regulator to adjust the molecular
weight of the polymer. The proton nuclear magnetic resonance spectroscopy and gel permeation
chromatography (GPC) results demonstrate that the P(LA-CL) copolymer is successfully synthesized,
and that the molecular weight can be controlled by the glycol content. The thermoplastic plate is
processed with triallyl isocyanurate as a cross-linking agent by a single-screw extruder followed
by γ-ray irradiation. Shape memory test results show that the material had the desired shape
memory effect, with deformation recovery rates reaching 100%. After secondary stretching of samples,
deformation recovery rates are unchanged. The results of mechanical property measurements indicate
that with added lactide, the tensile strength is improved and shore hardness is increased by 20%–30%.
Data from clinical trials also reveal that the material has good clinical effects in thermoplastic
membrane fixation.

Keywords: poly(lactide-ε-caprolactone) copolymer; triallyl isocyanurate; shape memory; thermoplastic
plate; mechanical property

1. Introduction

Poly(ε-caprolactone) (PCL) is a biodegradable polyester obtained by the ring-opening
polymerization of ε-caprolactone. This semi-crystalline polymer has a degree of crystallinity around
50%, a low glass transition temperature (approximately −60 ◦C) and a melting point of approximately
60 ◦C. The PCL chain is flexible, and exhibits high elongation at break, a low modulus, and low
processing temperatures [1,2]. This material has good biocompatibility, and can be used to modify
other biopolymer materials. For instance, polylactic acid has been modified to increase the toughness
and copolymerization of PCL [3], and poly(L-lactic acid) (PLLA) has modified PLLA mechanical
properties for use in orthopedic bone repairs [4]. The three complexes were prepared by the
vine-twining polymerization method using poly(tetrahydrofuran) (PTHF), poly(ε-caprolactone) (PCL)
and poly(l-lactide) (PLLA) as guest polymers to make a film. [5] Degradable polymers, especially
polylactic acid (PLA), polyglycolic acid (PGA) and their copolymers, are the most frequently applied
coating materials for the stent [6].

The important properties of PCL are shape memory and low-temperature thermoplasticity at
60 ◦C. PCL has potential applications in the biomedical field, such as in radiotherapy positioning
plates, belts, bandages and appliances. However, pure polycaprolactone materials have been found to
be imperfect in strength and shape memory.
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At present, modification of polycaprolactone is typically achieved through copolymerization or
blending with other components to prepare composite materials that meet application requirements.
Liang et al. showed that with an increase in the nano-CaCO3 weight fraction, the flexural moduli
and strength of PCL/nano-CaCO3 composites increase roughly linearly and reach a maximum at a
filler content of 2%, while the flexural strength of the composites decrease. The flexural moduli and
strength of the composites decreased roughly linearly with an increasing PLLA/PCL ratio for the
PLLA/PCL/nano-CaCO3 composites [7]. To improve the shape memory effect, the PCL were modified
by block copolymers containing ethylenic bonds. The network structures of copolymers were then
formed by irradiation or reacting with nanogold [8–12]. Organically modified montmorillonite was
used to fill PCL to improve crystallinity and thermal stability [13]. Garle et al. reported that functional
polycaprolactones synthesized with ε-caprolactone and cinnamate as triblock ABA copolymers with
CL as the central block and cinnamate-modified ε-caprolactone as the end blocks showed excellent
shape memory effect with a high shape fixation [14].

Previously, our research group developed a polymerization technique with ε-caprolactone and
lactide [15,16]. A low thermoplastic plate of pure PCL was prepared by the blending process method
with three functions of cross-linking agent. The low thermoplastic plate of pure PCL was industrially
produced by the Guangzhou Si’an Company. After more than five years of clinical tests, a better
process has been obtained. However, some deficiencies still exist, mainly the low supporting strength
and the ineffectiveness of the material with secondary stretching.

As a molecular weight regulator, ethylene glycol is widely used in the synthesis and processing
of macromolecules, and there are some reports on the synthesis of polylactic acid, and the previous
synthesis experience of our research group can provide guidance. However, there are not many reports
on the synthesis of polycaprolactone [17,18].

