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Abstract: Curcumin, a natural polyphenolic compound derived from the South Asian turmeric 
plant (Curcuma longa), has well-characterized antioxidant, anti-inflammatory, anti-protein-
aggregate, and anticancer properties. Neuroblastoma (NB) is a cancer of the nervous system that 
arises primarily in pediatric patients. In order to reduce the multiple disadvantages and side effects 
of conventional oncologic modalities and to potentially overcome cancer drug resistance, natural 
substances such as curcumin are examined as complementary and supportive therapies against NB. 
In NB cell lines, curcumin by itself promotes apoptosis and cell cycle arrest through the suppression 
of serine–threonine kinase Akt and nuclear factor kappa of activated B-cells (NF-κB) signaling, 
induction of mitochondrial dysfunction, and upregulation of p53 and caspase signaling. While 
curcumin demonstrates anti-NB efficacy in vitro, cross-validation between NB cell types is currently 
lacking for many of its specific mechanistic activities. Furthermore, curcumin’s low bioavailability 
by oral administration, poor absorption, and relative insolubility in water pose challenges to its 
clinical introduction. Numerous curcumin formulations, including nanoparticles, nanocarriers, and 
microemulsions, have been developed, with these having some success in the treatment of NB. In 
the future, standardization and further basic and preclinical trials will be required to ensure the 
safety of curcumin formulations. While the administration of curcumin is clinically safe even at high 
doses, clinical trials are necessary to substantiate the practical efficacy of curcumin in the prevention 
and treatment of NB. 
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1. Natural Substances in the Prevention and Treatment of Neuroblastoma 

Neuroblastoma (NB) is a solid pediatric tumor of the nervous system that arises from neural 
progenitor cells. Neuroblastoma occurs mostly in the abdominal region, especially in and around the 
adrenal gland. Tumors may also form in the central nervous system (CNS) and the thoracic and pelvic 
regions [1]. The annual epidemiological occurrence of NB varies regionally, with approximately 13 
cases per million children in Germany and 8.3 cases per million children in Argentina [2,3]. Five-year 
survival rates also vary, with 47% survival among 971 patients in Argentina, 48% among 1094 
patients in Europe, and 57% among 265 patients in the United States [3,4]. 

Notably, the risk posed by NB depends on numerous factors, including patient age, 
inflammation, protein aggregation, tumor localization or metastasis, and genetic disposition. To take 
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these factors into account, the International Neuroblastoma Risk Group Staging System establishes 
four stages of NB progression (L1, L2, M, and MS) and four risk levels (very low, low, intermediate, 
and high) [5,6]. One of the major risk factors in NB is the amplification of the N-myc proto-oncogene 
protein (MYCN), which promotes NB tumorigenesis. Other risk factors include patient age and the 
deletion of a portion of chromosome 11 (11q aberration). Both MYCN amplification and 11q 
aberration are markers of poor clinical prognosis [7]. 

A variety of human and rodent cell lines are utilized to account for NB risk factors and other 
genetic variables within in vitro studies. These include the MYCN-amplified human cell lines IMR-
32, Kelly, LAN5, SK-N-Be(2), SMS-KAN, and NUB-7. Among these lines, IMR-32, Kelly, SK-N-Be(2), 
and SMS-KAN exhibit 11q aberrations. In contrast, non-MYCN-amplified human cell lines include 
L-AN-6, SH-SY5Y, SK-N-AS, and SK-N-SH; of these, L-AN-6, SH-SY5Y, and SK-N-AS cells exhibit 
11q aberrations [8]. Finally, rodent cell lines include the murine Neuro2a line and the rat B50 line. 

Conventional treatments for NB include chemotherapy, radiation therapy, surgical tumor 
resection, and combinations thereof. Surgery alone may sufficiently ablate low-risk NB; supporting 
chemotherapy with carboplatin, etoposide, cyclophosphamide, and doxorubicin may occur in some 
cases [9]. Reduced-dose chemotherapy with the drugs mentioned above can similarly control 
intermediate-risk NB [10]. In contrast, a treatment regimen for high-risk NB could include the 
following: (1) induction chemotherapy with cisplatin, carboplatin, etoposide, vincristine, and 
cyclophosphamide; (2) surgical removal of the primary tumor, with or without additional topotecan, 
vincristine, and doxorubicin therapy; (3) consolidation chemotherapy utilizing busulfan and 
melphalan, or carboplatin, etoposide, and melphalan; (4) stem cell rescue; (5) radiation therapy; and 
(6) maintenance chemotherapy, with or without immunotherapy [11]. These often complex and 
multifaceted conventional treatment regimens are clinically trialed and effective. However, they also 
involve some significant disadvantages. Chemotherapy, for instance, can induce potentially harmful 
side effects, including toxicity and myelosuppression [10]. Surgical interventions, on the other hand, 
are invasive and can lead to incomplete tumor resection, requiring further chemo- and radiotherapy 
and possibly stem cell transplantation [12]. 

In attempting to address the disadvantages posed by conventional oncologic therapies, the 
anticancer properties of natural substances have been widely investigated. Natural substances are 
naturally occurring chemical compounds, many of which are dietary. Some of these compounds can 
support cancer prevention and therapy or overcome cancer drug resistance with few or no side 
effects. Flavonoids, for example, suppress cancer through modulation of extracellular matrix (ECM) 
proteins, inhibition of the epithelial–mesenchymal transition (EMT), and inhibition of cancer cell 
metabolism [13,14]. Plant phenolic acids and lichens upregulate apoptosis, inhibit proliferation and 
metastasis, and induce cell cycle arrest, while vanilloids such as capsaicin exert anticancer effects 
through the modulation of intracellular calcium signaling [15–17]. Significantly, several natural 
substances are effective against NB cells in vitro. Isoliquiritigenin, a flavonoid, induces necrotic cell 
death and cell cycle arrest and downregulates intracellular adenosine triphosphate (ATP) in SH-SY5Y 
cells [18]. Another flavonoid, rutin, downregulates the antiapoptotic protein B-cell lymphoma 2 (Bcl-
2) and MYCN, upregulates tumor necrosis factor alpha (TNF-α), and induces cell cycle arrest and 
apoptosis in LAN-5 cells [19]. Juniper berry extract, which also includes flavonoids, upregulates p53 
and induces endoplasmic reticulum (ER) stress and apoptosis in SH-SY5Y cells [20]. Furthermore, 
resveratrol, a natural polyphenol found in berries, grapes, and nuts, demonstrates several 
anticarcinogenic effects on NB cells—it increases cytotoxicity, inhibits the cell cycle, induces 
apoptosis, and reduces the overall growth rate. Initiator and effector caspase activation, inhibition of 
Bcl-2, and downregulation of p21 are known mechanisms [21,22]. Finally, curcumin, a plant-derived 
non-flavonoid substance, exhibits a wide range of anticancer properties toward NB cell lines, which 
will be investigated in this review. 

In evaluating the potential of curcumin in preventing and treating NB, it should be emphasized 
that in contrast to most known tumors, the tumor suppressor protein p53 occurs as a wild type in 
almost all NB tumors [23]. Initially, p53 is primarily localized to the cytosol, where it is irregularly 
stabilized, accumulated, and overexpressed [24,25]. This is a typical mechanism for the functional 
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inactivation of p53 in NB [24–26]. However, the p53 signaling pathway can be activated in several 
NB cell lines despite its cytoplasmic localization and nuclear exclusion [26–28]. In addition, the 
expression of p53 in malignant NB cells, as opposed to non-malignant NB cells, is significantly 
downregulated at the physiological level [24,25,29]. This underscores the possibility that these cells 
can undergo apoptosis [30,31]. Interestingly, the p53 transformation process in NB cells is reversible, 
suggesting that it could represent a therapeutic target. Malignant NB cells are often resistant to typical 
radiation and chemotherapy treatments. The upregulation of transcription factors such as NF-κB and 
activator protein 1 (AP-1) in tumors is partly responsible for this increased resistance [32,33]. 
Curcumin, a strong and natural NF-κB inhibitor [34–40], significantly reduces cell survival and 
modulates the expression of apoptosis-related genes in human NB cells in combination with radiation 
therapy [32]. Notably, p53-dependent cell death in various tumor cells can be specifically and 
effectively activated by treatment with the naturally occurring polyphenol curcumin [41]. 

2. Structure and Biological Properties of Curcumin 

Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione) is derived 
from the rhizome of the turmeric plant (Curcuma longa). Turmeric is native to South Asia (e.g., India, 
China, and Indonesia) and is cultivated for its traditional medicinal properties [42]. 

Curcumin exists as a yellow-orange solid, with a molecular weight of 368 g/mol and a melting 
point of 183 °C. Chemically, it is a polyphenolic compound with two aromatic rings, each with one 
hydroxy and one methoxy substituent (Figure 1). A seven-carbon chain with two α-β unsaturated 
carbonyl groups (which are subject to tautomerization) links the rings [43]. 

 

Figure 1. Chemical structure of curcumin, a polyphenolic chemical constituent of turmeric with 
antioxidant, anti-inflammatory, and anticancer effects. Curcumin is a beta-diketone compound 
containing two substituted aromatic rings linked by a seven-carbon chain. Each aromatic ring has one 
hydroxy and one methoxy group. 

