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Abstract: Chemically unstable natural products are prone to show their reactivity in the procedures of
extraction, purification, or identification and turn into contaminants as so-called “artifacts”. However,
identification of artifacts requires considerable investments in technical equipment, time, and human
resources. For revealing these reactive natural products and their artifacts by computational
approaches, we set up a virtual screening system to seek cases in a biochemical database. The screening
system is based on deep learning models of predicting the two main classifications of conversion
reactions from natural products to artifacts, namely solvolysis and oxidation. A set of result data
was reviewed for checking validity of the screening system, and we screened out a batch of reactive
natural products and their probable artifacts. This work provides some insights into the formations
of natural product artifacts, and the result data may act as warnings regarding the improper handling
of biological matrixes in multicomponent extraction.
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1. Introduction

The large diversity of natural products from one biological source leads to difficulties in
multicomponent extraction. In the black box of exploring undiscovered natural products, options
of handling, storage, or analysis of a biological matrix are often empirical or semiempirical. Under
such circumstances, some chemically unstable molecules are prone to show their reactivity in the
procedures of extracting natural products and turn into contaminants as so-called “artifacts” [1].
The artifacts arise from the products of non-enzymatic reactions during the process of extraction
or purification [2—4]. In most cases, these reactions are between natural products and solvents or
chromatography media [1-4]. On the other hand, oxidation of natural products when exposed to air
or light is also common [3,4]. The revealing of artifacts usually occurs in chemical experiments on a
case-by-case basis, and extensive artifact search and discovery may rely on computational approaches
of virtual screening or data-mining. Few extensive searches have been done because of technical
limitations and deficiency of specialized data resources in natural product chemistry [5,6].

New computational approaches for explorations in chemistry were booming in the last decade,
particularly in the application of machine learning (ML) [7,8]. Researchers applied various algorithms
of ML such as deep learning (DL) to design novel molecules, predict chemical properties, or plan
reaction paths [9-15]. Neural networks were applied to reaction prediction in some studies by ranking
electron sources and sinks or generating reaction fingerprints [10,14]. Further applications regarded
chemical reactions as transformations [13]. The transformations can be considered as translations from
reactants to products, and the “language” being translated is the structural representation of molecules.
In the mechanism insights into the formations of natural product artifacts, we can regard the formations
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as transformations from natural products to artifacts, and we can predict the transformations by
computational approaches. With the advantage of using ML, we might have an efficient and convenient
approach to identify specific classifications of reactions, instead of building complex models. Therefore,
we pursued an exploration of seeking more cases of chemically reactive natural products and their
probable artifacts that have not been documented. We set up a deep-learning-based virtual screening
system for discovering these extraordinary natural products in a specialized data set.

2. Materials and Methods

According to investigation into studies that reported artifacts, the transformations of natural
products to artifacts are reactions in specific classifications (e.g., solvolysis and oxidation) [1-4].
Identifying these reactions means that seeking out reactive natural products (reactants of these
reactions) and their artifacts (products of these reactions) and using computational approaches may be
a better approach than the use of chemical experiments in consideration of investments in technical
equipment, time, and human resources. We herein take advantage of virtual screening, which is
applicable for the task of searching for and discovering exceptional molecules in a database, and use
virtual screening to target reactive natural products. In the theoretical base of the virtual screening
used in this study, the core idea is to determine specific classifications of reactions that cause artifacts.
We realized this conception by using ML to predict probable products of these reactions. If a natural
molecule and its predicted product are derived from the same biological source, we have a theoretical
clue to suspect that the molecule is a reactive natural product and the predicted product is its
artifact. Therefore, we can seek for potential cases by checking for the existence of these reactions
in a specialized data set. The specialized data set used in this study is a biochemical database
(http://www.organchem.csdb.cn/scdb/NPBS) [16]. In this data resource, the relational data (relationship
between a specific biological source and all the natural products derived from it reported by various
studies) includes sufficient natural products from various biological sources. An example of a set of
relational data listed in Table 1 describes 10 natural products from Thalictrum delavayi. More detailed
example data are included in the Supplementary Materials.