To rectify the two deficiencies of low thermoplastic plates of pure PCL, the poly(lactide-ε-
caprolactone) copolymer is synthesized with ε-caprolactone and lactide using stannous octoate (SnOct)
as the catalyst in our study. The novel low thermoplastic plate is prepared with copolymer and
triallyl isocyanurate as the cross-linking agent under γ-ray irradiation. In some reports, triallyl
isocyanurate was used to cross-link polylactide (PLA) and prepare a composite material [19–26].
However, there are few reports in which PCL composite was prepared using triallyl isocyanurate
as the cross-linking agent. In this work, we measure the copolymer structure by use of proton
nuclear magnetic resonance spectroscopy (1H-NMR) and gel permeation chromatography (GPC).
The thermoplastic plate morphology and properties are determined with scanning electron microscopy
(SEM), a universal testing machine and differential scanning calorimetry (DSC). Clinical trials of
low-temperature thermoplastic plates are carried out in Sichuan Cancer Hospital.

2. Materials and Methods

2.1. Materials

L-lactide was purchased from Purac Company, Netherlands. The ε-caprolactone was provided by
China Asset Management of Petrochemical Group Co. Ltd. The SnOct and glycol were purchased
from Aladdin Reagent Ltd, Shanghai, China. Triallyl isocyanurate (TAIC) was purchased from Si’an
Company, Guangzhou, China. All chemicals were used as received.

Collector magnetic agitator(DF-101S) and Circulating water vacuum pump(SHZ-D) were
purchased from Gong yi Yuhua instrument co. Ltd. Precision booster electric mixer(JJ-1) was
provided by Aohua instrument co. Ltd, Changzhou, China.
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2.2. Methods

2.2.1. Synthesis of Poly(lactide-ε-caprolactone) Copolymer

The opening ring polymerization of different weight ratios of ε-caprolactone (70%, 80%, and 90%)
and lactide (with a total monomer weight of 400 g) was performed in a 1000-mL three-necked flask
equipped with a magnetic stirrer, using 0.15% (g/g) SnOct as a catalyst. The reactants were filled with
high purity argon, degassed in vacuum three times, and then sealed. Glycol as a molecular-weight
regulator was added into the reaction system at dosages of 0, 0.0625, and 0.125% (g/g).

Under argon gas protection and a polymerization temperature of up to 180 ◦C, the reaction time
was controlled at 4 h. Following the reaction, the system was cooled to 100 ◦C. The polymer was poured
into a water tank to cool and then pulled into thin strips. The strips were cut into small copolymer
pellets by hand. The synthesis mechanisms of copolymers are shown in Figures 1 and 2. To examine
the effects of the monomer ratio, we prepared a number of synthetic copolymers from A to I according
to the ratio of ε-caprolactone and lactide. The pure poly(ε-caprolactone) (PCL) is identified as Sample J.
Specific synthesis conditions are shown in Table 1.
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Table 1. Monomer ratios of copolymer samples.

Sample mε-caprolactone:mlactide Total Monomer Weight (g) Glycol (g) SnOct (g)

A 9:1 400 0.5 0.6
B 8:2 400 0.5 0.6
C 7:3 400 0.5 0.6
D 9:1 400 0.25 0.6
E 8:2 400 0.25 0.6
F 7:3 400 0.25 0.6
G 9:1 400 0 0.6
H 8:2 400 0 0.6
I 7:3 400 0 0.6
J 10:0 400 0 0.6

2.2.2. Preparation of Thermoplastic Plates

Thermoplastic plates were prepared by a single-screw extruder (LSJ-20, Shanghai, China).
The poly(lactide-ε-caprolactone) (P(LA-CL)) copolymer and triallyl isocyanurate at a ratio of 0.2%
copolymer were added to the extruder. A smooth, thermoplastic plate was prepared when the
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processing temperatures of each section were 70, 70, 80, and 70 ◦C at a 40 r/min screw speed. At these
settings, the melt of the extruded material added by a single screw is pressed out and cooled by a
three-roll machine to obtain a plate with a thickness of 2 mm. Finally, we cut, punch and pack according
to design requirements.