Commercially available curcumin contains three primary components, namely 
diferuloylmethane (the most abundant and active component of turmeric, at 82%) and its derivatives 
demethoxycurcumin (15%) and bisdemethoxycurcumin (3%); these are collectively referred to as 
“curcuminoids” [44,45]. Curcuminoids have the potential to treat various diseases through the 
modulation of molecular signaling targets, including transcription factors (e.g., NF-κB, AP-1, ß-
catenin, and peroxisome proliferator-activated receptor), enzymes (e.g., COX-2, 5-LOX, and iNOS), 
and pro-inflammatory cytokines (e.g., TNF-α, IL-1, and IL-6) [44,46–51]. 

The biological and physiological properties of curcumin have been extensively examined and 
reviewed in the context of neurodegenerative and inflammatory diseases, such as Alzheimer’s 
disease and dementia. Curcumin exhibits notable antioxidant activities through iron chelation, 
inhibition of lipid peroxidation, and scavenging of reactive oxygen species (ROS) [52]. The compound 
also has anti-inflammatory properties in acute and chronic inflammation [53]. Beyond these 
functions, curcumin is widely examined as an anticancer agent. Orally administered curcumin—
alone and in combination with conventional chemotherapeutics—has been clinically trialed in 
pancreatic, breast, and prostate cancer patients [54–57]. Curcumin also demonstrates oncologic effects 



Biomolecules 2020, 10, 1469 4 of 28 

 

by itself on murine glioblastoma xenografts and in combination with the chemotherapeutic 5-
fluorouracil on colorectal cancer cells [49,58–60]. 

Although curcumin has many positive effects on health, it is sometimes criticized for its low 
bioavailability—a result of its low absorption and rapid metabolism by the body. However, its 
bioavailability can be enhanced through combination with adjuvants. Indeed, piperine, a component 
of black pepper, is suitable for this purpose [61–63]. Notably, while curcumin’s anticancer properties 
are frequently reported, its membrane transport mechanisms remain mostly uncharacterized. 
Molecular dynamics simulations and solid-state nuclear magnetic resonance experiments indicate 
that curcumin can insert itself into plasma membranes [64,65]. However, specific transport 
mechanisms for the nervous system and NB cells are unclear at this time. 

Despite these shortcomings, curcumin is a major component of numerous spices and foods, and 
is well tolerated in relatively high concentrations as part of daily diets without side effects. As such, 
it has high potential as a putative chemopreventive or therapeutic agent [66]. 

3. Description of the Study 

3.1. Rationale and Aims of the Study 

A vast body of preclinical literature is available on the anticancer properties of curcumin. 
Promising results have arisen from pancreatic and colon cancer cells, and within the CNS in 
glioblastoma and brain tumor cells [67]. Within the previous decade, clinical trials have substantiated 
the potential oncologic applications of curcumin for several common cancer types (pancreatic, 
prostate, and breast cancers). Moreover, clinical trials have also tested the anticancer properties of 
curcumin in the nervous system. Its effects on glioblastoma cell lines have been widely documented 
and extensively reviewed. However, the literature relating curcumin and NB, a rare malignancy with 
poor prognosis, remains comparatively sparse. 

As such, this review explores curcumin’s viability as a natural supportive therapy for the 
prevention and treatment of NB. It first summarizes existing preclinical trials of curcumin on NB cell 
lines and presents overarching pathways through which curcumin may exert oncologic effects. This 
study then notes the synergistic and combinatorial effects of curcumin with other natural substances, 
chemotherapeutics, and radiotherapy on NB. Moreover, the differential effects of curcumin on 
various NB cell lines and types are explored. Finally, this review discusses the current challenges 
involved in curcumin delivery and presents some potential solutions and improvements. 

3.2. Study Methodology 

Core literature for this review was obtained from PubMed and Google Scholar, using the 
keywords “curcumin,” “neuroblastoma,” and “apoptosis.” A PubMed search with these keywords 
yielded 42 literature results. Approximately 20 of these studies were utilized for this review. Studies 
including both curcumin and NB but concerning subjects other than oncology (e.g., Alzheimer’s 
disease, or neurodegeneration) were excluded. Further literature (approximately 10 recent studies) 
on the bioavailability and absorption of curcumin was obtained using the keywords “curcumin”, 
“bioavailability”, “nervous system”, or “brain delivery”. 

4. Curcumin as an Anticancer Agent in NB 

Preclinical trials demonstrate that curcumin exerts a range of oncologic effects on NB cell lines. 
These include the induction of apoptosis and cell cycle arrest, downregulation of proliferative 
signaling pathways, inhibition of cell migration, and disruption of cellular glucose metabolism (Table 
1). 

4.1. Apoptosis and Cell Cycle Arrest 

In cancerous cells, proliferative and pro-survival effectors such as the serine–threonine kinase 
Akt, nuclear factor kappa light-chain enhancer of activated B-cells (NF-κB), Bcl-2, and Survivin are 
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active, while apoptotic effectors such as cytochrome c, p53, and caspases are suppressed. Curcumin 
shifts the intracellular signaling mechanisms in NB to upregulate apoptosis and cell cycle arrest [41]. 
Mechanistically, curcumin promotes apoptosis through the downregulation of Akt and NF-κB 
signaling, induction of mitochondrial dysfunction, upregulation of p53, and activation of caspases 
(Figure 2). 

Upon its in vitro application to NB cells, curcumin firstly modulates phosphatase and tension 
homolog (PTEN)–Akt signaling. Curcumin upregulates PTEN, which downregulates Akt and 
reduces Akt translocation from the cytosol to the nucleus [68]. Downregulation of Akt, in turn, leads 
to (1) downregulation of NF-κB; (2) upregulation of the pro-apoptotic mitochondrial protein Bad and 
induction of its translocation from the cytosol to the mitochondria; and (3) upregulation of the 
forkhead box O3a (FOXO3a) protein and induction of its nuclear translocation from the cytosol [68–
70]. FOXO3a consequently upregulates the pro-apoptotic Bcl-2-interacting mediator of cell death 
(Bim), as well as the Fas ligand (Fas-L). Elevated levels of Fas-L induce the Fas pathway, in which 
Fas-L and Fas activate caspase 8, a proteolytic enzyme that cleaves the BH3-interacting domain death 
agonist (Bid) protein into its active form [68,71] (see Figure 2). 

In inducing mitochondrial dysfunction, curcumin depolarizes the mitochondrial membrane 
potential (MMP), leading to the downregulation of Bcl-2 [72]. The upregulation of Bim and 
downregulation of NF-κB, as previously discussed, also contribute to the downregulation of Bcl-2 
[69,73]. In turn, the downregulation of Bcl-2 causes the upregulation of the pro-apoptotic Bcl-2-
associated X protein (Bax) [72]. Together, the upregulation of Bax, Fas-L, Bid, and Bad; the 
depolarization of the MMP; as well as the downregulation of Bcl-2 all contribute to the release of 
cytochrome c from the mitochondria into the cytosol [70–72,74]. Additionally, curcumin 
downregulates the mitochondrial heat shock protein Hsp60 [68]. 

Concurrently with the modulation of PTEN–Akt signaling and induction of mitochondrial 
dysfunction, curcumin highly regulates pro-apoptotic p53 signaling in NB cells. The increase of 
intracellular ROS levels by curcumin leads to the downregulation of the proliferative extracellular-
signal-regulated kinases (ERK) 1/2 and the upregulation of hypoxia-inducible factor 1 alpha (HIF-1α) 
[72,75]. HIF-1α and downregulated ERK 1/2 consequently upregulate nuclear p53 (p53n) [75,76]. In 
turn, p53n further upregulates Bax and induces the pro-apoptotic brain-expressed X-linked (Bex) 
genes [75,77]. Moreover, downregulation of mitochondrial Hsp60 allows for the upregulation of 
cytosolic p53 (p53c), which in turn downregulates the pro-survival protein Survivin [78]. 

At the end of the pro-apoptotic axis, cytochrome c release, Bex genes, and p53n activate caspase 
9 [71,75]. Caspase 9 activates caspase 3; Survivin, which ordinarily inhibits apoptosis by 
downregulating caspase 3, is itself downregulated and does not perform this function [79]. Finally, 
caspase 3 cleaves poly(ADP-ribose) polymerase 1 (PARP-1), leading to apoptosis. 

In addition to apoptosis, curcumin also promotes cell cycle arrest in various NB cell lines. 
FOXO3a upregulates the cyclin-dependent kinase inhibitor p27, while p53 upregulates the cyclin-
dependent kinase inhibitor p21 [68,80]. Together, p21 and p27 induce cell cycle arrest [68,77]. 

