SUPPLEMENTARY INFORMATION

Discovery of new antibacterial accramycins from a genetic variant of the soil bacterium, *Streptomyces* sp. MA37

Fleurdeliz Maglangit^{1,2*}, Yuting Zhang¹, Kwaku Kyeremeh³, Hai Deng^{1*}

List of Tables

- Table S1. Deduced functions of ORFs in acc biosynthetic gene cluster
- Table S2. Primers used in the Study
- Table S3. Physico-chemical Properties of Accramycins A-K 1-11

Table S4. ¹H and ¹³C of Accramycins A-K **1-11**, naphthacemycin B1 **12** and fasamycin C **13** (CD₃OD, 298K, 600MHz)

List of Figures

Figure S1. HPLC traces of Streptomyces sp. MA37 mutant strain compared to Wild Type Figure S2. Key HMBC correlations (\rightarrow) of accramycins A-K 1-11, naphthacemycin B1 12, and fasamycin C 13 (CD₃OD, 298K, 600MHz) Figure S3. HRESIMS of naphthacemycin B1 12 Figure S4. ¹H-NMR of naphthacemycin B1 **12** (CD₃OD, 298K, 600MHz) Figure S5. ¹H-1H COSY of naphthacemycin B1 **12**(CD₃OD, 298K, 600MHz) Figure S6. HSQC of naphthacemycin B1 12 (CD₃OD, 298K, 600MHz) Figure S7. HMBC of naphthacemycin B1 12 (CD₃OD, 298K, 600MHz) Figure S8. NOESY of naphthacemycin B1 12 (CD₃OD, 298K, 600MHz) Figure S9. HRESIMS of fasamycin C 13 Figure S10. ¹H-NMR of fasamycin C **13** (CD₃OD, 298K, 600MHz) Figure S11. ¹H-¹H COSY of fasamycin C **13** (CD₃OD, 298K, 600MHz) Figure S12. HSQC of fasamycin C 13 (CD₃OD, 298K, 600MHz) Figure S13. HMBC of fasamycin C **13** (CD₃OD, 298K, 600MHz) Figure S14. NOESY of fasamycin C 13 (CD₃OD, 298K, 600MHz) Figure S15. HRESIMS of Accramycin A 1 Figure S16. ¹H-NMR of Accramycin A 1 (CD₃OD, 298K, 600MHz) Figure S17. ¹H-¹H COSY of Accramycin A **1** (CD₃OD, 298K, 600MHz) Figure S18. HSQC of Accramycin A 1 (CD₃OD, 298K, 600MHz) Figure S19. HMBC of Accramycin A 1 (CD₃OD, 298K, 600MHz) Figure S20. NOESY of Accramycin A 1 (CD₃OD, 298K, 600MHz) Figure S21. HRESIMS of Accramycin B 2 Figure S22. ¹H-NMR of Accramycin B 2 (CD₃OD, 298K, 600MHz) Figure S23. ¹H-¹H COSY of Accramycin B 2 (CD₃OD, 298K, 600MHz) Figure S24. HSQC of Accramycin B 2 (CD₃OD, 298K, 600MHz) Figure S25. HMBC of Accramycin B 2 (CD₃OD, 298K, 600MHz) Figure S26. A. HRESIMS and B. Isotope Pattern of Accramycin C 3 Figure S27. ¹H-NMR of Accramycin C **3** (CD₃OD, 298K, 600MHz) Figure S28. ¹H-¹H COSY of Accramycin C **3** (CD₃OD, 298K, 600MHz) Figure S29. HSQC of Accramycin C 3 (CD₃OD, 298K, 600MHz) Figure S30. NOESY of Accramycin C 3 (CD₃OD, 298K, 600MHz) Figure S31. A. HRESIMS and B. Isotope Pattern of Accramycin D 4 Figure S32. ¹H-NMR of Accramycin D 4 (CD₃OD, 298K, 600MHz) Figure S33. ¹H-¹H COSY of Accramycin D **4** (CD₃OD, 298K, 600MHz) Figure S34. HSQC of Accramycin D 4 (CD₃OD, 298K, 600MHz) Figure S35. HMBC of Accramycin D 4 (CD₃OD, 298K, 600MHz)