The packaged sheet is entrusted to a radiation plant to undergo r-ray irradiation, and the irradiation
measurement is 5–10 KGY, and the size of the irradiation measurement is determined according to the
use requirements of the low temperature thermoplastic board.

2.2.3. Measurements

1H-NMR Measurements

The 1H spectra of copolymers were recorded with a nuclear magnetic resonator (NMR) (Bruker
Avance III 400 MHz, Switzerland). Deuterated chloroform (CDCl3) was used as the solvent at 25 ◦C
and the chemical shifts were given with respect to tetramethylsilane. 1H spectra were obtained from
16 scans.

GPC Measurements

The molecular weights and molecular distributions of PCL and P(LA-CL) with different ratios
were determined by gel permeation chromatography (GPC) with a Waters Associates model ALC/GPC
244 apparatus at 40 ◦C with a differential refractometer as the detector, tetrahydrofuran (THF) as the
solvent, and calibration with polystyrene standards. Three specimens were tested under each condition.

SEM Measurements

The cross-sectional morphology of thermoplastic plate was observed directly by a scanning
electron microscope (SEM) (Quanta200, FEI, Hillsboro, USA) without sputter coating, but with a
conducting matter. The sample was first frozen in liquid nitrogen and then lyophilized at −47 ◦C.

Shape Memory Process Measurements

The thermoplastic plate was heated in 60 ◦C water bath for 10 minutes, and then it was stretched
by a certain length. The original and stretched lengths were recorded. The stretched sample was
heated again with the same time and temperature and the recovering length was measured. After this,
the recovered sample was re- placed heated in 60 ◦C water and repeat the above shape memory
experiment Mechanical Property Measurements.

Tensile tests were conducted using a universal testing machine (GMT-400; Shanghai, China) using
the national standard GB/T 1040. All samples were cut to 100 mm × 20 mm. The tensile speed was
10 mm/min. All reported results are the averages of at least three test specimens. The elongation at
break of samples can be calculated according to equation (1), where Eb(%) is the elongation at break,
L (mm) is the distance between the lines when the sample is broken and L0 (mm) is the original line
distance of the sample.

Shore Hardness Measurements

The shore hardness was measured with a digital shore durometer (SAUTER HDD100-1; Germany).
Each set of tests was performed in triplicate.

DSC Measurements

Differential scanning calorimetry (DSC) was performed using a TA Instruments DSC-200PC
(Netzsch, Germany). An empty pan was used as a reference. After being dried in a vacuum oven at
40 ◦C for 48 h, circular samples were cut from the plates and accurately weighed (5 mg) into aluminum
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pans. DSC measurements were carried out under nitrogen flow from 30 ◦C to 200 ◦C at a heating rate
of 5 ◦C/min.

Clinical Trials of P(LA-CL) Low-Temperature Thermoplastic Plates

During the clinical testing phase, 60 patients with breast cancer received radiation therapy
in the Department of Radiation Oncology of Sichuan Cancer Hospital and were confirmed by
pathology. Inclusion criteria included patients aged older than 30 years and weighing more than
38 kg. Of 60 patients, 43 were male and the patients were randomly enrolled into two groups: 30
patients in the vacuum pad fixation group identified as Group 1 and 30 patients in the thermoplastic
membrane fixation group identified as Group 2. Vacuum pad fixation and thermoplastic membrane
fixation are shown in Figure 3. The vacuum pad fixation group included 15 lung cancer and 15
esophageal cancer patients consisting of 19 men and 11 women. The thermoplastic membrane fixation
group included 1 thymic carcinoma, 17 lung cancer and 12 esophageal cancer patients consisting of
15 men and 15 women. All of the patients gave their informed consent before treatment, which was in
accordance with the Declaration of Helsinki and also approved by the Ethics Committee of Sichuan
Cancer Hospital.
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fixation).