Interestingly, curcumin activates the degradation of amyloidogenic proteins, including the 
amyloid β precursor protein and α-synuclein, via translocation of the transcription factor EB–
autophagy signaling pathway. This activity is regulated by the inhibition of GSK-3β signaling, which 
thereby increases antioxidant gene expression in human NB cells [81]. Bavisotto and co-workers 
demonstrated that curcumin decreases heat shock protein (Hsp60) levels and upregulates Hsp60 
mRNA expression, and thereby causes apoptosis. Curcumin downregulates the ubiquitination and 
nitration of Hsp60 and increases chaperonin levels, indicating that it may disrupt NB progression 
through a protective pathway involving chaperonin [82]. 
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Figure 2. Curcumin, as a multitarget compound, induces apoptosis and cell cycle arrest in 
neuroblastoma (NB) cells through the modulation of PTEN–Akt, NF-κB, and p53 signaling; 
mitochondrial dysfunction; and caspase activation. (A) Intracellular signaling mechanisms within NB 
cells favor proliferation. The proliferative Akt, NF-κB, and ERK 1/2 pathways, as well as the 
antiapoptotic Bcl-2 and Survivin proteins, are active and upregulated. Apoptotic signals via 
mitochondrial dysfunction, cytochrome c release, p53, and caspases are downregulated. Cyclin-
dependent kinase inhibitors (p21 and p27) are inactive, allowing for cell cycle progression. (B) 
Curcumin modulates intracellular signaling in NB cells in favor of apoptosis and cell cycle arrest. 
Curcumin upregulates PTEN, which in turn downregulates Akt and NF-κB and upregulates FOXO3a 
and Fas pathway signaling. Moreover, curcumin-induced ROS generation elevates intracellular ROS 
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levels and supports both FOXO3a and p53n signaling. Together, p53n, Fas pathway, and Akt signaling, 
along with mitochondrial membrane potential (MMP) depolarization, promote the release of 
cytochrome c from the mitochondria into the cytosol, where it supports caspase activation. 
Mitochondrial dysfunction also involves the downregulation of Hsp60, which ultimately leads to the 
downregulation of Survivin—a protein that ordinarily inhibits caspase activity. Caspase 3 cleaves 
PARP-1, causing apoptosis, while FOXO3a and p53 activate cyclin-dependent kinase inhibitors, 
which induce cell cycle arrest. 

4.2. Effects on NB Cell Migration and Glucose Metabolism 

Beyond the induction of apoptosis and cell cycle arrest, curcumin modulates NB cell migration 
and glucose metabolism. Curcumin upregulates TIMP metallopeptidase inhibitor 1 (TIMP-1), which 
downregulates ECM matrix metalloproteinase 2 (MMP-2), and thereby inhibits cell migration [80]. In 
fact, D’Aguanno and colleagues demonstrated that cell organization and assembly are inhibited 
because curcumin downregulates necessary proteins [83]. Additionally, curcumin downregulates the 
glucose-metabolism-related proteins lactate dehydrogenase (LDH), aldolase (ALDOA), 
triosephosphate isomerase (TPI1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 
enolase (ENO1) [83]. As such, curcumin inhibits the following conversions: pyruvate to lactate by 
LDH; fructose 1,6-biphosphate (FBP) to dihydroxyacetone (DHAP) and glyceraldehyde 3-phosphate 
(G3P) by ALDOA; DHAP to G3P by TPI1; G3P to 1,3-bisphosphoglycerate (1,3-BPG) by GAPDH; and 
2-phosphoglycerate (2-PG) to phosphoenolpyruvate (PEP) by ENO1. Since evidence of the Warburg 
effect has been found in NB, the associated mechanisms could represent a further point of targeting 
by curcumin. Curcumin can suppress the Warburg effect in other cancer cell lines, and thus influence 
their glucose metabolism [84,85]. 
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Table 1. Anticancer effects of pure curcumin on NB cell lines. Curcumin modulates genes and 
proteins that regulate proliferation, apoptosis, cell cycle progression, cell motility, and intracellular 
glucose metabolism. Downregulations, decreases, and inhibitions are in bold. 

Effect Cell Line 
Effective 

Concentration/Dosage 
Source 

Decreases proliferation Neuro2a 10, 25, 50 µM [75] 

 

SH-SY5Y  [74] 
SK-NBE2c  [74] 

LAN5  [74] 
HTLA-230  [74] 

GI-LI-N  [74] 
IMR-32  [74] 

Decreases clonal growth/colony formation GI-LI-N 20 µM [74] 
Increases cell death/decreases viability Neuro2a 10, 25, 50 µM [75] 

 

LAN5 15, 20 µM [68] 
LAN5 0.001, 0.01, 0.1, 1, 10, 100 µM [86] 
LAN5 3.125, 6.25, 12.5, 25, 50, 100, 200 µM [82] 
LAN5 10, 20, 40, 80 µM [77] 

SK-N-SH 0.001, 0.01, 0.1, 1, 10, 100 µM [86] 
SK-N-SH 1, 5, 10, 50, 100, 500 µM [87] 

Kelly 0.001, 0.01, 0.1, 1, 10, 100 µM [86] 
IMR-32 100 µM [72] 
IMR-32 10, 25, 50, 100 µM [77] 
IMR-32 10, 100 µg/mL [88] 

SMS-KAN 100 µM [72] 
SK-N-AS 100 µM [72] 
SK-N-AS 10, 25, 50, 75, 100 µM [69] 
LA-N-6 100 µM [72] 

SH-SY5Y 5, 10, 20, 50 µM [80] 
SH-SY5Y (WT) 10, 20, 40, 80 µM [83] 

SH-SY5Y (DDP) 10, 20, 40, 80 µM [83] 
NUB-7 5, 10, 20, 40, 80 µM [77] 

SK-N-Be(2) 10, 25, 50, 100 µM [77] 
SK-N-Be(2) 25, 50, 75, 100 µM [69] 
SK-N-MC  [89] 
SK-N-FI 5, 10, 50, 100, 500 µM [87] 

Increases apoptosis Neuro2a 50 µM [75] 

 

LAN5 15, 20 µM [68] 
LAN5 12.5, 25 µM [82] 
Kelly 10, 100 µM [86] 

IMR-32 100 µM [72] 
SMS-KAN 100 µM [72] 

LA-N-6 100 µM [72] 
SH-SY5Y 20, 50 µM [80] 
GI-LI-N 10 µM [74] 
NUB-7 10, 25, 50, 100 µM [77] 

SK-N-AS 25, 50 µM [69] 
Causes DNA fragmentation Neuro2a 50 µM [75] 
Causes membrane blebbing Neuro2a 50 µM [75] 

Causes nuclear condensation Neuro2a 50 µM [75] 
Downregulates ERK 1/2 (protein) Neuro2a 25 µM [75] 

Upregulates caspase 9 (protein) Neuro2a 25 µM [75] 
Upregulates caspase 3 (protein) Neuro2a 25 µM [75] 

 GI-LI-N 10 µM [74] 
Inactivates/cleaves PARP-1 (protein) Neuro2a 25 µM [75] 

 SK-N-AS 25, 50 µM [69] 
Upregulates Bex1 (mRNA) Neuro2a 10, 25 µM [75] 
Upregulates Bex3 (mRNA) Neuro2a 25 µM [75] 
Upregulates Bex4 (mRNA) Neuro2a 10, 25, 50 µM [75] 
Upregulates Bex6 (mRNA) Neuro2a 10, 25, 50 µM [75] 
Upregulates p53 (mRNA) SH-SY5Y 5, 10, 20, 50 µM [80] 

Activates/phosphorylates p53 (protein) Neuro2a 25 µM [75] 
Upregulates p53 (protein) NUB-7 25 µM [77] 

Upregulates p53 nuclear translocation NUB-7 25 µM [77] 
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Upregulates p21 (mRNA) SH-SY5Y 20, 50 µM [80] 
Upregulates p21 (protein) NUB-7 25 µM [77] 

Upregulates ROSi LAN5 10, 15 µM [68] 

 
SK-N-AS  [72] 
IMR-32  [72] 

Decreases MMP LAN5 10, 15 µM [68] 
 IMR-32 10 µM [74] 

Downregulates Hsp60 (mRNA) LAN5 12.5 µM [82] 
Upregulates Hsp60 (mRNA) LAN5 25 µM [82] 

Downregulates Hsp60 (protein) LAN5 10, 15 µM [68] 
 LAN5 25 µM [82] 

Downregulates Hsp60 ubiquitination LAN5 25 µM [82] 
Downregulates Hsp60 S-nitrosylation LAN5 25 µM [82] 

Downregulates HKII (protein) LAN5 10, 15 µM [68] 
Upregulates Bad (protein) LAN5 15 µM [68] 

Upregulates PTEN (protein) LAN5 5, 10, 15 µM [68] 
Downregulates Akt (protein) LAN5 10, 15 µM [68] 

 SK-N-AS 25, 50 µM [69] 
Downregulates Akt nuclear translocation LAN5 10, 15 µM [68] 

Upregulates FOXO3a (mRNA) LAN5  [68] 
Upregulates FOXO3a (protein) LAN5 10, 15 µM [68] 

Upregulates FOXO3a nuclear translocation LAN5 10, 15 µM [68] 
Upregulates Fas-L (mRNA) LAN5  [68] 
Upregulates Bim (mRNA) LAN5  [68] 
Upregulates p27 (mRNA) LAN5  [68] 

Downregulates NF-κB (protein) Kelly  100 µM [86] 
Inhibits NF-κB DNA binding SK-N-MC 50, 100 nM [32] 

 SK-N-AS 25 µM [69] 
Reduces cell migration/motility SH-SY5Y 10, 20 µM [80] 

Upregulates TIMP-1 (mRNA) SH-SY5Y 10, 20 µM [80] 
Downregulates MMP-2 (mRNA) SH-SY5Y 20 µM [80] 

Upregulates Bax (protein) NUB-7 25 µM [77] 
Downregulates Bcl-2 (mRNA) SK-N-AS 25, 50 µM [69] 
Downregulates Bcl-2 (protein) SK-N-AS 25, 50 µM [69] 
Downregulates LDH (protein) SH-SY5Y (WT) 40 µM [83] 