Figure S36. A. HRESIMS and B. Isotope Pattern of Accramycin E 5 Figure S37. ¹H-NMR of Accramycin E 5 (CD₃OD, 298K, 600MHz) Figure S38. ¹H-¹H COSY of Accramycin E 5 (CD₃OD, 298K, 600MHz) Figure S39. HSQC of Accramycin E 5 (CD₃OD, 298K, 600MHz) Figure S40. HMBC of Accramycin E 5 (CD₃OD, 298K, 600MHz) Figure S41. A. HRESIMS and B. Isotope Pattern of Accramycin F 6 Figure S42. ¹H-NMR of Accramycin F 6 (CD₃OD, 298K, 600MHz) Figure S43. ¹H-¹H COSY of Accramycin F 6 (CD₃OD, 298K, 600MHz) Figure S44. HSQC of Accramycin F 6 (CD₃OD, 298K, 600MHz) Figure S45. HMBC of Accramycin F 6 (CD₃OD, 298K, 600MHz) Figure S46. NOESY of Accramycin F 6 (CD₃OD, 298K, 600MHz) Figure S47. A. HRESIMS and B. Isotope Pattern of Accramycin G 7 Figure S48. ¹H-NMR of Accramycin G 7 (CD₃OD, 298K, 600MHz) Figure S49. ¹H-¹H COSY of Accramycin G 7 (CD₃OD, 298K, 600MHz) Figure S50. HSQC of Accramycin G 7 (CD₃OD, 298K, 600MHz) Figure S51. HMBC of Accramycin G 7 (CD₃OD, 298K, 600MHz) Figure S52. NOESY of Accramycin G 7 (CD₃OD, 298K, 600MHz) Figure S53. A. HRESIMS and B. Isotope Pattern of Accramycin H 8 Figure S54. ¹H-NMR of Accramycin H 8 (CD₃OD, 298K, 600MHz) Figure S55. ¹H-¹H COSY of Accramycin H 8 (CD₃OD, 298K, 600MHz) Figure S56. HSQC of Accramycin H 8 (CD₃OD, 298K, 600MHz) Figure S57. HMBC of Accramycin H 8 (CD₃OD, 298K, 600MHz) Figure S58. A. HRESIMS and B. Isotope Pattern of Accramycin I 9 Figure S59. ¹H-NMR of Accramycin I 9 (CD₃OD, 298K, 600MHz) Figure S60. ¹H-¹H COSY of Accramycin I 9 (CD₃OD, 298K, 600MHz) Figure S61. HSQC of Accramycin I 9 (CD₃OD, 298K, 600MHz) Figure S62. HMBC of Accramycin I 9 (CD₃OD, 298K, 600MHz) Figure S63. NOESY of Accramycin I 9 (CD₃OD, 298K, 600MHz) Figure S64. LCMS isotope pattern of Accramycin J 10 Figure S65. ¹H-NMR of Accramycin J **10** (CD₃OD, 298K, 600MHz) Figure S66. ¹H-¹H COSY of Accramycin J 10 (CD₃OD, 298K, 600MHz) Figure S67. HSQC of Accramycin J 10 (CD₃OD, 298K, 600MHz) Figure S68. HMBC of Accramycin J 10 (CD₃OD, 298K, 600MHz) Figure S69. NOESY of Accramycin J 10 (CD₃OD, 298K, 600MHz) Figure S70. LCMS Isotope Pattern of Accramycin K 11 Figure S71. ¹H-NMR of Accramycin K **11** (CD₃OD, 298K, 600MHz) Figure S72. ¹H-¹H COSY of Accramycin K **11** (CD₃OD, 298K, 600MHz) Figure S73. HSQC of Accramycin K 11 (CD₃OD, 298K, 600MHz) Figure S74. HMBC of Accramycin K 11 (CD₃OD, 298K, 600MHz) Figure S75. NOESY of Accramycin K 11 (CD₃OD, 298K, 600MHz)

Streptomyces sp. MA37

Table S1. Deduced functions of ORFs in acc biosynthetic gene cluster

асс	Residue	Deduced Function
0	305	NAD(P) dependent oxidoreductase
Р	275	MerR family transcriptional regulator
I.	303	LysR family transcriptional regulator
Н	491	ABC transporter / ATP binding protein
HH	319	ABC transporter / ATP binding protein
L	119	Type II PKS cyclase
К	509	Na ⁺ /H ⁺ exchanger
J	145	MarR family transcriptional regulator
G	359	Sensor histidine kinase / hypothetical protein
F	227	LuxR family response regulator
D	152	polyketide cyclase / dehydrase
С	97	Acyl carrier protein
В	415	Beta-ketoacyl synthase
А	426	Beta-ketoacyl synthase
R	131	AraC family transcriptional regulator
S	113	antibiotic biosynthesis monooxygenase
Т	350	O-methyl transferase regulator / methyl transferase
U	113	antibiotic biosynthesis monooxygenase
V	430	Halogenase / FAD dependent oxidoreductase
W	348	O-methyl transferase regulator / methyl transferase
Х	777	glycoside hydrolase family 92 protein
Y	517	pyruvate oxidase decarboxylase