We assumed that a small fraction of the natural products were reactive in the process of extraction
and there were corresponding artifacts extracted from the same biological source. In that case, a
reactive natural product and its artifact would probably coexist in a set of relational data (reported by
one or more studies). The reactive natural product and its artifact would form a set of reaction data of a
reactant and a product, and the specific reaction could be predicted by our trained models. According
to the features of the data set, we designed a virtual screening strategy as follows (also as shown in
Figure 1):

1.  Take a set of relational data (a specific biological source and all the natural products derived
from it);

2. Take one of the natural product molecules in this relational data set;

3. Predict its solvolysis and oxidation products by neural network models;

4.  If predictions of the models are successful (or partially successful), match the predicted products
with the other natural product molecules from the same biological source;

5. If a predicted product matches one of the other natural product molecules, label the natural
product and the predicted product as a potential case;

6.  Go through steps 2-5 with all the other molecules in the same relational data set;

7. Go through steps 1-6 with all the other relational data sets and screen out all the potential cases
in the data set.
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Figure 1. Illustration of the virtual screening system for discovering reactive natural products and their

probable artifacts [17,18].
Table 1. Example of a set of relational data: natural products from Thalictrum delavayi.
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In Step 4 of the procedure, the success of predictions is judged based on the validity of the SMILES
strings for molecular structure generated by the models, and the judgment is made by RDKit. In the
vast majority of successful cases, only one model among the models we built generated a valid SMILES
string and could be described as “partially successful”.

Available information on transformations from natural products to artifacts is rare and implicit
in the literature. A set of preliminary data was extracted from studies where such information was
available [1-4]. The preliminary data set is paired with molecules as natural products transform into
artifacts. With the knowledge of these transformations from the preliminary data set, we expanded
analogous transformations to common chemical reactions in specific classifications from a reaction
database [19]. The reactions were classified based on the two main causes of artifacts: solvolysis and
oxidation [1-4]. The reactions of solvolysis are compounds reacted with or in solvents. Solvents or
media such as methanol, ethanol, acetone, dichloromethane, chloroform, and water are commonly
used in natural product extraction [1-3]. The reactions of oxidation are compounds transformed
into oxides with the effect of air, light, or heat [4]. The data set was made up of reactants (except
solvents, catalysts, or other participants) and products (except by-products) from the reaction data set.
We used these data as the training data set for our deep-learning-based approach. For normalization of
the data, the structural representations of reactants and products are canonicalized SMILES strings
using an implicit representation of hydrogen atoms [10,20]. The processed data set is included in the
Supplementary Materials.

Convolutional neural networks (CNNSs) are deep learning architectures well suited to the
translation of variable-length sequences such as text sentences [21,22]; herein, we extrapolate such
techniques to SMILES strings of molecular structures. In the theoretical base of the used virtual
screening, the core idea is to determine the specific classifications of reactions that cause artifacts,
and we realized this conception by using CNN models to predict the probable products of these
reactions. Thus, we applied an attention-based CNN model for predicting the reactions of natural
products to artifacts [23]. We dealt with the transformations of SMILES strings as language translation,
taking the reactants as source sentences and the products as target sentences. The neural network model
conceptually consists of four elements: an encoder of three one-dimensional CNN layers that encodes
the input character sequence, a decoder of three one-dimensional CNN layers that turns the target
sequences into the same sequence but offset by one timestep in the future, attention mechanism layers
that take the outputs of the encoder and decoder, and a decoder of two one-dimensional CNN layers
that decodes the output character sequence, as shown in Figure 2. The input SMILES strings of natural
products are transformed into embedding sets of vectors. The number of vectors equals the number
of unique characters in all input SMILES strings and is provided as an input to the encoder—-decoder
model with attention mechanism. The output SMILES strings are reversed from predicted sequences
by re-embedding.

The models were trained on seven classifications of reaction from the training data set: solvolysis
of methanol, ethanol, acetone, dichloromethane, chloroform, and water and oxidation. The training
data for CNN models were from the reaction data set described above. We split the data set for
cross-validation at random, 80% for training set and 20% for validation set. We took the reactants
of the reaction data as source data, taking the products as target data. The parameters of the neural
networks were chosen according to the performances on the validating set (key hyperparameters of
the best-performing CNN models are listed in Table 2), and other parameters remained unchanged as
default settings of the used neural network architecture [21-26]. We obtained the top percentages of
correctly predicted products in seven classes, as listed in Table 3. We used the best-performing models
to predict the potential transformations of natural products to artifacts. The models were implemented
in Python 3.7 using Keras 2.3 and TensorFlow backend [24-26]. The Python code for generating the
neural network models is included in the Supplementary Materials. We applied RDKit in Python for
generating SMILES strings and processing molecular structures [27].
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Figure 2. (A) Architecture of the neural networks for predicting the reactions of natural products
to artifacts. (B) Illustration of the convolutional neural network (CNN)-based neural networks in
training mode.

