Supplementary materials

New Lipidyl-Cyclodextrins Obtained by Ring Opening of Methyl Oleate Epoxide using Ball Milling

Estefania Oliva¹, David Mathiron², Sébastien Rigaud², Eric Monflier³, Emmanuel Sevin⁴, Hervé Bricout³, Sébastien Tilloy³, Fabien Gosselet⁴, Laurence Fenart⁴, Véronique Bonnet¹, Serge Pilard² and Florence Djedaini-Pilard^{1*}

- ¹ LG2A UMR CNRS 7478, Université de Picardie Jules Verne, 80039 Amiens Cedex, France ; florence.pilard@upicardie.fr
- ² Plateforme Analytique, Université de Picardie Jules Verne, 80039 Amiens Cedex, France ; serge.pilard@upicardie.fr
- ³ Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181 UCCS Unité de Catalyse et Chimie du Solide, F-62300 Lens, France ; eric.monflier@univ-artois.fr
- ⁴ LBHE EA 2465, Université d'Artois, rue Jean Souvraz, 62307 Lens Cedex France ; laurence.tilloy@univartois.fr

Figure S1: ESI+-HRMS (a), ¹H NMR (b) and ¹³C NMR spectra (c) of β -CD(C₉)₂OOMe 1.

Figure S2: ESI+-HRMS (a), ¹H NMR (b) and ¹³C NMR spectra (c) of α -CD(C₉)₂OOMe 2.

Figure S3: ESI+-HRMS (a), ¹H NMR (b) and ¹³C NMR spectra (c) of γ -CD(C₉)₂OOMe 3.

Figure S4: ESI⁺-HRMS (a), ¹H NMR (b) and ¹³C NMR spectra (c) of HP-α-CD(C₉)₂OOMe 4.

(c) ¹³C NMR (151 MHz, Pyridine-d₅) δ (ppm): 174.3 (C=O), 105.0-100.0 (C₁), 85.4-78.0 (C₄), 75.7-66.2 (C₂, C₃, C₅), 62.4-61.3 (C₆), 51.6 (-OCH₃), 35.0-23.1 (CH₂ (alkyl chains)), 21.1-19.9 (CH₃ (hydroxypropyl group)), 14.6 (CH₃).

Figure S5: ESI⁺-HRMS (a), ¹H NMR (b) and ¹³C NMR spectra (c) of HP-β-CD(C₉)₂OOMe 5.

(c) ¹³C NMR (151 MHz, Pyridine-d₅) δ (ppm): 174.3 (C=O), 104.6-98.9 (C₁), 86.0-78.4 (C₄), 75.8-65.6 (C₂, C₃, C₅), 63.0-60.2 (C₆), 51.7 (-OCH₃), 34.9-22.7 (CH₂ (alkyl chains)), 20.9-19.6 (CH₃ (hydroxypropyl group)), 14.6 (CH₃).

Figure S6: ESI+-HRMS (a), ¹H NMR (b) and ¹³C NMR spectra (c) of HP-γ-CD(C₉)₂OOMe 6.

Figure S7: ESI⁺-HRMS (a), ¹H NMR (b) and ¹³C NMR spectra (c) of α -CD(C₉)₂OOH 7.

Figure S8: ESI⁺-HRMS (a), ¹H NMR (b) and ¹³C NMR spectra (c) of β -CD(C₉)₂OOH 8.

Figure S9: ESI⁺-HRMS (a), ¹H NMR (b) and ¹³C NMR spectra (c) of γ-CD(C₉)₂OOH 9.

Figure S10: ESI⁺-HRMS (a), ¹H NMR (b) and ¹³C NMR spectra (c) of HP- α -CD(C₉)₂OOH 10.

Figure S11: ESI+-HRMS (a), ¹H NMR (b) and ¹³C NMR spectra (c) of HP-β-CD(C₉)₂OOH 11.

Figure S12: ESI+-HRMS (a), ¹H NMR (b) and ¹³C NMR spectra (c) of HP-γ-CD(C₉)₂OOH 12.

Figure S13: ¹H NMR spectra of methyl oleate (a) and of epoxidated methyl oleate (b) (400 MHz, CDCl₃, 298 K).

Figure S14: ESI⁺-MS spectra of the ball milling reaction medium of the methyl oleate epoxide opening with the β -CD assisted by APTS (a) and H₂SO₄ (b). The spectra highlight the presence of the expected grafted species and also the starting materials (epoxide, β -CD).

Figure S15: ESI⁺-MS/MS spectra of the [M+Na]⁺ ions of DS=2 (a) and DS=3 (b) species of β -CD(C₉)₂OOMe 1 obtained from ball milling.

Figure S16: ESI⁺-MS spectrum of the of HP β -CD(C₉)₂OOMe **5** obtained from ball milling, showing mono (green), di (red) and tri (blue) grafted species.

Figure S17: ¹³C NMR spectra of β-CD(C_9)₂OOH 8 (a) and of β-CD(C_9)₂OOMe 1 (b) (151 MHz, pyridine-D₅, 298 K).

Figure S18: 13 C NMR spectra of methyl oleate epoxide (a), β -CD(C9)2OOMe 1 (b) and β -CD native (c)
(151 MHz, pyridine-D5, 298 K).

Figure S19:2D NMR spectra of 1: HSQC (a), COSY (b) and HMBC (c) (600 MHz, pyridine-D₅, 298 K).

12 isomers because of the 3 different possibilities for the CD moiety:

Figure S20: Opening reaction of epoxide by free cyclodextrin.