Table S2. Primers used in the Study

Primer ID	Primer Sequence	Purpose
MarR-FRA	CATGACCTCTAGACTCAAGAAGGCCTCCG C GAACTGA	Right Arm Forward: Construction of knockout vector
MarR-RRA	ACATGATTACGAATTCGGATGCGCTGGGT G CAGGACTT	Right Arm Reverse: Construction of knockout vector
MarR-FLA	GGCCAGTGCCAAGCTTTCCCGCCATGCAC A CCACACTGAT	Left Arm Forward: Construction of knockout vector
MarR-RLA	TCTTGAGTCTAGAGGTCATGGTCGGTCAC C TCTGCCCT	Left Arm Reverse: Construction of knockout vector
LuxR-FRA	AATTCGTAATCATGTCATAGCTGTTTCCTG TG	Right Arm Forward: Construction of knockout vector
LuxR-RRA	ACATGATTACGAATTTCATCCGCGACCGG ATCGA	Right Arm Reverse: Construction of knockout vector
LuxR-FLA	GGCCAGTGCCAAGCTGTGAGCGGGGGC TGCGC	Left Arm Forward: Construction of knockout vector
LuxR-RLA	TGGCACTGGCCGTCGTTTTACAACGTCGTG AC TGGG	Left Arm Reverse: Construction of knockout vector
LysR-FRA	AATTCGTAATCATGTCATAGCTGTTTCCTG TG	Right Arm Forward: Construction of knockout vector
LysR-RRA	ACATGATTACGAATTTCAGGTGTCGGC GCCG	Right Arm Reverse: Construction of knockout vector
LysR-FLA	GGCCAGTGCCAAGCTATGGAGCTCCGGCA GCTGCA	Left Arm Forward: Construction of knockout vector
LysR-RLA	TGGCACTGGCCGTCGTTTTACAACGTC GTGACTG	Left Arm Reverse: Construction of knockout vector
MerR-FRA	AATTCGTAATCATGTCATAGCTGTTTCCTG TG	Right Arm Forward: Construction of knockout vector
MerR-RRA	ACATGATTACGAATTTCACCCGGTGGTGAT CGGCTCCTG	Right Arm Reverse: Construction of knockout vector

MerR-FLA	CGACGGCCAGTGCCAATGTTCAGTATCGG	Left Arm Forward:
	AGACTTCGC	Construction of knockout
		vector
MerR-RLA	TGGCACTGGCCGTCGTTTTACAACGTCGT	Left Arm Reverse:
	GACTGGG	Construction of knockout
		vector
Mu-F	CGCACCCTTCTGTCGGACCACCACTGA	Mutant verification
Mu-R	GTTCTGCTTGGCGACGCTGACCGAGTA	Mutant verification

Figure S1. HPLC traces monitored at λ450nm of Streptomyces sp. MA37 mutant strain (blue) compared to Wild Type (red) (5μL injection, 5mg/mL) with the characteristic accramycin UV spectrum

Table S3. Physico-chemical Properties of Accramycins A-K 1-11, naphthacemycin B1 12, and fasamycin C 13 from Streptomyces sp. MA37

	Accramycin A 1	Accramycin B 2	Accramycin C 3	Accramycin D 4
Appearance	deep yellow powder	deep yellow powder	deep yellow powder	deep yellow powder
Molecular formula	$C_{29}H_{26}O_7$	C ₃₀ H ₂₈ O ₇	C ₂₈ H ₂₃ ClO ₇	C ₃₀ H ₂₇ ClO ₇
HR ESIMS (obs)	487.1748 [M+H]+	501.1898 [M+H] ⁺	507.1207 [M+H] ⁺	535.1511 [M+H] ⁺
m/z (calc)	487.1751 (for C ₂₉ H ₂₇ O ₇ ⁺)	501.1912 (for C ₃₀ H ₂₉ O ₇ ⁺)	507.1205 (for C ₂₈ H ₂₄ ClO ₇ ⁺)	535.1518 (for C ₃₀ H ₂₈ ClO ₇ ⁺)
Δ ppm	-1.78	-1.98	0.37	-1.39
	3350, 2946, 2834, 1681,	3350, 2946, 2834, 1681,	3362, 2922, 2848, 1679,	3337, 2947, 2834, 1681,
IR v _{max} (cm ⁻¹)	1607, 1284, 1202, 1026, 584	1607, 1284, 1202, 1026, 584	1612, 1443, 1203, 1149, 726	1450, 1025, 634
UV (PDA) λ_{max}	225, 245, 290, 355, 420	250, 290, 315, 335, 350, 425	250, 280, 300, 355, 430	250, 290, 315, 335, 350, 425

	Accramycin E 5	Accramycin F 6	Accramycin G 7	Accramycin H 8
Appearance	deep yellow powder	deep yellow powder	deep yellow powder	deep yellow powder
Molecular formula	$C_{29}H_{24}CI_2O_7$	$C_{29}H_{24}Cl_2O_7$	$C_{30}H_{26}Cl_2O_7$	$C_{28}H_{21}CI_{3}O_{7}$
HR ESIMS (obs)	555.0978 [M+H] ⁺	555.0975 [M+H] ⁺	569.1127 [M+H] ⁺	575.0420 [M+H] ⁺
m/z (calc)	555.0972 (for C ₂₉ H ₂₅ Cl ₂ O ₇ ⁺)	555.0972 (for C ₂₉ H ₂₅ Cl ₂ O ₇ ⁺)	569.1128 (for $C_{30}H_{27}Cl_2O_7^+$)	575.0426 (for C ₂₈ H ₂₂ Cl ₃ O ₇ ⁺)
Δ ppm	1.18	0.63	-0.29	-0.99
	3337, 2947, 2834, 1681,	3325, 2943, 2833, 1678,	3399, 2917, 2851, 1688,	3386, 1682, 1439, 1327,
IR v _{max} (cm ⁻¹)	1450, 1025, 634	1449, 1119, 1023, 635	1606, 1423, 1322, 1205	1197, 1136, 844, 802, 725
UV (PDA) λ_{max}	250, 290, 315, 335, 350, 425	250, 290, 315, 335, 350, 425	250, 295, 320, 340, 350, 425	250, 290, 310, 355, 425