 SH-SY5Y (DDP) 40 µM [83] 
Downregulates TPI1 (protein) SH-SY5Y (WT) 40 µM [83] 

 SH-SY5Y (DDP) 40 µM [83] 
Downregulates GAPDH (protein) SH-SY5Y (WT) 40 µM [83] 

 SH-SY5Y (DDP) 40 µM [83] 
Downregulates ENO1 SH-SY5Y (WT) 40 µM [83] 

Downregulates ALDOA SH-SY5Y (WT) 40 µM [83] 

5. Synergistic and Combinatorial Effects of Curcumin with Natural and Conventional Therapies 
for the Treatment of NB 

5.1. Curcumin Applied Simultaneously with Other Natural Substances 

While curcumin is independently effective in suppressing NB, it also exhibits synergistic effects 
in conjunction with several conventional and natural therapies (Table 2). Compared to other natural 
substances, curcumin and berberine (BBR) together demonstrate more significant cytotoxic effects on 
NB cells than either substance alone [90]. BBR, a plant-derived alkaloid, is a common dietary 
supplement. However, some clinical trials reported adverse reactions or toxicity at high doses, with 
14.3% incidence of adverse effects at dosages of 0.9 to 1.5 g/day and 10.6% incidence at 1.5 g/day [91]. 
Therefore, while the application of 100 µM BBR is possible in vitro, clinical attainment of such a high 
concentration may induce potentially dangerous side effects. 

In another study, SH-SY5Y cells were treated with a combination of curcumin and piperine. 
Cytotoxicity analysis demonstrated that increasing concentrations of curcumin- and piperine-loaded 
zein–chitosan nanoparticles (CPZChN; 5, 10, 25, 50, and 100 µg/mL) decreased the viability of the NB 
cells from 115 to 99, 30, 8, and finally 3%. CPZChN, with a mean particle size of approximately 500 
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nm and high encapsulation efficiencies for curcumin (89%) and piperine (87%), constitutes a 
promising experimental approach [92]. 

5.2. Curcumin Applied Simultaneously with Conventional Chemotherapeutics 

Another potential application of curcumin in NB therapy is in combination with conventional 
chemotherapeutic drugs. These drugs, particularly cisplatin (a platinum compound) and doxorubicin 
(an anthracycline), share several anti-NB pathways with curcumin (Figure 3). Similarly to curcumin, 
cisplatin downregulates Bcl-2 (in SH-SY5Y cells) and upregulates Bax (in B50 cells), thereby inducing 
mitochondrial dysfunction [93,94]. Moreover, both curcumin and doxorubicin upregulate 
components of the Fas signaling pathway. Curcumin upregulates Fas-L and induces the Fas signaling 
pathway in LAN5 cells [68]. Doxorubicin, in contrast, upregulates Fas but not Fas-L in SH-EP-1 and 
SK-N-AS cells [95]. Therefore, an interesting contrast emerges, as while curcumin enhances 
mitochondrial dysfunction via the Fas pathway, doxorubicin does not because said pathway does 
not proceed without the ligand (Fas-L). Mitochondrial dysfunction leads to the release of cytochrome 
c, as observed in SK-N-SH cells treated with doxorubicin and B50 cells treated with cisplatin [94,96]. 
Furthermore, in another pathway shared with curcumin, cisplatin upregulates p53 in SH-SY5Y cells 
[93]. Finally, curcumin, cisplatin, and doxorubicin all induce the activation of caspases 9 and 3, 
leading to apoptosis. 

 
Figure 3. Oncologic signaling pathways are shared by curcumin and the anti-NB cancer drugs 
doxorubicin and cisplatin. Curcumin, doxorubicin, and cisplatin induce mitochondrial dysfunction 
through the upregulation of Bax and downregulation of Bcl-2. While curcumin also induces the Fas 
signaling pathway, doxorubicin does not, since it does not upregulate the ligand needed by the 
signaling pathway to proceed (Fas-L). Ultimately, the pathways lead to the activation of caspases and 
apoptosis. 

Synergistically, curcumin potentiates the cytotoxic and pro-apoptotic effects of doxorubicin in 
SH-SY5Y and SK-N-AS cells [69,80]. This effect may be of clinical relevance, since it occurred at 
relatively low doses (0.05 µg/mL; 0.5–1.5 µM) of doxorubicin, which may feasibly be obtained in 
physiological environments. Moreover, Fonseka et al. (2020) evaluated a combination treatment of 
curcumin with doxorubicin in in vitro and in vivo NB models. The in vitro and consequent in vivo 
results demonstrate the oncostatic efficacy of this drug combination. Notably, curcumin and 
doxorubicin increased the survival and reduced the tumor volume of mice implanted with SK-N-
Be(2) cells [97]. Curcumin also enhances the cytotoxic effects of 15, 30, and 45 µM cisplatin [69]. 
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Similar drug concentrations are physiologically achievable via cisplatin infusion; as such, curcumin–
cisplatin therapy has potential clinical applicability [98]. 

5.3. Curcumin in Conjunction with Radiation Therapy 

Finally, curcumin also enhances the cytotoxic, apoptotic, and anticolonigenic effects of radiation 
therapy on NB in vitro. Potential side effects of radiation therapy include the induction of 
antiapoptotic genes such as Bcl-2 and the suppression of pro-apoptotic effectors such as caspases 3 
and 7. However, curcumin can effectively attenuate these negative effects. Importantly, inflammation 
plays a central role not only in tumor resistance, but also in the incidence of side effects following 
radiotherapy [99]. Curcumin is not only a radiosensitizer for various malignancies, but also a 
radioprotector for normal tissues. As such, it exerts protective effects against the following 
radiotherapy toxicities: dermatitis, pneumonitis, cataractogenesis, neurocognition, 
myelosuppression, secondary malignancies, and mucositis or enteritis [100]. Moreover, curcumin 
modulates and downregulates the radiation-activated genes of the TNF superfamily, as well as the 
expression of NF-κB- and NF-κB-mediated pro-survival signaling in NB cells [32]. Overall, the 
synergistic potential of curcumin for treating NB is promising based on the results of primary studies, 
but is not yet supported by clinical trials. 

Once sufficient basic and preclinical studies have been conducted, clinical trials will be necessary 
to substantiate both the isolated and synergistic effects of curcumin on NB. The combination of 
curcumin with radiation therapy is a promising avenue of investigation, as a low dose of 100 nM 
curcumin promotes apoptosis and reverses the detrimental side effects of radiation [32]. Significantly, 
curcumin-mediated radiosensitization and downregulation of radiation-induced antiapoptotic 
effectors have already been demonstrated in prostate and colorectal cancers [37,101]. Curcumin 
notably exerts protective effects against radiation-induced inflammation and consequent lung 
damage [102]. In fact, curcumin was clinically investigated for its anti-inflammatory, 
anticarcinogenic, and free radical scavenging properties [44]. 

Table 2. Synergistic anticancer effects of curcumin and other natural substances, conventional 
chemotherapeutic drugs, or radiation therapy on NB cell lines. While solid lipid curcumin particles 
(SLCP) were trialed with BBR and CPZChN with piperine, pure (or “standard”) curcumin was trialed 
with doxorubicin, cisplatin, and radiation therapy. Downregulations, decreases, and inhibitions are 
in bold. “Curc.” refers to “Curcumin”, “Conc.” refers to “Concentration”, and “Subs.” refers to 
“Substance”. 

Effect Cell Line 
Curc. 
Type Curc. Conc. Subs. 2 Subs. 2 Conc. Source 

Increases cell death/decreases 
viability SH-SY5Y SLCP 20 µM BBR 100 µM [90] 

 

SH-SY5Y CPZChN 
25, 50, 100 

µg/mL Piperine 
25, 50, 100 

µg/mL  [92] 

SH-SY5Y Standard 5, 10, 20 µM Doxorubicin 0.05 µg/mL [80] 
SH-SY5Y Standard 10, 20 µM Doxorubicin 5 µg/mL [80] 
SH-SY5Y Standard 10 µM Doxorubicin 1 µM [97] 
SK-N-MC Standard 100 nM Radiation 2 Gy [32] 
SK-N-AS Standard 12.5, 25 µM Doxorubicin 0.5, 1, 1.5 µM [69] 
SK-N-AS Standard 12.5, 25 µM Cisplatin 15, 30, 45 µM [69] 
SK-N-AS Standard 10 µM Doxorubicin 1 µM [97] 

SK-N-Be(2) Standard 10 µM Doxorubicin 1 µM [97] 
IMR-32 Standard 10 µM Doxorubicin 1 µM [97] 

Increases apoptosis SH-SY5Y Standard 5, 10, 20 µM Doxorubicin 5 µg/mL [80] 
 SK-N-MC Standard 100 nM Radiation 2 Gy [32] 

Decreases clonal growth/colony 
formation SK-N-MC Standard 100 nM Radiation 2 Gy [32] 

Reduces cell migration/motility SH-SY5Y spheroid Standard 2, 5, 10, 20 µM Doxorubicin 5 µg/mL [80] 

Reduces tumor volume 
SK-N-Be(2) 

xenografts, nude 
mice 

Standard 40 mg/kg Doxorubicin 5 mg/kg [97] 
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6. Challenges in the Use of Curcumin in the Prevention and Treatment of NB 

The application of curcumin as a preventive and therapeutic agent in NB is contingent upon its 
clinical delivery in sufficient doses. While a 2008 study demonstrated statistically significant 
decreases in the viability of SK-N-SH, Kelly, and LAN-5 NB cells treated with 0.001 µM curcumin, 
contemporary studies continue to utilize much higher concentrations [86]. As such, many recent 
studies report anticancer effects in NB cells after exposure to around 10–100 µM pure curcumin (Table 
1). While such concentrations are attainable in vitro, numerous physiological challenges may hamper 
their clinical feasibility. 