Two groups of patients were treated with intensity-modulated radiation therapy combined with
computed tomography (CT) simulation to accurately locate tumors. The image data obtained were
used in treatment planning. According to the requirements to determine the positioning center,
under the CT simulator will be Move the reference center to the positioning center. Using cone beam
CT (CBCT) scans shown in Figure 4, three translational setup errors in the lateral (X), cranial-caudal
(Y) and anterior-posterior directions (Z), were obtained. The U, V and W rotation setup errors were
obtained by image analysis software to determine the corresponding X, Y and Z values.
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Statistical Analysis

Data were analyzed according to the mean and standard deviation of three test replicates for each
sample. The statistical analysis was performed by analysis of variance (ANOVA) using SPSS version
13.0 at a significance level of p < 0.05.

3. Results and Discussion

3.1. Characterization of Copolymers

The conversion and yield of a polymer is an important indicator of whether the polymer can be
mass produced. As shown in Table 2, the conversion and yield of nine copolymers were more than
90%. Comparison with similar literature indicates that yields and conversion rates have been greatly
improved [14], and that the yields obtained in our study are able to meet production requirements.
To confirm their structures, copolymers were characterized with 1H-NMR. Figures 5 and 6 show
1H-NMR spectra of the poly(LA-CL) copolymer without glycol and poly(LA-CL) copolymer with
glycol, respectively. In Figures 5 and 6, the 1H-NMR spectrum of lactide shows peaks at 1.44 and
5.17 ppm, which are assigned to the methyl and methine protons of the PLA chains, respectively.
The 1H-NMR spectrum of caprolactone shows peaks at 1.52, 2.35, and 4.12 ppm, which are assigned
to methylene protons from (CH2)3, CO–CH2, and CH2–O groups of the PCL chains, respectively.
These results are consistent with those previously reported [15,16].

Table 2. Conversion and yield of copolymers.

Sample mε-caprolactone:mlactide Total Monomer Weight (g) Conversion (%) Yield (%)

A 9:1 400 97.1 90.7
B 8:2 400 96.8 94.2
C 7:3 400 96.4 96.3
D 9:1 400 96.7 94.9
E 8:2 400 97.7 93.7
F 7:3 400 97.4 92.4
G 9:1 400 95.8 91.9
H 8:2 400 96.2 94.6
I 7:3 400 95.6 95.8
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Figure 7 shows that the gel permeation chromatography (GPC) curves of the copolymer samples
each consist of only a single molecular weight distribution peak. These results indicate that the target
product is a copolymer rather than a homopolymer blend. It can be seen in Table 3 that molecular
weights increased with a decline in glycol content. The effect of glycol on molecular weight is significant;
the molecular weight reached approximately 20 kDa in the absence of glycol and was significantly
reduced with its addition. Because the molecular weight can affect the properties and use of polymers,
selecting a polymer with an appropriate molecular weight is also a purpose of our study.
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an agent for cross-linking PLA in the preparation of cross-linked composites. However, the 
preparation of PCL composite materials using TAIC as a cross-linking agent is typically not reported. 
We have thus used TAIC to cross-link P(LA-CL) copolymers and prepare composite materials in our 
study. Figure 8 is the 1H-NMR spectrum of TAIC and Figure 9a, b are the 1H-NMR spectra of 
thermoplastic plates without irradiation and with irradiation, respectively. Comparison of Figure 9a, 
b indicate an absence of TAIC characteristic chemical shifts after irradiation. This suggests that the 
TAIC has reacted with P(LA-CL). To confirm that TAIC acted as a cross-linking agent, the properties 
of composite materials are examined in the following subsection.  

Figure 7. Gel permeation chromatography (GPC) curves of copolymers.

Table 3. Molecular weights of copolymers.