	Accramycin I 9	Accramycin J 10	Accramycin K 11
Appearance	deep yellow powder	deep yellow powder	deep yellow powder
Molecular formula	C ₂₉ H ₂₃ Cl ₃ O ₇	$C_{28}H_{20}Cl_4O_7$	C ₂₉ H ₂₂ Cl ₄ O ₇
HR ESIMS (obs)	589.0574 [M+H]⁺	609.0040 [M+H] ⁺	623.0184 [M+H] ⁺
m/z (calc)	589.0582 (for C ₂₉ H ₂₄ Cl ₃ O ₇ ⁺)	609.0036 (for C ₂₈ H ₂₁ Cl ₄ O ₇ ⁺)	623.0192 (for C ₂₉ H ₂₃ Cl ₄ O ₇ ⁺)
Δ ppm	-1.32	0.72	0.41
	3399, 2921, 2849, 1680,	3427, 1688, 1601, 1439,	3427, 1688, 1601, 1439,
IR v _{max} (cm ⁻¹)	1442, 1196, 1139	1328, 1204, 1139	1328, 1204, 1139
UV (PDA) λ_{max}	250, 290, 315, 340, 350, 425	250, 290, 315, 340, 350, 425	250, 295, 320, 340, 350, 425

Table S3. Physico-chemical Properties of Accramycins A-K 1-11, naphthacemycin B1 12, and fasamycin C 13 from Streptomyces sp. MA37

	Naphthacemycin B1 12	Fasamycin C 13
Appearance	reddish powder	deep yellow powder
Molecular formula	C ₂₇ H ₂₂ O ₇	C ₂₈ H ₂₄ O ₇
HR ESIMS (obs)	459.1435 [M+H]⁺	473.1598 [M+H]⁺
m/z (calc)	459.1438 (for C ₂₇ H ₂₃ O ₇ ⁺)	473.1595 (for C ₂₈ H ₂₅ O ₇ ⁺)
Δ ppm	-1.86	-1.08
IR v _{max} (cm ⁻¹)	3337, 2946, 1678, 1448, 1204, 1021, 644	3338, 2947, 2834, 1644, 1449, 1202, 1114, 1019, 617
UV (PDA) λ_{max}	245, 290, 355, 420	245, 290, 355, 420