A major disadvantage of pure curcumin is its low water solubility. Organic solvents may 
overcome this problem; however, these solvents are rarely appropriate (or safe) for clinical use. 
Therefore, numerous synthetic curcumin formulations, including curcumin–alginate conjugated 
micelles and whey protein nanofibril carriers, have been developed to enhance the compound’s 
solubility [103,104]. 

Beyond its low water solubility, the poor oral bioavailability and rapid metabolism and 
elimination of curcumin have been extensively characterized and reviewed [105]. The data in Table 
3 indicate that curcumin has low oral bioavailability in humans, which is improved in murine and 
rat models. In Wistar rats (WR), peak curcumin concentrations after oral administration are reached 
slowly (6 h after ingestion) in the liver and kidney, even after relatively high doses. In contrast, 
intravenous (IV) injection substantially decreases the time to peak concentration in the same organs. 
Finally, maximal curcumin concentrations in the nervous system (brain and spinal cord) are 
attainable relatively quickly (sometimes in a matter of minutes) after oral, IV, or intranasal 
administration in WR, Institute for Cancer Research (ICR) mice (ICRM), and Sprague–Dawley rats 
(SDR). The rapid delivery of curcumin to nervous system organs underscores the compound’s 
potential value as an anticancer agent in NB. In considering clinical administration, it is essential to 
note that curcumin lacks adverse side effects at dosages of up to 8000 mg/day [106]. 
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Table 3. Bioavailability of pure curcumin and various curcumin formulations after oral, intravenous, 
and intranasal delivery in humans, mice, and rats. Within the sample column, “H” refers to 
“humans”, “WR” to “Wistar rats”, “ICRM” to “ICR mice”, and “SDR” to “Sprague–Dawley rats”. 

Administration Route 
Administered 

Dosage 
Max. Concentration 

Max. 
Time 

Sample Source 

Oral 1800 mg 2.3 ± 0.3 ng/mL 7.4 ± 1.0 h Blood Plasma, H [107] 
Oral 500 mg/kg 83.80 ± 5.46 µg/mL 6 h Serum, WR [108] 
Oral 500 mg/kg 490.3 ± 32.0 µg 6 h Total Blood, WR [108] 
Oral 500 mg/kg 135.2 ± 5.26 µg 6 h Liver, WR [108] 
Oral 500 mg/kg 9.03 ± 1.11 µg 6 h Kidney, WR [108] 
Oral 500 mg/kg 36.19 ± 3.10 µg 1 h Intestine, WR [108] 
Oral 20 mg/kg 2.03 ± 0.69 ng/g 15 min Brain, ICRM [109] 

Oral 20 mg/kg 23.49 ± 11.57 ng/g 7.5 min 
Spinal Cord, 

ICRM 
[109] 

Oral 20 mg/kg 0.60 ± 0.44 ng/mL 15 min Plasma, ICRM [109] 
Oral 400 mg/kg 30.32 ± 3.10 ng/g 5 min Brain, ICRM [109] 

Oral 400 mg/kg 129.16 ± 63.12 ng/g 5 min 
Spinal Cord, 

ICRM 
[109] 

Oral 400 mg/kg 79.82 ± 49.00 ng/mL 3 min Plasma, ICRM [109] 
Oral/PLGA-Curcumin 20 mg/kg 12.71 ± 6.63 ng/g 3 min Brain, ICRM [109] 

Oral/PLGA-Curcumin 20 mg/kg 85.88 ± 54.27 ng/g 7.5 min 
Spinal Cord, 

ICRM 
[109] 

Oral/PLGA-Curcumin 20 mg/kg 41.33 ± 16.03 ng/mL 3 min Plasma, ICRM [109] 
Injection 4 mg/kg 0.00 ± 0.00 ng/g - Brain, SDR [110] 

Injection/C-SLN 4 mg/kg 114.22 ± 58.21 ng/g 
0.5 ± 0.28 

h 
Brain, SDR [110] 

Injection/C-NLC 4 mg/kg 390.30 ± 35.93 ng/g 1 ± 0.28 h Brain, SDR [110] 
Injection 1 mg/kg 968.11 ± 67.1 ng/mL 0.0833 h Plasma, SDR [111] 
Injection 1 mg/kg 90 ± 6.82 ng/mL 1 h Brain, SDR [111] 

Injection/CUR Capmul ME 1 mg/kg 1875.45 ± 91.6 ng/mL 0.0833 h Plasma, SDR [111] 
Injection/CUR Capmul ME 1 mg/kg 120 ± 8.61 ng/mL 1 h Brain, SDR [111] 

Injection/CUR DHA ME 1 mg/kg 2059.8 ± 103.6 ng/mL 0.0833 h Plasma, SDR [111] 
Injection/CUR DHA ME 1 mg/kg 253 ± 18.74 ng/mL 1 h Brain, SDR [111] 

Intranasal 1 mg/kg 31.25 ± 2.8 ng/mL 0.5 h Plasma, SDR [111] 
Intranasal 1 mg/kg 122 ± 7.89 ng/mL 0.5 h Brain, SDR [111] 

Intranasal/CUR Capmul 
ME 

1 mg/kg 39.62 ± 2.3 ng/mL 0.5 h Plasma, SDR [111] 

Intranasal/CUR Capmul 
ME 

1 mg/kg 324 ± 22.43 ng/mL 0.5 h Brain, SDR [111] 

Intranasal/CUR DHA ME 1 mg/kg 48.75 ± 3.1 ng/mL 0.5 h Plasma, SDR [111] 
Intranasal/CUR DHA ME 1 mg/kg 523 ± 30.95 ng/mL 0.5 h Brain, SDR [111] 

Injection 10 mg/kg 661.66 ± 48.604 ng/mL - Plasma, WR [112] 
Injection 10 mg/kg 6.6 ng/g 0.25 h Brain, WR [112] 
Injection 10 mg/kg 50.0 ng/g 0.25 h Liver, WR [112] 
Injection 10 mg/kg 51.6 ng/g 0.50 h Lung, WR [112] 
Injection 10 mg/kg 24.1 ng/g 0.25 h Heart, WR [112] 
Injection 10 mg/kg 25.7 ng/g 0.25 h Kidney, WR [112] 
Injection 10 mg/kg 24.0 ng/g 1.00 h Spleen, WR [112] 

Injection/Tween-NS 10 mg/kg 
1311.62 ± 172.294 

ng/mL 
- Plasma, WR [112] 

Injection/Tween-NS 10 mg/kg 66.7 ng/g 0.75 h Brain, WR [112] 
Injection/Tween-NS 10 mg/kg 94.5 ng/g 0.50 h Liver, WR [112] 
Injection/Tween-NS 10 mg/kg 282.1 ng/g 0.50 h Lung, WR [112] 
Injection/Tween-NS 10 mg/kg 275.5 ng/g 0.25 h Heart, WR [112] 
Injection/Tween-NS 10 mg/kg 86.5 ng/g 0.50 h Kidney, WR [112] 
Injection/Tween-NS 10 mg/kg 79.4 ng/g 3.00 h Spleen, WR [112] 

Injection/TPGS-NS 10 mg/kg 1121.28 ± 46.259 
ng/mL 

- Plasma, WR [112] 

Injection/TPGS-NS 10 mg/kg 17.7 ng/g 0.50 h Brain, WR [112] 
Injection/TPGS-NS 10 mg/kg 169.8 ng/g 0.25 h Liver, WR [112] 
Injection/TPGS-NS 10 mg/kg 253.4 ng/g 2.00 h Lung, WR [112] 
Injection/TPGS-NS 10 mg/kg 38.7 ng/g 0.25 h Heart, WR [112] 
Injection/TPGS-NS 10 mg/kg 70.1 ng/g 0.50 h Kidney, WR [112] 
Injection/TPGS-NS 10 mg/kg 333.0 ng/g 1.00 h Spleen, WR [112] 
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7. Potential Solutions for the Use of Curcumin in the Nervous System and Against NB 

7.1. Novel Curcumin Encapsulation and Delivery Modalities 

As categorized in Tables 3–5, numerous experimental curcumin formulations have been 
developed to improve its delivery, oral bioavailability, and in vivo absorption. These formulations 
are diverse and include curcumin–protein complexes, nanoparticles, nanosuspensions, and 
microemulsions. 

7.1.1. Curcumin–Protein Complexes 

Curcumin–protein complexes leverage the properties of certain biomacromolecules to stabilize 
curcumin and optimize their delivery. Mirzaee et al. developed complexes of curcumin with bovine 
serum albumin (BSA), casein, and beta-lactoglobulin (β-lg). In particular, native BSA and a modified 
form of β-lg significantly attenuated water-mediated degradation of curcumin [89]. These curcumin-
protein systems could improve the half-life of curcumin under physiological conditions, and thereby 
enhance its bioavailability and absorption. 