0907	19-EO193-LCMSMS-PO	OS-2 516 (3.964	•) 2072					2: TOF	MSMS 1469	.91ES+
100	1	497	.3073							3.8665
	(a) ³⁴ 185.0392	47.0925	509.1467 659 510.1496	.3614 671.2004 821 672.2043	.4158 834.2597	983.4694	1145.5228	1307.5758	1469.6305	5 •••• m/z
0007	100 200 300) 400 5	00 600	700 80	0 900	1000	1100 1200	1300 2: TOE	1400 1500 MSMS 1460) 01ES+
100-		497	3072					2.10	1031013 1409	4.24e5
	34 185.0387	47.0925 348.0959	509.1464 659 510.1490	.3613 671.2013 ₈₂₁ 672.2040	.4155	983.4702	1145,5247	1307,5779	1469,6313	3
0-	100 200 300) 400 5	00 600	700 80	0 900	1000	1100 1200	1300	1400 150	m/z)
0907	19-EO193-LCMSMS-P0	OS-2 226 (1.756 497	600 000 6) 3070	100 00		1000	1100 1200	2: TOF	MSMS 1469	.91ES+ 1.97e5
100- 	34 185.0391 335.245	47.0927	509.1471 659 510.1495	.3616 671.2014 821 672.2050	.4174 822.4203	983.4717	1145.5225	1307,5789	1469.6334	i TTTT m/z
	100 200 300) 400 5	00 600	700 80	0 900	1000	1100 1200	1300	1400 1500	0
0907	19-EO193-LCMSMS-PO	DS-2 194 (1.505	5) 3068					2: TOF	MSMS 1469	.91ES+
100	34	497 47.0923 348.0953	509.1462 510.1497	.3615 671.2026 821 672.2037	.4153	983.4703	1145.5244	1307 5792	1469.6326	2.20e5
0-	100 200 300		44 00 600	700 80	. 0 900	רייין <i>, אין היי</i> ין 1000	1100 1200	1300		m/z)

_							
0907	19-EO193-LCMSMS-P	OS-2 720 (5.525	5)				2: TOF MSMS 1469.91ES
100-	1		659.	3629			2.016
	(h)	497.	3076				
	(0)		509.1467	821	.4168		
∎ %-		17 0000	17	660 3657			
	3	47.0930		000.3037	822.4193 98	3.4711	1460 6324
	185.0392	425.2846	510.1501	672.2050	ĥ	985.4772 ^{1145.5242}	1307.5771
0-	100 200 30	0 400 5	00 600	700 800	900	1000 1100 1200	1300 1400 1500
0907	19-E0193-LCMSMS-P	OS-2 627 (4.815	5)			1000 1100 1200	2: TOF MSMS 1469.91ES
100-	1		659.	3627			1.596
		497.	3075				
	-		509.1466	821	.4167		
~	3	47 0930		660.3655			
	Ĭ		510 1494	1070 0044	822.4192 98	3.4703	1469 6328
	185.0395	425.2848	510.1434	672.2041		985.4763 1145.5247	1307.5773
0-	100 200 30	0 400 5	00 600	700 800) 900	1000 1100 1200	1300 1400 1500
0907	19-EO193-LCMSMS-P	OS-2 417 (3.212	?)				2: TOF MSMS 1469.91ES
100-	1		659.	3629			1.61e
		497.	3075				
	-		509.1469	821	.4165		
~	3	47.0928	lí	660.3658	022 4101 00	2 4709	
			510.1498	672 2036	622.4191 96	005 4762 1145.5243	1469.6322
0-	185.0393	425.2848	IK.		<u>ц</u>	985.4703	1307.5786 m/
Ŭ	100 200 30	0 400 5	00 600	700 800	000 0	1000 1100 1200	1300 1400 1500
0907	19-EO193-LCMSMS-P	OS-2 384 (2.965	5)	0000			2: TOF MSMS 1469.91ES
100-	1	107	0070	.3626			1.526
		497.	3072				
	1		509.1465	821	.4163		
~	3	47.0928	lí	660.3652	000 4404 08	3 4704	
	Ĭ	1	510,1491	672 2041	022.4191 90	005 4755 1145.5234	1469.6323
0	185.0392	425.2841	IK.	2.2041		985.4755	1307.5786
0	100 200 30	0 400 5	00 600	700 800) 900	1000 1100 1200	1300 1400 1500

Figure S21: ESI*-MS/MS (95 eV) spectra of the twelve DS=1 isomers ([M+Na]* m/z 1469.63) of **1** allowing the distinction of 3 groups of regioisomers. **(a)** Blue (Rt 3.49, 3.40, 1.54 and 1.31 min), **(b)** Red (Rt 5.07, 4.38, 2.87 and 2.64 min) and **(c)** Black (Rt 8.07, 7.92, 7.49 and 7.35 min).

2 Figure S22: [M-H]⁻ reconstituted ion chromatograms of 2 : DS=1 m/z 1283.58 (a) 1 DS=1 m/z 1145.63 (b) and 3 3 DS=1 m/z 1607.68 (c).

1

7 8

4

Biomolecules 2020, 10, x; doi: FOR PEER REVIEW

9

Figure S24: ¹⁴C-Sucrose permeability (Pe) and apparent permeability (Papp) assessment in two in vitro models
treated with different concentrations of 3. DMSO 10% was used as positive control of biological barrier
disruptions. Bars represent the mean of 6 filters + standard error of the mean. (a) represents the Pe of ¹⁴C-

13 Sucrose in the BLECs model and (b) represents the Papp of ¹⁴C-Sucrose in the intestinal Caco-2 model

14

15 16

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).