	Accr	amycin A 1	Accr	amycin B 2	Acci	amycin C 3	Accr	amycin D 4	Accramycin E 5	
no.	¹³ C	¹ H, mult. (J,Hz)	¹³ C	¹ H, mult. (J,Hz)	¹³ C	¹ H, mult. (J,Hz)	¹³ C	¹ H, mult. (J,Hz)	¹³ C	¹ H, mult. (J,Hz)
1	105.9, CH	6.67, d (2.4)	106.1, CH	6.66, d (1.4)	105.4, CH	6.84, s	101.0, CH	6.97, s	105.7, CH	6.87, s
2	165.7 <i>,</i> C	-	166.5, C	-		-	161.2, C	-	160.7 <i>,</i> C	-
3	100.9 <i>,</i> CH	6.22, d (2.4)	98.7 <i>,</i> CH	6.42 <i>,</i> d (2.0)		-	106.3, C	-	106.8 <i>,</i> C	-
4	165.7 <i>,</i> C	-	165.8, C	-		-	161.3, C	-	160.7 <i>,</i> C	-
5	107.5 <i>,</i> C	-	108.0, C	-		-	108.4, C	-	108.4 <i>,</i> C	-
6	190.4 <i>,</i> C	-	190.8, C	-		-	190.4, C	-	190.4 <i>,</i> C	-
7	107.4 <i>,</i> C	-	106.2, C	-		-	106.3, C	-	106.6, C	-
8	165.3 <i>,</i> C	-	165.0, C	-		-	165.7, C	-	165.7, C	-
9	117.4 <i>,</i> C	-	117.6, C	-		-	116.9 <i>,</i> C	-	117.4, C	-
10	141.0 <i>,</i> C	-	141.0, C	-		-	141.9, C	-	137.3, C	-
11	121.7 <i>,</i> CH	6.75, d (2.4)	121.4, CH	6.77, d (2.1)	121.1, CH	6.73 <i>,</i> d (2.1)	121.4, CH	6.77, d (2.1)	115.9, CH	7.05 <i>,</i> d (2.1)
12	161.1 <i>,</i> C	-	160.9, C			-	161.2, C	-	155.8, C	-
13	105.8 <i>,</i> CH	7.21, d (2.4)	105.8 <i>,</i> CH	7.25, d (2.0)	109.0, CH	7.08, d (2.1)	105.9 <i>,</i> CH	7.25, d (2.1)	115.2, C	-
14	141.8 <i>,</i> C	-	141.3, C			-	141.9 <i>,</i> C	-	138.4, C	-
15	115.8 <i>,</i> CH	7.51, s	115.5 <i>,</i> CH	7.56, s	115.0, CH	7.39 <i>,</i> s	115.8, CH	7.57, s	111.2, CH	7.95 <i>,</i> s
16	145.3 <i>,</i> C	-	145.3 <i>,</i> C	-	144.8 <i>,</i> C	-	145.3 <i>,</i> C	-	146.4 <i>,</i> C	-
17	39.3 <i>,</i> C	-	38.6 <i>,</i> C	-	38.7 <i>,</i> C	-	38.4 <i>,</i> C	-	38.4 <i>,</i> C	-
18	154.6 <i>,</i> C	-	154.0 <i>,</i> C	-	151.9 <i>,</i> C	-	152.4 <i>,</i> C	-	151.7, C	-
19	34.4, CH₃	1.70, s	33.3 <i>,</i> CH₃	1.77, s	33.1 <i>,</i> CH₃	1.72, s	33.4, CH₃	1.80, s	33.4 <i>,</i> CH₃	1.77, s
20	34.7, CH₃	1.69, s	33.4, CH₃	1.75, s	33.1, CH₃	1.71, s	33.4 <i>,</i> CH₃	1.79, s	33.4, CH ₃	1.75, s
21	123.9, C	-	124.4 C	-	124.5 <i>,</i> C	-	123.9, C	-	123.9 <i>,</i> C	-
22	154.2 <i>,</i> C	-	154.5 <i>,</i> C	-		-	154.3, C	-	154.3 <i>,</i> C	-
23	98.3 <i>,</i> CH	6.33 <i>,</i> d (2.4)	98.3 <i>,</i> CH	6.35, s	98.3 <i>,</i> CH	6.33, d (2.1)	98.4 <i>,</i> CH	6.34 <i>,</i> d (2.1)	98.4 <i>,</i> CH	6.35, d (2.1)
24	159.1, C	-	159.2,C	-	158.9 <i>,</i> C	-	159.5, C	-	159.3 <i>,</i> C	-
25	105.9 <i>,</i> CH	6.37 <i>,</i> d (2.4)	106.0, CH	6.40, s	106.5 <i>,</i> CH	6.38, d (2.1)	105.9, CH	6.38 <i>,</i> d (2.1)	105.9 <i>,</i> CH	6.40, d (2.1)
26	137.0 <i>,</i> C	-	136.9 <i>,</i> C		136.8 <i>,</i> C	-	136.8, C	-	136.8 <i>,</i> C	-
27	20.6, CH₃	1.91, s	19.5, CH₃	1.93, s	19.5, CH₃	1.92, s	19.4, CH₃	1.91, s	19.4, CH₃	1.93, s
28	55.3, CH₃	3.80, s	54.3, CH₃	3.83, s	54.3, CH₃	3.80, s	54.2, CH₃	3.81, s	54.2, CH₃	3.81, s
29	55.6, CH₃	3.95, s	54.7, CH₃	3.99, s	-	-	54.7, CH₃	3.98, s	55.7, CH₃	4.02, s
30	-	-	54.9, CH ₃	3.91, s	-	-	55.8, CH ₃	4.05, s	-	-

Table S4. ¹H and ¹³C of Accramycins A-K **1-11**, naphthacemycin B1 **12** and fasamycin C **13** (CD₃OD, 298K, 600MHz)