7.1.2. Curcumin Microemulsions 

In contrast with curcumin–protein complexes, microemulsions combine curcumin with oil and 
water. Within these microemulsions, curcumin can be combined with Capmul mono-diglyceride of 
medium-chain fatty acids (MCM) only (CUR Capmul ME), or both docosahexaenoic acid (DHA)-rich 
oil and Capmul MCM (CUR DHA ME). The injection or intranasal delivery of either microemulsion 
in SDR improves brain and plasma concentrations relative to standard curcumin at 1 mg/kg [111]. 
DHA is an essential native component of the CNS, and as such can substantially enhance the brain 
uptake of curcumin. 

7.1.3. Curcumin Nanosuspensions 

Nanosuspensions, which stabilize nanoscale droplets of curcumin with biopolymers or 
surfactants, constitute a further delivery modality. Examples of these formulations include D-α-
tocopheryl polyethylene glycol 1000 succinate-coated curcumin nanosuspension (TPGS-NS) and 
Tween-80-coated curcumin nanosuspension (Tween-NS). TPGS-NS and Tween-NS exhibit rapid and 
complete dissolution in phosphate-buffered saline, compared to the slower and incomplete 
dissolution of pure curcumin. Moreover, the IV administration of these nanosuspensions increases 
curcumin concentrations in the plasma, brain, heart, and digestive system in comparison to standard 
curcumin at 10 mg/kg [112]. 

7.1.4. Curcumin Nanoparticles 

Finally, nanoparticles comprise a widely investigated category of curcumin formulations. These 
encapsulate curcumin or other hydrophobic substances in solid nanostructures and may be 
conjugated with proteins to facilitate cell uptake. Examples include cerium oxide nanoparticles (CNP-
Cur), which are pH-sensitive, and therefore selectively induce apoptosis in cancerous cells with 
minimal disruption to healthy cells, even at high concentrations. Application of a dextran coating to 
CNPs (Dex-CNP-Cur) enhances their biocompatibility and controls the release of curcumin over time 
[72]. Similarly to CNPs, silk fibroin nanoparticles (Curc-SFN) target cancer cells without harming 
healthy cells. Moreover, Montalban et al. synthesized SFNs using physical adsorption and 
coprecipitation—methods that could feasibly be scaled-up [113]. 

A further curcumin formulation utilizes polylactic-co-glycolic acid (PLGA) nanoparticles. In 
ICRM, these nanoparticles substantially increase curcumin concentrations in the brain, spinal cord, 
and plasma after oral ingestion as compared to pure curcumin at the same dosage of 20 mg/kg [109]. 
Additional modalities of curcumin delivery utilize lipid nanostructures, including solid lipid 
nanoparticles (C-SLN), stearic acid nanoparticles (C-SALN), and nanostructured lipid carriers (C-
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NLC) [88,110]. C-SLN and C-NLC improve brain concentrations compared to standard curcumin at 
4 mg/kg in SDR, with a better brain absorption of C-NLC than C-SLN [110]. 

7.2. Cell Uptake and Anti-NB Efficacy of Curcumin Formulations 

Protein-conjugated curcumin nanoparticles may leverage specific cellular uptake mechanisms 
for enhanced delivery; cellular uptake data for some formulations are detailed in Table 4. 
Unfortunately, only limited data specific to NB are available. Transferrin (Tf)-conjugated solid lipid 
nanoparticles (Tf-C-SLN) leverage Tf-receptor-mediated endocytosis to enter SH-SY5Y cells; these 
nanoparticles are of particular relevance, as SH-SY5Y cells overexpress the Tf receptor. Tf-C-SLN 
achieves a higher cellular uptake than non-Tf-conjugated curcumin SLN (C-SLN) and curcumin-
solubilized surfactant solution (CSSS) [114]. Similarly, apolipoprotein-E3 curcumin-loaded 
poly(butyl)cyanoacrylate (ApoE3-C-PBCA) nanoparticles enter SH-SY5Y cells via endocytosis, 
mediated by the overexpressed low-density lipoprotein receptor (LDL-R). As such, ApoE3-C-PBCA 
nanoparticles achieve higher cellular uptake than non-ApoE3-conjugated curcumin PBCA 
nanoparticles (C-PBCA) and CSSS [115]. Finally, in the human NB cell line SH-SY5Y695 APP, a novel 
curcumin formulation exhibits significantly better quality and cytotoxic efficacy due to its improved 
cellular uptake. This formulation is well tolerated and without side effects when administered orally 
[116]. 

Table 4. Cellular uptake of several curcumin formulations, including suspension, nanoparticles, and 
protein-conjugated nanoparticles. The protein-conjugated nanoparticles (ApoE3-C-PBCA and Tf-C-
SLN) utilize receptor-mediated endocytosis to enter NB cells and exhibit greater uptake over time 
than curcumin-solubilized surfactant solution (CSSS) and the corresponding non-protein-conjugated 
nanoparticles. 

Curcumin Type Administered Dose Cell Line Concentration Time Source 
CSSS 10 µM SH-SY5Y 0.85 ± 0.21 µg/105 cells 12 h [114] 
CSSS 10 µM SH-SY5Y 0.65 ± 0.11 µg/105 cells 24 h [114] 
CSSS 10 µM SH-SY5Y 0.53 ± 0.06 µg/105 cells 48 h [114] 
CSSS 10 µM SH-SY5Y 0.8 ± 0.1 µg/106 cells 12 h [115] 
CSSS 10 µM SH-SY5Y 0.57 ± 0.11 µg/106 cells 24 h [115] 
CSSS 10 µM SH-SY5Y 0.5 ± 0.06 µg/106 cells 48 h [115] 

C-SLN 10 µM SH-SY5Y 1.4 ± 0.14 µg/105 cells 12 h [114] 
C-SLN 10 µM SH-SY5Y 1.52 ± 0.2 µg/105 cells 24 h [114] 
C-SLN 10 µM SH-SY5Y 1.59 ± 0.1 µg/105 cells 48 h [114] 

Tf-C-SLN 10 µM SH-SY5Y 2.35 ± 0.11 µg/105 cells 12 h [114] 
Tf-C-SLN 10 µM SH-SY5Y 2.4 ± 0.1 µg/105 cells 24 h [114] 
Tf-C-SLN 10 µM SH-SY5Y 2.42 ± 0.12 µg/105 cells 48 h [114] 
C-PBCA 10 µM SH-SY5Y 1.45 ± 0.1 µg/106 cells 12 h [115] 
C-PBCA 10 µM SH-SY5Y 1.52 ± 0.27 µg/106 cells 24 h [115] 
C-PBCA 10 µM SH-SY5Y 1.58 ± 0.22 µg/106 cells 48 h [115] 

ApoE3-C-PBCA 10 µM SH-SY5Y 2.4 ± 0.15 µg/106 cells 12 h [115] 
ApoE3-C-PBCA 10 µM SH-SY5Y 2.6 ± 0.21 µg/106 cells 24 h [115] 
ApoE3-C-PBCA 10 µM SH-SY5Y 2.55 ± 0.24 µg/106 cells 48 h [115] 

The anti-NB efficacy of several curcumin formulations is demonstrable in primary experiments 
(Table 5). Some of these formulations, including C-SLN, Tf-C-SLN, C-PBCA, and ApoE3-C-PBCA, 
exhibit statistically significant oncologic effects at low concentrations (0.5, 1, 2, 4 µM), indicating their 
potential clinical viability. Interestingly, other formulations, such as cerium oxide nanoparticles 
(CNP-Cur) and dextran-CNP-Cur (Dex-CNP-Cur), have only been tested or demonstrate significant 
effects at higher (and possibly clinically inviable) concentrations of 100 and 250 µM. Finally, the 
ability of some formulations, including CNP-Cur and Curc-SFN, to target NB cells with minimal 
collateral damage will be valuable. In the meantime, clinically relevant studies continue. 
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Table 5. Anticancer effects of various curcumin formulations, including protein-conjugated 
nanoparticles and curcumin-protein complexes, on NB cell lines. While a variety of novel curcumin 
formulations successfully induce NB cell death, their specific mechanistic actions remain unclear. 
Downregulations, decreases, and inhibitions are in bold. 