Table 2. Key hyperparameters of the best-performing CNN models.

Latent Dimensionality =~ Latent Dimensionality

Class of CNN Model Batch Size  Epoch Optimizer

of Encoding Space of Decoding Space
Solvolysis of methanol 64 100 256 64 Adam
Solvolysis of ethanol 64 500 256 64 Adam
Solvolysis of acetone 64 100 256 64 Adam

Solvolysis of

dichloromethane 64 500 256 64 Adam
Solvolysis of chloroform 64 1000 256 64 Adam
Solvolysis of water 64 500 256 64 Adam
Oxidation 64 500 256 64 Adam

Table 3. Performance of the used CNN models on validation data set.

Class of CNN Model Success Concordance Accuracy
Solvolysis of methanol 88.21% 0.93 75.72%
Solvolysis of ethanol 86.80% 0.87 78.27%
Solvolysis of acetone 98.18% 0.97 87.91%
Solvolysis of dichloromethane 95.00% 0.97 89.64%
Solvolysis of chloroform 88.64% 0.96 85.23%
Solvolysis of water 82.33% 0.86 70.40%
Oxidation 86.86% 0.85 71.07%

Success: percentage of valid SMILES strings for molecular structure generated by the models; Concordance: average
sequence match ratio of target and predicted SMILES strings (0 = totally different, 1 = exact match); Accuracy:
percentage of chemical structure identification (same InchiKey) between target and predicted SMILES strings.

3. Results and Discussion

We first obtained a set of natural products and successfully predicted products from the seven
CNN models. The first result data set consists of molecular information of the natural products
and predicted products, along with the specific CNN model that generated the SMILES strings of
predicted products, that would form a group of reactive natural products and their probable artifacts
with biological source information in our virtual screening system according to the theoretical base
of this work. Results from the virtual screening system were reviewed to check the validity of our
approach and seek positive data. We eventually screened out 118 cases of reactive natural products
and their probable artifacts from the biochemical database. The result data set consists of reactive
natural products, probable artifacts, biological sources, probable causes, and references (data sources
for biological sources and natural products). The complete result data sets and the trained model files
of this work are included in Supplementary Materials. Some of the cases are listed in following figures



Biomolecules 2020, 10, 1486 7 of 11

as discussions of typical examples we found, and the original images of these figures are also included
in Supplementary Materials as ChemDraw files.