	Accr	amycin F 6	Accr	amycin G 7	Accr	amycin H 8	Accr	amycin I 9	Accr	amycin J 10
no.	¹³ C	[.] ¹ H, mult. (J,Hz)	¹³ C	¹ H, mult. (J,Hz)	¹³ C	¹ H, mult. (J,Hz)	¹³ C	¹ H, mult. (J,Hz)	¹³ C	¹ H, mult. (J,Hz)
1	101.5, CH	7.00, s	101.3, CH	7.00, s	101.1, CH	6.97, s	101.5, CH	7.00, s	101.5, CH	7.00, s
2	161.5, C	-	161.9, C	-	161.3, C	-	161.6, C	-	161.9 <i>,</i> C	-
3	107.6 <i>,</i> C	-	108.1, C	-	108.8, C	-	108.1 <i>,</i> C	-	108.0, C	-
4	161.7 <i>,</i> C	-	161.7, C	-	160.8 <i>,</i> C	-	161.8, C	-	162.0 <i>,</i> C	-
5	108.1, C	-	108.1, C	-	108.8, C	-	108.1, C	-	108.0 <i>,</i> C	-
6	190.6, C	-	190.6, C	-	190.0 <i>,</i> C	-	190.5 <i>,</i> C	-	190.7 <i>,</i> C	-
7	106.8, C	-	106.7, C	-	106.6 <i>,</i> C	-	107.0, C	-	107.2 <i>,</i> C	-
8	165.7, C	-	166.0, C	-	165.5 <i>,</i> C	-	164.3, C	-	165.0, C	-
9	117.7, C	-	118.0, C	-	116.8 <i>,</i> C	-	118.0, C	-	117.7, C	-
10	137.3, C	-	138.5, C	-	141.3, C	-	138.4, C	-	137.1, C	-
11	120.9, CH	6.87, d (2.1)	116.2, CH	7.07, s	121.3 <i>,</i> CH	6.74, s	116.3 <i>,</i> CH	7.06, s	120.9, CH	6.87, s
12	154.9 <i>,</i> C	-	156.6, C	-	163.5 <i>,</i> C	-	155.9 <i>,</i> C	-	155.0, C	-
13	112.9, C	-	115.0, C	-	109.4 <i>,</i> CH	7.14, d (2.1)	115.5 <i>,</i> C	-	113.8, C	-
14	138.4 <i>,</i> C	-	146.5 <i>,</i> C	-	142.5 <i>,</i> C	-	138.4 <i>,</i> C	-	138.4, C	-
15	111.2 <i>,</i> CH	7.93, s	111.3 <i>,</i> CH	7.98, s	115.2 <i>,</i> CH	7.45, s	111.3 <i>,</i> CH	7.99, s	111.7, CH	7.95 <i>,</i> s
16	146.7 <i>,</i> C	-	146.5 <i>,</i> C	-	148.5 <i>,</i> C	-	146.9 <i>,</i> C	-	146.8, C	-
17	39.4 <i>,</i> C	-	39.1 <i>,</i> C	-	39.4 <i>,</i> C	-	39.5 <i>,</i> C	-	39.6 <i>,</i> C	-
18	152.5 <i>,</i> C	-	152.5 <i>,</i> C	-	153.2 <i>,</i> C	-	152.5 <i>,</i> C	-	152.5, C	-
19	33.4 <i>,</i> CH₃	1.83, s	33.4, CH₃	1.83, s	33.2 <i>,</i> CH₃	1.79, s	33.5, CH₃	1.83, s	33.5 <i>,</i> CH₃	1.83, s
20	33.4, CH ₃	1.82, s	33.4, CH ₃	1.82, s	33.2, CH₃	1.78, s	33.5, CH₃	1.82, s	33.5 <i>,</i> CH₃	1.82, s
21	124.2 <i>,</i> C	-	123.7, C	-	125.5 <i>,</i> C	-	124.5 <i>,</i> C	-	124.9 <i>,</i> C	-
22	159.5 <i>,</i> C	-	159.4 <i>,</i> C	-	169.0 <i>,</i> C	-	152.5 <i>,</i> C	-	152.5 <i>,</i> C	-
23	98.1 <i>,</i> CH	6.32 <i>,</i> d (2.3)	98.3 <i>,</i> CH	6.34, d (2.3)	107.5 <i>,</i> C	-	100.7 <i>,</i> CH	6.44, s	107.5 <i>,</i> CH	-
24	159.3 <i>,</i> C	-	159.4 <i>,</i> C	-	169.0 <i>,</i> C	-	152.5 <i>,</i> C	-	148.4, C	-
25	106.3 <i>,</i> CH	6.38, d (2.3)	105.9 <i>,</i> CH	6.40, d (2.3)	113.2, C	-	112.1, C	-	113.2, C	-
26	137.2 <i>,</i> C	-	137.0 <i>,</i> C	-	133.1 <i>,</i> C	-	134.7 <i>,</i> C	-	132.5 <i>,</i> C	-
27	19.4, CH ₃	1.93, s	19.4, CH ₃	1.93, s	16.9, CH₃	1.93, s	17.1, CH₃	1.98, s	16.9, CH₃	1.98, s
28	54.4, CH ₃	3.80, s	54.2, CH ₃	3.81, s	-	-	-	-	-	-
29	-	-	55.7, CH ₃	4.02, s	-	-	56.0, CH ₃	4.02, s	-	-
30	55.8, CH₃	4.06, s	55.7, CH ₃	4.06, s	55.7, CH₃	4.05 <i>,</i> s	55.7, CH₃	4.06, s	56.0, CH ₃	4.06, s

Table S4. ¹H and ¹³C of Accramycins A-K 1-11, naphthacemycin B1 12 and fasamycin C 13 (CD₃OD, 298K, 600MHz)