Sample Mn (kDa) Mw (kDa) PDI

A 4.2 6.3 1.498
B 4.4 6.5 1.475
C 4.0 6.0 1.490
D 6.5 10.5 1.611
E 7.49 11.1 1.475
F 7.09 11.0 1.505
G 11.05 19.0 1.721
H 12.44 21.0 1.687
I 10.94 17.3 1.581

3.2. Characterization of Thermoplastic Plates

In polymer material processing and modification, triallyl isocyanurate (TAIC) is one of the most
commonly used cross-linking agents in industrial processes. TAIC has been reported in literature as an
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agent for cross-linking PLA in the preparation of cross-linked composites. However, the preparation of
PCL composite materials using TAIC as a cross-linking agent is typically not reported. We have thus
used TAIC to cross-link P(LA-CL) copolymers and prepare composite materials in our study. Figure 8
is the 1H-NMR spectrum of TAIC and Figure 9a,b are the 1H-NMR spectra of thermoplastic plates
without irradiation and with irradiation, respectively. Comparison of Figure 9a,b indicate an absence
of TAIC characteristic chemical shifts after irradiation. This suggests that the TAIC has reacted with
P(LA-CL). To confirm that TAIC acted as a cross-linking agent, the properties of composite materials
are examined in the following subsection.
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3.3. Mechanical Property Analysis of Thermoplastic Plates

The tensile strength and elongation at break describe how the mechanical properties of materials
are related to their chemical structure [11]. The tensile strength and elongation at break of low
thermoplastic plates pre- and post-irradiation are presented in Figure 10a,b. All reported results are
the averages of at least three test specimens. Lactide is a rigid segment. As the content of lactide
increases, the stiffness of the copolymer is increased, so the tensile strength is increased. When the
lactide content was more than 20%, the tensile strength of the composite samples was higher than that
observed for pure PCL. Comparison of pre- and post-irradiation samples also indicated that tensile
strength was enhanced by irradiation.

This is consistent with the change in morphological structure upon irradiation as proven by
scanning electron microscopy (SEM). In contrast, the elongation at break decreased with an increase in
lactide content.
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For the shape memory of a low-temperature thermoplastic plate prepared with PCL composite
material, the shore hardness is a more intuitive index for practical applications. According to clinical
expert feedback, the shore hardness of low-temperature thermoplastic plates in the current market
can reach up to 40 D. With the clinical requirements, normally, it needs to be stretched 1–3 times in
local or overall during the use. After stretching, the material becomes longer and thinner, so the
model after molding becomes very soft, and the supporting force is very weak, which seriously affects
the use effect. The hardness of low thermoplastic plates is hoped to improve to about 50 D [27,28],
and Figure 11 shows the shore hardness of P(LA-CL) thermoplastic plates after irradiation. The shore
hardness improved with an increase in lactide content and molecular weight; at an Mw of 10.5 kDa,
the shore hardness reached 48.4 D. The data shows that the hardness of the three groups A, B and C,
is less than 40 D, while the hardness of the three groups G, H and I is too large, and the deformation
temperature is too high. It is not conducive to clinical application when the shore hardness is too high.
Therefore, Samples D, E and F are considered ideal thermoplastic plate materials.
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Figure 11. Shore hardness of composite materials.

3.4. DSC Analysis of Thermoplastic Plates

Based on the tensile test, shore hardness test, morphology test and molecular weight study,
samples synthesized with a CL:LA ratio of 8:2 were chosen for studies with DSC. Figure 12 shows the
DSC curves of P(LA-CL) composite materials with and without irradiation. As shown in Figure 12 and
Table 4, the melting temperature was improved by irradiation. The thermal stability also increased as
the molecular weight increased. At molecular weights above 11.1 kDa, the Tm showed little increase
with further increases in molecular weight. The following clinical experiments were thus conducted
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using the composite material from Sample E. Since the radiation dose we use is very low, it does not
alter crystallization behavior [29,30].
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Figure 12. Differential scanning calorimetry (DSC) curves of P(LA-CL) composite materials (B, E, and
H without irradiation and B1, E1, and H1 with irradiation).

