

standard compound	retention time (min)	area	HPLC peak	retention time (min)	area
narirutin (1.72 mM)	22.245	3385838	A (narirutin)	22.294	562362
naringin (1.72 mM)	23.065	2932094	B (naringin)	23.095	474515
hesperidin (1.64 mM)	23.782	3665679	C (hesperidin)	23.744	953614
neohesperidin (1.64 mM)	24.470	3534963	D (neohesperidin)	24.500	824369
sudachitin (2.78 mM)	41.113	39898784	E (sudachitin)	41.044	317713

Figure S1. HPLC chromatogram of the aqueous extract from *C. sudachi* peel. The phenolic compounds were identified by direct comparison of their UV spectra and retention times measured from the peak at 340 nm with the standard compounds.

Figure S2. Effects of some phenolic compounds included in SPE on ERK1/2 phosphorylation at the high concentrations. HaCaT cells were treated with 100 μ M hesperidin, 100 μ M naringin, or 100 μ M sudachitin for 1 h. Then, the cell lysates were prepared and immunoblotted with anti-ERK1/2 and anti-phospho-ERK1/2 antibodies. The levels of phosphorylated ERK1/2 were normalized to the levels of the total ERK1/2. The data were expressed as the mean \pm SE derived from at least three independent experiments, and statistical analysis was performed by ANOVA with Bonferroni's multiple comparison test. * p < 0.05.