	Accramycin K 11		Naphthacemycin B1 12		Fasamycin C 13	
no.	¹³ C	¹ H, mult. (J,Hz)	¹³ C	¹ H, mult. (J,Hz)	¹³ C	¹ H, mult. (J,Hz)
1	101.4 <i>,</i> CH	7.00, s	106.6, CH	6.66, d (2.1)	106.1, CH	6.66, d (2.3)
2	161.5 <i>,</i> C	-	166.1 <i>,</i> C	-	165.9 <i>,</i> C	-
3	108.3 <i>,</i> C	-	101.2, CH	6.21, d (2.1)	101.2 <i>,</i> CH	6.21, d (2.0)
4	161.8 <i>,</i> C	-	165.5 <i>,</i> C	-	165.5 <i>,</i> C	-
5	108.3 <i>,</i> C	-	108.8, C	-	108.8 <i>,</i> C	-
6	190.6 <i>,</i> C	-	190.7 <i>,</i> C	-	190.4 <i>,</i> C	-
7	107.4 <i>,</i> C	-	107.4 <i>,</i> C	-	107.4 <i>,</i> C	-
8	165.6 <i>,</i> C	-	165.2 <i>,</i> C	-	165.2 <i>,</i> C	-
9	118.0 <i>,</i> C	-	116.7, C	-	116.7 <i>,</i> C	-
10	137.4 <i>,</i> C	-	141.0, C	-	141.0, C	-
11	116.3 <i>,</i> CH	7.09, s	121.7, CH	6.72, d (2.2)	121.7, CH	6.72, d (2.1)
12	156.2 <i>,</i> C	-	158.8, C	-	158.8 <i>,</i> C	-
13	116.1 <i>,</i> C	-	109.3 <i>,</i> CH	7.06, d (2.5)	109.3 <i>,</i> CH	7.06, d (2.0)
14	141.4 <i>,</i> C	-	141.6, C	-	141.6, C	-
15	111.3, CH	8.00, s	115.3, CH	7.36, s	115.3 <i>,</i> CH	7.37, s
16	148.6 <i>,</i> C	-	141.5 C	-	141.5 C	-
17	39.3 <i>,</i> C	-	38.7, C	-	38.7, C	-
18	152.4 <i>,</i> C	-	156.3 <i>,</i> C	-	156.3 <i>,</i> C	-
19	33.5 <i>,</i> CH₃	1.83, s	34.0, CH₃	1.71, s	33.8, CH₃	1.72, s
20	33.5 <i>,</i> CH₃	1.82, s	34.0, CH₃	1.70, s	33.8, CH₃	1.70, s
21	124.9 <i>,</i> C	-	124.4 C	-	124.4 C	-
22	152.4 <i>,</i> C	-	155.1 <i>,</i> C	-	155.1 <i>,</i> C	-
23	107.6 <i>,</i> CH	-	100.1 <i>,</i> CH	6.24, d (2.1)	100.1 <i>,</i> CH	6.32, s
24	148.6 <i>,</i> C	-	156.4 <i>,</i> C	-	159.3 <i>,</i> C	-
25	113.1, C	-	107.9, CH	6.27 <i>,</i> d (2.3)	107.9 <i>,</i> CH	6.37 , s
26	132.4, C	-	136.8, C	-	136.8 <i>,</i> C	-
27	17.1, CH₃	1.99, s	19.8, CH₃	1.87, s	19.8, CH₃	1.92, s
28	-	-	-	-	54.0, CH ₃	3.80, s
29	55.9 <i>,</i> CH₃	4.02, s	-	-	-	-
30	55.7, CH₃	4.06, s	-	-	-	-

Table S4. ¹H and ¹³C of Accramycins A-K **1-11**, naphthacemycin B1 **12** and fasamycin C **13** (CD₃OD, 298K, 600MHz)

Figure S2. Key HMBC correlations (\rightarrow) of accramycins A-K **1-11**, naphthacemycin B1 **12**, and fasamycin C **13** (CD₃OD, 298K, 600MHz)

Figure S4. ¹H-NMR of naphthacemycin B1 12 (CD₃OD, 298K, 600MHz)

Supplementary Info

Figure S5. ¹H-¹H COSY of naphthacemycin B1 12 (CD₃OD, 298K, 600MHz)

Figure S6. HSQC of naphthacemycin B1 12 (CD₃OD, 298K, 600MHz)

Supplementary Info

Figure S7. HMBC of naphthacemycin B1 12 (CD₃OD, 298K, 600MHz)

Figure S8. NOESY of naphthacemycin B1 12 (CD₃OD, 298K, 600MHz)

Figure S10. ¹H-NMR of fasamycin C 13 (CD₃OD, 298K, 600MHz)

Figure S12. HSQC of fasamycin C 13 (CD₃OD, 298K, 600MHz)

Figure S13. HMBC of fasamycin C 13 (CD₃OD, 298K, 600MHz)

Figure S14. NOESY of fasamycin C 13 (CD₃OD, 298K, 600MHz)

Figure S16. ¹H-NMR of Accramycin A 1 (CD₃OD, 298K, 600MHz)

Supplementary Info

Figure S17. ¹H-¹H COSY NMR of Accramycin A 1 (CD₃OD, 298K, 600MHz)

Figure S18. HSQC of Accramycin A 1 (CD₃OD, 298K, 600MHz)

Figure S22. ¹H-NMR of Accramycin B 2 (CD₃OD, 298K, 600MHz)