Effect Cell Line Delivery Mechanism 
Effective 

Concentration/Dosage 
Source 

Increases cell death/decreases viability IMR-32 CNP-Cur 100 µM [72] 

 

IMR-32 Dex-CNP-Cur 100 µM [72] 
IMR-32 C-SALN 10, 100 µg/mL [88] 

SMS-KAN CNP-Cur 100 µM [72] 
SMS-KAN Dex-CNP-Cur 100 µM [72] 
SK-N-AS CNP-Cur 100 µM [72] 
SK-N-AS Dex-CNP-Cur 100 µM [72] 
LA-N-6 CNP-Cur 100 µM [72] 
LA-N-6 Dex-CNP-Cur 100 µM [72] 

SH-SY5Y CSSS  [114] 
SH-SY5Y C-SLN 4, 16, 32, 64 µM [114] 
SH-SY5Y Tf-C-SLN 4, 8, 16, 32, 64 µM [114] 
SH-SY5Y CSSS  [115] 
SH-SY5Y C-PBCA 4, 32, 64 µM [115] 
SH-SY5Y ApoE3-C-PBCA 0.5, 1, 2, 4, 8, 16, 32, 64 µM [115] 
SK-N-MC Curcumin-BSA  [89] 
SK-N-MC Curcumin-Casein  [89] 
SK-N-MC Curcumin-β-lg  [89] 

Kelly Curc-SFN 1  [113] 
Kelly Curc-SFN 2  [113] 

Increases apoptosis IMR-32 CNP-Cur 100 µM [72] 

 

IMR-32 Dex-CNP-Cur 100 µM [72] 
SMS-KAN CNP-Cur 100 µM [72] 
SMS-KAN Dex-CNP-Cur 100 µM [72] 
SK-N-AS CNP-Cur 100 µM [72] 
SK-N-AS Dex-CNP-Cur 100 µM [72] 
LA-N-6 CNP-Cur 100 µM [72] 
LA-N-6 Dex-CNP-Cur 100 µM [72] 

SH-SY5Y CSSS 2, 4 µM [114] 
SH-SY5Y C-SLN 2, 4 µM [114] 
SH-SY5Y Tf-C-SLN 2, 4 µM [114] 
SH-SY5Y CSSS 2, 4 µM [115] 
SH-SY5Y C-PBCA 2, 4 µM [115] 
SH-SY5Y ApoE3-C-PBCA 2, 4 µM [115] 

Upregulates ROSi SK-N-AS Dex-CNP-Cur  [72] 

 

IMR-32 Dex-CNP-Cur  [72] 
SH-SY5Y CSSS  [114] 
SH-SY5Y C-SLN 4 µM [114] 
SH-SY5Y Tf-C-SLN 4 µM [114] 
SH-SY5Y CSSS  [115] 
SH-SY5Y C-PBCA 2, 4, 8, 16, 32, 64 µM [115] 
SH-SY5Y ApoE3-C-PBCA 2, 4, 8, 16, 32, 64 µM [115] 

Decreases MMP SH-SY5Y CSSS 2, 4 µM [115] 

 
SH-SY5Y C-PBCA 2, 4 µM [115] 
SH-SY5Y ApoE3-C-PBCA 2, 4 µM [115] 

Decreases Bcl-2/Bax (mRNA) ratio IMR-32 CNP-Cur 250 µM [72] 
 IMR-32 Dex-CNP-Cur 250 µM [72] 

Upregulates caspase 3 (protein) SH-SY5Y CSSS 2, 4 µM [114] 

 

SH-SY5Y C-SLN 2, 4 µM [114] 
SH-SY5Y Tf-C-SLN 2, 4 µM [114] 
SH-SY5Y CSSS 2, 4 µM [115] 
SH-SY5Y C-PBCA 2, 4 µM [115] 
SH-SY5Y ApoE3-C-PBCA 2, 4 µM [115] 
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8. Differential Effects of Curcumin and Curcumin Formulations on NB Cell Lines 

8.1. Patterns in NB Cell Line Usage in Curcumin Studies 

Recent preclinical studies examined the effects of curcumin on diverse human and murine NB 
cell lines. As enumerated in Table 1, studies utilizing pure curcumin were conducted with a wide 
range of cell lines, some of which exhibit MYCN amplification or 11q aberration. A similar breadth 
can be observed for the reviewed synergistic experiments (Table 2). However, all cell uptake data 
arise from a single cell line, SH-SY5Y (Table 4). Finally, the data in Table 5 indicate that studies with 
curcumin formulations were performed with both MYCN-amplified and non-MYCN-amplified cell 
lines. 

8.2. Curcumin’s Effects on Specific NB Cell Lines 

8.2.1. Apoptotic Mechanisms 

Curcumin exhibits a wide variety of apoptotic effects when applied to NB cell lines; however, 
many of the compound’s individual mechanistic effects are only documented in a few cell lines (Table 
1). For example, the modulation of several mitochondrial proteins (Hsp60, Bad, and Bim), the 
downregulation of HKII, and the upregulation of PTEN, FOXO3a, Fas-L, and p27 are reported only 
in the MYCN-amplified LAN5 cell line. Induction of the Bex genes and downregulation of 
proliferative ERK 1/2 signaling are demonstrated only in murine Neuro2a cells. The activation of 
caspases 9 and 3 is an essential downstream apoptotic mechanism; however, caspase 3 activation is 
reported in only three NB cell lines (Neuro2a, SH-SY5Y, and GL-LI-N), and caspase 9 activation in 
only Neuro2a cells. Finally, reductions in cell viability and upregulation of apoptosis are broadly 
documented. 

8.2.2. Synergistic Effects 

The synergistic effects of curcumin with natural substances, anticancer drugs, and radiation 
therapy are documented in only five NB cell lines (Table 2). At present, the synergistic efficacy of 
curcumin–cisplatin is confirmed only in SK-N-AS cells, while the synergy of curcumin–BBR and 
curcumin–piperine is limited to SH-SY5Y cells. Moreover, curcumin was trialed with radiation 
therapy only in SK-N-MC cells. Curcumin–doxorubicin treatment has a greater breadth of efficacy, 
with demonstrable effects in the MYCN-amplified and 11q-abberated SK-N-Be(2) and IMR-32 cell 
lines, as well as in the non-MYCN-amplified SK-N-AS and SH-SY5Y lines. 

8.2.3. Curcumin Formulations 

Broadly, novel curcumin formulations demonstrate efficacy against a wide variety of NB types 
and cell lines. The breadth of cell uptake studies with these formulations is highly limited—many 
formulations have not yet been evaluated, while the two reviewed studies utilized SH-SY5Y cells 
exclusively (Table 4). Moreover, preclinical oncologic studies with these formulations yielded 
promising general outcomes, but few specific details and limited mechanistic insights. A large 
proportion of the mentioned formulations exhibit confirmed efficacy in only one NB cell line or one 
type of NB cell line. Curc-SFNs, for example, were only trialed in MYCN-amplified and 11q-aberrated 
Kelly cells, and the curcumin-protein complexes curcumin–BSA, curcumin–casein, and curcumin–β-
lg were trialed exclusively in SK-N-MC cells. Moreover, the demonstrated efficacy of CSSS, C-SLN, 
Tf-C-SLN, C-PBCA, and ApoE3-C-PBCA is limited to SH-SY5Y cells. 

In contrast, Kalashnikova et al. trialed CNP-Cur and Dex-CNP-Cur against both MYCN-
amplified (IMR-32, SMS-KAN) and non-MYCN-amplified (LAN-6, SK-N-AS) cell lines, reporting 
that the nanoparticles exhibit greater effects on the MYCN-amplified cell lines than the non-MYCN-
amplified ones [72]. These results are of particular interest, as MYCN amplification typically enhances 
NB tumorigenesis but does not independently lead to drug resistance [117]. 
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9. Proposed Areas for Further Consideration 

9.1. Repetition of Mechanistic Trials and Synergistic Studies Across NB Cell Lines 

Specific insights on curcumin’s isolated and synergistic anti-NB activities remain relatively 
sparse. In particular, important apoptotic mechanisms such as PTEN, FOXO3a, and Fas-L 
upregulation; ERK 1/2 downregulation; Bex gene induction; several components of mitochondrial 
dysfunction; and caspase 9 activation have each only been reported in a single NB cell line. Among 
these, confirmation of Bex gene induction and ERK 1/2 downregulation is limited to murine Neuro2a 
cells. Similarly, synergy between curcumin and BBR, piperine, cisplatin, and radiotherapy are also 
each limited to one cell line. As such, cross-validation of curcumin’s effects between different types 
of NB cell lines (e.g., murine, human, (non-)MYCN-amplified, (non-)11q aberrated, etc.) is 
significantly lacking. Further experiments are therefore necessary to evaluate the generalizability of 
curcumin’s apoptotic pathways across NB cell lines. 

9.2. Further Testing and Standardization of Curcumin Formulations 

While curcumin formulations are promising, their safety and efficacy, as well as the 
generalizability of their effects across NB cell lines, merit special consideration. As discussed in 
Section 9.1 above, curcumin formulations should be tested on a variety of NB cell lines and types. 
Moreover, each research group or organization currently synthesizes formulations according to its 
own internal procedures. As such, these formulations may vary substantially between laboratories 
and even between different batches from the same laboratory. While curcumin should be further 
investigated as an anticancer agent in NB, it is important to achieve an agreement on one or several 
standardized curcumin formulations before the commencement of clinical trials. 

9.3. Investigation of the Effects of Curcumin on NB Cell Metabolism 

Given recent developments in curcumin delivery systems and their efficacy against NB cell lines 
in primary studies, curcumin is a promising candidate for the clinical treatment of NB. However, 
many more experiments are needed before the introduction of curcumin for clinical trials. In 
particular, the effects of curcumin on NB cell glucose metabolism merit further investigation. 
Cancerous cells notably exhibit altered metabolic processes, which favor aerobic glycolysis over 
oxidative phosphorylation; this is known as the Warburg effect and has been demonstrated in NB 
[84]. Curcumin suppresses the Warburg effect in lung, breast, cervical, and prostate cancer cell lines, 
but this has not been demonstrated in NB [85]. The literature on curcumin and glucose metabolism 
in NB is sparse. D’Aguanno and colleagues reported that curcumin downregulates biosynthesis, 
glucose uptake, glycolysis, and metabolic enzymes specific to glycolysis, such as LDH, ALDOA, 
GAPDH, TPI1, and ENO1 [83]. Notably, epigenetic modifications that occur during tumor 
progression are potentially reversible, with consequent diminishment of the Warburg effect [118,119]. 
These results suggest that the Warburg effect, in which decreased vascularization, nutrient 
deprivation, and hypoxia lead to a tumor microenvironment with low pH, is a reversible process that 
may be targeted by curcumin. These observations could potentially also explain the anabolic and 
catabolic actions of phytochemicals in healthy and tumor cells, respectively. Overall, additional 
studies are necessary to fully elucidate the interactions between curcumin and the Warburg effect in 
NB. 