Table 4. Melting temperatures of P(LA-CL) composite materials.

Sample Tm (◦C) Remark

B 47.4 pre-irradiation
B1 50.1 post-irradiation
E 52.2 pre-irradiation

E1 55.2 post-irradiation
H 50.9 pre-irradiation
H1 56.3 post-irradiation

3.5. SEM Analysis of Thermoplastic Plates

Based on the results of the tensile test, shore hardness test, morphology test and molecular
weight test, Figure 13 shows the cross-sectional morphologies of pre- and post-irradiation samples.
The pre-irradiation sample consisted of a small block structure that exhibited structural relaxation.
However, the flexible structure of the thermoplastic plate disappeared upon exposure to radiation,
and its structure became dense and rigid. This change in structure may be explained by the effect of
radiation in inducing reactions with the cross-linking agent that could affect the material properties.
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3.6. Shape Memory Process Analysis of Thermoplastic Plates

Based on the results of the tensile test, shore hardness test, morphology test and molecular weight
test, we choose group E for the shape memory test. The material shown in Figure 14 exhibited the
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desired shape memory effect where the deformation recovery rate had substantially reached 100%.
The deformation recovery rate was essentially unaffected by secondary stretching. Despite a secondary
stretching length of 1.5 times the first stretch, the thermoplastic plate returned to its initial length upon
heating. Thus, a composite material with shape memory has been achieved in this study.
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3.7. Clinic Data Analysis of Thermoplastic Plates

Clinical tests were processed in the Sichuan Cancer Hospital in Sichuan Province. Groups 1 and 2
are trialed vacuum pad fixation and thermoplastic membrane fixation, respectively. The setup errors
are shown in Table 5. The results revealed that setup errors with thermoplastic membrane fixation
were less than errors for vacuum pad fixation in all directions with P values lower than 0.05.

Table 5. Comparison of setup error results from vacuum pad fixation (Group 1) and thermoplastic
membrane fixation (Group 2).

Project Group
Setup Error

(
-
x±s)

Median Maximum Minimum p Value

X (mm) 1 0.81 ± 3.78 1.33 8.70 −8.70
0.022 −1.35 ± 0.45 −0.30 3.20 −1.90

Y (mm) 1 1.75 ± 4.55 2.15 10.00 −8.75
0.012 1.15 ± 2.55 1.60 7.55 −5.00

Z (mm) 1 2.45 ± 2.20 2.15 7.35 −3.30
0.0052 2.35 ± 0.35 1.25 5.00 −2.75

U (mm) 1 0.60 ± 0.65 0.65 2.10 −1.80
0.012 0.08 ± 0.32 0.00 0.65 0.70

V (mm) 1 0.35 ± 1.40 0.45 2.55 −3.85
0.032 −0.10 ± 0.50 0.00 1.30 −2.00

W
(mm)

1 0.45 ± 0.90 0.40 3.45 −1.35
0.012 0.15 ± 0.32 0.08 1.25 −1.25

4. Conclusions

In our study, PCL was modified with biocompatible and biodegradable PLA, and glycol was
used as a molecular weight regulator to adjust the molecular weight of the polymer. The results
demonstrated that the P(LA-CL) copolymer was successfully synthesized with the conversion and
yield of nine copolymers at more than 90% using our synthesis method. To get a better shape memory
function, we used TAIC with three terminal alkenyl functional groups as a cross-linking agent to
prepare the composite material. The thermoplastic plate was processed by a single-screw extruder,
and then placed under γ-ray irradiation. Shape memory and performance test results showed that
the material has the desired shape memory effect with a deformation recovery rate reaching 100%.
After the secondary stretching of samples, the deformation recovery rate remained unchanged. With the
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added lactide, the tensile strength was improved and shore hardness increased by 20–30%. Data from
clinical trials reveal that the material has good clinical effects in thermoplastic membrane fixation.
In summary, the low thermoplastic plate of the P(LA-CL) copolymer has very good application
prospects in radiotherapy positioning.
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