As observed from the result data set, natural products with carboxylic groups may react with the common
solvents of alcohols (e.g., methanol and ethanol) (Figure 3). Perilla acid (1a) derived from Pectis elongata
may form methyl perillate (1b) [28,29]. 4-O-Methylorsellinic acid (2a) derived from Usnea longissima may
form its Et ester (2b) [30]. Although ethoxy groups are rare in nature, not all the esterified carboxylic
acids can be seen as artifacts [1]. Tournefolic acid B Et ester (3a) may hydrolyze to tournefolic acid
B (3b) when isolated from the stems of Tournefortia sarmentosa [31]. The homoisoflavonoids derived
from Ledebouria graminifolia may count in 5-hydroxy-3-(4-hydroxybenzyl)-7-methoxychroman-4-one (4a)
and 5,7-dihydroxy-3-(4-hydroxybenzyl)chroman-4-one (4b), and the latter may be a hydrolysate of the
former [32]. Similarly, viridicatin (5b) derived from verrucosum var. cyclopium may be the hydrolysate of
3-methoxy-4-phenylquinolin-2(1H)-one (5a) [33]. Bioassay-guided fractionation of Cryptocarya chinensis may
cause the hydrolysis of 5-hydroxy-3,7,8-trimethoxyflavone (6a) and produce 5-hydroxy-3,7-dimethoxyflavone
(6b) [34]. Erythbidin D (7b) isolated from the roots of Erythrina X bidwillii may be the product of methylation
from erythbidin E (7a) [35]. Similarly, 6-hydroxy-5,6-dihydrochelerythrine (8a) may form angoline (8b) when
isolated from Zanthoxylum nitidum using chromatography [36]. More cases of methylation are included
in the result data set. For example, pseudobaptigenin (14a) isolated from Sophora japonica L. may form
7-O-methylpseudobaptigenin (14b) [37,38]. Natural products containing quinone substructures may react
with nucleophilic solvents (e.g., methanol). 4,6-Dihydroxy-1,5,7-trimethoxy-2-methylanthraquinone (9a)
derived from Chamaecrista greggii may form its methide (9b) [39]. 1,3-Dimethoxy-2-hydroxyanthraquinone
(10a) also may form its methide (10b) [40]. The use of dichloromethane in chromatography may cause the
transformation from 6,7-dihydroxycoumarin (11a) to ayapin (11b) [41]. Acetone may react with natural
product meranzin (12a) and transform it into a probable artifact (12b) when isolated from dried fruitlets of
Citrus grandis [42]. The EtOAc extract of the whole culture medium of Vibrio parahaemolyticus may cause an
unexpected reaction, which can turn 1H-indole (13a) into a probable artifact vibrindole A (13b) [43].
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Figure 3. Some typical cases of reactive natural products and their probable artifacts caused by
solvolysis in the result data set.
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The oxidation of natural products to produce artifacts is also common, as observed from the
result data set, especially in the cases of natural products containing benzylic alcohol substructures
(Figure 4). Fractionation of trunk wood and roots of Esenbeckia almawillian may cause an oxide of
3,3-diisopentenyl-N-methyl-2,4-quinoldione (15b) [44]. Nothapodytines A (16b) may be also an oxide
when isolated from the stems of Nothapodytes foetida [45]. Other cases of oxidation from benzylic
alcohols are herpetolide A (17a), which may form herpetolide B (17b) when extracted from the
seeds of Herpetospermum caudigerum [46], and lophopterol (18a), which may form hopeyhopin (18b)
when isolated from the root of Citrus paradisi [47]. The oxidation of hydroquinones to quinones
is also found in the result data set. Metabolites of Lycopus europaeus may include an oxide of
methyl 7x-acetoxy-11,14-dioxo-8,15-isopimaradien-18-oate (19b) [48]. Ether extract of the seeds of
Clausena lansium may cause the oxidation of lansiumamide C (20a) [49]. Coumarin (21a) may have
an oxidative cleavage reaction when isolated from the roots of Toddalia asiatica, forming a probable
artifact (21b) [50]. Another case of an artifact caused by oxidation is the fractionation of the stem bark
of Tabebuia ochracea ssp. neochrysanta, which may lead to an oxide of naphtho[2,3-b]furan-4,9-diones
(22b) [51].
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Figure 4. Some typical cases of reactive natural products and their probable artifacts caused by
oxidation in the result data set.

4. Conclusions

The architecture of the neural networks (CNNSs) is well suited to the translation of variable-length
sequences, such as text sentences and, as used in this work, the SMILES strings of molecular structures.
However there may be practical limitations for wider chemical spaces, seeing that the CNNs are more
applicable for translation of short sentences [52]. In the case of large molecules or synthetic reactions,
the length of SMILES strings and the complexity of the data space have restricted such techniques,
preventing them from being used in wider applications.
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Although the transformations (or reactions) from natural products to artifacts predicted by neural
networks are restrained to the superficial level, the predictions lacking information related to chemical
mechanism, and the virtual screening strategy relies on relational data and assumptions. The potential
reactivity of molecules determined just by inspection of data may be without chemical proof, and there
are some products of transformations that may not actually be natural product artifacts. For example,
there are some oxidized variants of natural products that are either secondary metabolites themselves
or represent the action of further metabolism in the producing organism in detoxifying a compound
or preparing it for excretion; therefore, it may be arbitrary to suggest that the oxides are all artifacts.
However, the results of this work provide some insights into the formations of natural product artifacts.

Although artifacts are unexpected contaminants, exploiting those transformations may inspire
the synthesis of new chemical diversity. The result data with biological source information can act
as warnings regarding the improper handling of biological matrixes in multicomponent extraction.
This work is far from authenticating the artifacts experimentally, and some of the transformations
seem impossible, but we hope the relationships and information obtained from the specialized data set
provide some knowledge of reactive natural products and their artifacts in natural product chemistry.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/11/1486/s1:
Example of a set of relational data: natural products from Thalictrum delavayi. The data set for training and
validation. The python code for generating and implementing the neural network models. Figures S1-57: Training
accuracy figures of the used models, Figures S8-S14: Scatter plots figures of the used models on validation data
set, the result data sets, the ChemDraw files of original images. Some typical cases of reactive natural products
and their probable artifacts caused by solvolysis and oxidation in the result data set.
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