9.4. Investigation of the Effects of Curcumin on NB Drug Resistance 

Cancer drug resistance is a major detrimental side effect of conventional chemotherapeutic 
regimens. A wide variety of cellular factors, including microRNAs, regulate NB resistance to cisplatin 
and doxorubicin [120,121]. Correspondingly, NB drug resistance tends to increase with the strength 
of chemotherapeutic regimens [117]. In this light, supplementation of such regimens with curcumin, 
a complementary and supportive agent, could theoretically reduce the necessary dosage(s) of 
anticancer drug(s), and thereby decrease cancer drug resistance. However, further combinatory trials 
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of curcumin with anticancer drugs are necessary to characterize curcumin’s potential impact on drug 
resistance. 

9.5. Clinical Trials of Curcumin in NB 

Curcumin has been clinically trialed in combination with chemotherapy against several cancer 
types, such as breast cancer, pancreatic cancer, and chronic myeloid leukemia [122]. Although the 
concept is promising, no clinical trials for curcumin–chemotherapy in NB are available at this time. 
Moreover, in situ factors, including a tumor’s specific location within the body, the tumor 
microenvironment, and tumor homogeneity or heterogeneity, are not easily investigated in vitro. 
However, they could significantly influence curcumin’s clinical efficacy. 

As an independent agent or in conjunction with radiation or chemotherapy, curcumin can 
theoretically be administered in very high doses. Nevertheless, patient convenience and preference 
could be a limiting factor in oral administration, as the safe dosage of 8000 mg per day would 
necessitate the swallowing of sixteen 500 mg capsules per day or an equivalent dose. Despite 
curcumin’s safety and lack of side effects, patients may not be comfortable ingesting such large 
amounts. 

10. Conclusions and Outlook 

Curcumin, a naturally occurring chemical constituent of turmeric, is a promising 
chemopreventive and chemotherapeutic agent for a wide variety of cancers, including NB. In 
physiological systems, curcumin achieves its anticancer effects through the downregulation of 
proliferative Akt and NF-κB signaling, induction of mitochondrial dysfunction and cytochrome c 
release, upregulation of p53, and caspase activation, all of which lead to apoptosis. Curcumin also 
demonstrates synergistic effects with other natural substances, conventional chemotherapeutic 
drugs, and radiation therapy against NB cells. 

Clearly, curcumin, as a multitargeting agent, exhibits strong activity against established tumors, 
with negligible toxicity to normal cells. It, therefore, has a high potential for clinical applications. 
Notable shortcomings, such as single-targeting and adverse toxicity, exist for current chemo- and 
radiotherapy treatments for NB. As such, NB treatment should be combined with more effective or 
safer compounds. Current evidence indicates that multitargeted curcumin may be a safe and highly 
effective supplement in clinical tumor control. In combination with curcumin, lower doses of 
chemotherapeutic drugs and radiation could achieve high antitumor efficacy, as well as low toxicity 
and drug resistance. In addition, curcumin has potential as an agent for safe and effective cancer 
prevention, treatment, and prophylaxis after chemotherapy and radiation. As such, the compound 
may be relevant in preventing tumor recurrence and metastasis. 

Despite curcumin’s anti-NB efficacy, many of its mechanistic and synergistic activities are only 
demonstrated in one or several cell lines at present. As such, further testing and cross-validation with 
various types of NB cell lines is necessary to elucidate the impact of risk factors such as MYCN 
amplification on the efficacy of curcumin treatment. 

Moreover, while curcumin has the potential to attenuate NB progression and counter cancer 
drug resistance, its clinical viability is limited by its poor oral bioavailability, low water solubility, 
and rapid metabolism. Numerous novel curcumin formulations—including nanoparticles, lipid 
carriers, nanosuspensions, and microemulsions—have been proposed to overcome these challenges. 
While pure curcumin is clinically safe and has minimal side effects, further basic and preclinical trials 
are necessary to ensure the safety of novel curcumin formulations. Ultimately, clinical trials could 
support or refute the viability of curcumin as an anticancer agent in NB treatment. 
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Abbreviations 

1,3-BPG 1,3-Bisphosphoglycerate 

2-PG 2-Phosphoglyceric Acid 

5-LOX 5-Lipoxygenase 

Akt (PKB) Akt Serine–Threonine Kinase (Protein Kinase B) 

ALDOA Aldolase 

AP-1 Activator Protein 1 

ApoE3-C-PBCA Apolipoprotein-E3 Curcumin-Loaded Poly(Butyl)Cyanoacrylate (nanoparticles) 

ATP Adenosine Triphosphate 

β-lg βeta-Lactoglobulin 

Bad Bcl-2-Associated Agonist of Cell Death 

Bax Bcl-2-Associated X Protein 

BBR Berberine 

Bcl-2 B-cell Lymphoma 2 

Bex1 Brain-Expressed X-linked (gene) 1 

Bex2 Brain-Expressed X-linked (gene) 2 

Bex3 Brain-Expressed X-linked (gene) 3 

Bex4 Brain-Expressed X-linked (gene) 4 

Bex6 Brain-Expressed X-linked (gene) 6 

Bid BH3-Interacting Domain Death Agonist 

Bim Bcl-2-Interacting Mediator of Cell Death 

BSA Bovine Serum Albumin 

C-NLC Curcumin-Loaded Nanostructured Lipid Carriers 

C-PBCA Curcumin-Loaded Poly(Butyl)Cyanoacrylate (nanoparticles) 

C-SALN Curcumin-Loaded Stearic Acid Lipid Nanoparticles 

C-SLN Curcumin-Loaded Solid Lipid Nanoparticles 

CNP-Cur Cerium Oxide Nanoparticles–Curcumin 

CNS Central Nervous System 

COX-2 Cyclo-Oxygenase 2 

CPZChN Curcumin- and Piperine-Loaded Zein Chitosan Nanoparticles 

CSSS Curcumin-Solubilized Surfactant Solution 

CUR Capmul ME Curcumin Capmul MCM Microemulsions 

CUR DHA ME Curcumin Docosahexaenoic Acid-Rich Microemulsions 

Curc-SFN 1 Curcumin-Loaded Silk Fibroin Nanoparticle Preparation 1 (physical adsorption) 

Curc-SFN 2 Curcumin-Loaded Silk Fibroin Nanoparticle Preparation 2 (coprecipitation) 

DDP Cisplatin-resistant 

Dex-CNP-Cur Dextran–Cerium Oxide Nanoparticles–Curcumin 

DHAP Dihydroxyacetone Phosphate 
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DNA Deoxyribonucleic Acid 

ECM Extracellular Matrix 

EMT Epithelial–Mesenchymal Transition 

ENO1 Enolase 1 

ERK Extracellular-Signal-Regulated Kinase 

Fas (CD95) Fas Cell Surface Death Receptor (Cluster of Differentiation 95) 

Fas-L Fas Ligand 

FBP Fructose 1,6-BiPhosphate 

FLIP FLICE Inhibitory Protein 

FOXO3a Forkhead Box O3a 

G3P Glyceraldehyde-3-Phosphate 

GAPDH GlycerAldehyde-3-Phosphate Dehydrogenase 

Gy Gray 

HIF-1α Hypoxia-Inducible Factor 1 αlpha 

HKII (HK2) Hexokinase II (Hexokinase 2) 

Hsp60 Heat Shock Protein 60 

ICR Institute for Cancer Research 

ICRM ICR Mice 

IL-1 Interleukin 1 

IL-6 Interleukin 6 

iNOS Inducible Nitric Oxide Synthase 

LDH Lactate Dehydrogenase 

LDL-R Low-Density Lipoprotein Receptor 

MMP Mitochondrial Membrane Potential 

mRNA Messenger Ribonucleic Acid 

MYCN N-myc Proto-oncogene 

NB Neuroblastoma 

NF-κB Nuclear Factor κappa Light-Chain Enhancer of Activated B-cells 

p21 (CDKN1A) (Cyclin-Dependent Kinase Inhibitor 1A) 

p27 (CDKN1B) (Cyclin-Dependent Kinase Inhibitor 1B) 

p53 Tumor Protein p53 

PARP-1 Poly(ADP-Ribose) Polymerase 1 

PEP Phosphoenolpyruvate 

PLGA Polylactic-co-Glycolic Acid (nanoparticles) 

PTEN Phosphatase and Tension Homolog 

ROS Reactive Oxygen Species 

SDR Sprague–Dawley Rats 

SLCP Solid Lipid Curcumin Particle 

Tf Transferrin 

Tf-C-SLN Transferrin-Conjugated, Curcumin-Loaded Solid Lipid Nanoparticles 

TNF-α Tumor Necrosis Factor αlpha 

TPI1 Triosephosphate Isomerase 1 
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Tween-NS Tween 80-Coated (Curcumin) Nanosuspension 

WR Wistar Rats 

WT Wild-Type 
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