Supplementary Info

Figure S24. HSQC of Accramycin B 2 (CD₃OD, 298K, 600MHz)

Figure S25. HMBC of Accramycin B 2 (CD₃OD, 298K, 600MHz)

Figure S26. A. HRESIMS and B. Isotope Pattern of Accramycin C 3

Figure S27. ¹H-NMR of Accramycin C 3 (CD₃OD, 298K, 600MHz)

Figure S28. ¹H-¹H COSY of Accramycin C 3 (CD₃OD, 298K, 600MHz)

Figure S30. NOESY of Accramycin C 3 (CD₃OD, 298K, 600MHz)

Figure S31. A. HRESIMS and B. Isotope Pattern of Accramycin D 4

Figure S32. ¹H-NMR of Accramycin D 4 (CD₃OD, 298K, 600MHz)

Figure S33. ¹H-¹H COSY of Accramycin D 4 (CD₃OD, 298K, 600MHz)

Figure S34. HSQC of Accramycin D 4 (CD₃OD, 298K, 600MHz)

Figure S35. HMBC of Accramycin D 4 (CD₃OD, 298K, 600MHz)

Supplementary Info

Figure S37. ¹H-NMR Accramycin E 5 (CD₃OD, 298K, 600MHz)

Figure S38. ¹H-¹H COSY Accramycin E **5** (CD₃OD, 298K, 600MHz)

Supplementary Info

Figure S39. HSQC Accramycin E 5 (CD₃OD, 298K, 600MHz)

Figure S40. HMBC Accramycin E 5 (CD₃OD, 298K, 600MHz)

Figure S41. A. HRESIMS and B. Isotope Pattern of Accramycin F 6

Figure S42. ¹H-NMR of Accramycin F 6 (CD₃OD, 298K, 600MHz)

Figure S43. ¹H-¹H COSY of Accramycin F 6 (CD₃OD, 298K, 600MHz)

Figure S44. HSQC NMR of Accramycin F 6 (CD₃OD, 298K, 600MHz)

Figure S45. HMBC NMR of Accramycin F 6 (CD₃OD, 298K, 600MHz)

Figure S46. NOESY of Accramycin F 6 (CD₃OD, 298K, 600MHz)

Figure S47. A. HRESIMS and B. Isotope Pattern of Accramycin G 7

Figure S48. ¹H-NMR of Accramycin G 7 (CD₃OD, 298K, 600MHz)

Figure S49. ¹H-¹H COSY of Accramycin G 7 (CD₃OD, 298K, 600MHz)

Figure S50. HSQC of Accramycin G 7 (CD₃OD, 298K, 600MHz)

Supplementary Info

Figure S51. HMBC of Accramycin G 7 (CD₃OD, 298K, 600MHz)

Figure S52. NOESY of Accramycin G 7 (CD₃OD, 298K, 600MHz)

Figure S53. A. HRESIMS and B. Isotope Pattern of Accramycin H 8

Figure S54. ¹H-NMR of Accramycin H 8 (CD₃OD, 298K, 600MHz)

Figure S56. HSQC of Accramycin H 8 (CD₃OD, 298K, 600MHz)

Figure S57. HMBC of Accramycin H 8 (CD₃OD, 298K, 600MHz)

Figure S58. A. HRESIMS and B. Isotope Pattern of Accramycin I 9

Figure S59. ¹H NMR of Accramycin I 9 (CD₃OD, 298K, 600MHz)

Figure S60. ¹H-¹H COSY of Accramycin I 9 (CD₃OD, 298K, 600MHz)

Figure S61. HSQC of Accramycin I 9 (CD₃OD, 298K, 600MHz)

Figure S62. HMBC of Accramycin I 9 (CD₃OD, 298K, 600MHz)

Supplementary Info

Figure S63. NOESY of Accramycin I 9 (CD₃OD, 298K, 600MHz)

Figure S64. LCMS isotope pattern of Accramycin J 10

Figure S65. ¹H-NMR of Accramycin J 10 (CD₃OD, 298K, 600MHz)

Figure S66. ¹H-¹H COSY of Accramycin J 10 (CD₃OD, 298K, 600MHz)

Figure S67. HSQC of Accramycin J 10 (CD₃OD, 298K, 600MHz)

Figure S68. HMBC of Accramycin J 10 (CD₃OD, 298K, 600MHz)

Supplementary Info

Figure S69. NOESY of Accramycin J 10 (CD₃OD, 298K, 600MHz)

Figure S70. LCMS Isotope Pattern of Accramycin K 11

Figure S72. ¹H-¹H COSY of Accramycin K **11** (CD₃OD, 298K, 600MHz)

Figure S73. HSQC of Accramycin K 11 (CD₃OD, 298K, 600MHz)

Figure S74. HMBC of Accramycin K 11 (CD₃OD, 298K, 600MHz)

Supplementary Info

Figure S75. NOESY of Accramycin K 11 (CD₃OD, 298K, 600MHz)