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Abstract: Fragment screening is a powerful tool to identify and characterize binding pockets in
proteins. We herein present the results of a proof-of-concept screening campaign of a versatile 96-entry
fragment library from our laboratory against the drug target and model protein human carbonic
anhydrase II. The screening revealed a novel chemotype for carbonic anhydrase inhibition, as well as
less common non-covalent interaction types and unexpected covalent linkages. Lastly, different runs
of the PanDDA tool reveal a practical hint for its application.

Keywords: human carbonic anhydrase II; fragment screening; 96-compounds fragment library; ZnII
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1. Introduction

Fragments have become an indispensable tool for lead generation in early state drug discovery.
The small molecular weight and thereby low molecular complexity, combined with a comparably
high degree of functionalization, renders them ideal probes for protein pockets [1,2]. The binding
of fragments is usually weak, due to the small number of possible interactions [3–6]. However,
these interactions are generally of high quality, as the low molecular complexity of the fragments
enables an optimal orientation within the binding site, and thus facilitates supreme geometrical
complementarity between the interacting functional groups of fragment and target, while the risk of
deteriorating repulsive interactions of non-optimally placed moieties is reduced [3–6]. Additionally,
they enable, despite the screening of a considerably smaller number of probe molecules, a more efficient
coverage of chemical space than drug-like compounds, which increases the possibility of finding a
hit in a lead-finding effort with a well-designed fragment library [4–7]. Detected fragment hits are
subsequently elaborated into lead compounds by growing, merging or linking, which relies upon
the potentiation of binding affinity upon combination of weak-affinity contributors [3,4,8]. Based
on the considerable knowledge about fragment-based research that our group has amassed over the
years [9–15], a 96-entry fragment library was assembled, to make the utility of fragments available
to the broader public [16]. We tested its versatility in screenings against several established proteins,
among these the well-established drug target and model protein human carbonic anhydrase II (hCAII).
The results of this screen are the subject of the present report.

2. Materials and Methods

2.1. Protein Expression and Purification

hCAII was expressed and purified as described previously [17].
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2.2. Macromolecular Crystallography

Crystals of protein complexes hCAII•1 to hCAII•9 were grown at 18 ◦C in a mixture of a
solution containing 2.70 m ammonium sulfate and 0.1 m TRIS at pH 7.8, which was saturated with
para-chloromercuribenzoic acid (PCMB) and protein solution (c = 10 mg mL−1) in the final expression
buffer (TRIS 0.05 m, pH 7.8). Then, 2 µL of each were mixed on a siliconized cover slip (Jena Bioscience)
and placed on the well (24-well plate, Hampton Research), with silicon grease as sealant and 0.5 mL of
the first solution in the reservoir [17]. Crystals grew within one day. Crystals were soaked at 18 ◦C in a
solution containing 35% (v/v) aqueous PEG 3350 solution (50% w/v), 20% (v/v) sodium chloride solution
1.0 m, 25% (v/v) PEG 400, 10% (v/v) water and 10% (v/v) stock solution of the respective fragment
in DMSO (1.0 m), for 15 h or 3 min. Crystallographic data were collected on beamlines XRD1 of the
ELETTRA synchrotron (Trieste, Italy), P13 operated by EMBL Hamburg at the PETRA III storage ring
(DESY, Hamburg, Germany) and 14.1 and 14.2 at the BESSY II electron storage ring, operated by the
Helmholtz-Zentrum Berlin, Germany [18–20]. Data indexing, integration, and scaling were performed
with XDS and XDSAPP2.0 [21,22]. Model building was carried out in Coot [23], with subsequent
refinement in Phenix [24]. Crystallographic images were created with PyMOL [25]. Diffraction and
refinement data are provided in the Supplementary Materials in Table S1.

2.3. Associated Content

PDB Accession Codes

Crystal structures for protein complexes investigated herein will be released upon publication,
under the PDB codes shown in Figure 1.
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Figure 1. Fragment-sized molecules found in the hCAII crystal structure, comprising library entries
1–8 and the putative cryoprotectant 9. PDB entry codes for the complexes with hCAII are given, as
well as the stereochemical information for the bound enantiomers of compounds 6 and 9; * denotes
the stereocenters.

3. Results

The structural formulas of fragment-sized ligands that were observed as hits in the crystal structure
of hCAII are shown in Figure 1. The complete collection of the 96-entry screening sample can be
found in the Supplementary Materials. Molecules 1–8 are library entries and 1-aminopropan-2-ol
(9) was additionally found by chance in the hCAII active site in the course of the search for a new
cryoprotectant for hCAII crystals.

In total, the screening revealed eight hits in the crystal structures of hCAII. Four of these occupy
the active site by direct (1–3) or indirect (4) coordination to the ZnII cofactor. These comprise two
hydrazides, a chemotype which, to the best of our knowledge, has not been reported for the inhibition
of carbonic anhydrases (CAs) so far. Furthermore, one binder was found on the rim of the active site
(5). Three additional hits were identified in cavities remote from the active site, with 6 mediating a
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contact between two crystal mates and 7 and 8 unexpectedly covalently linked to the N-terminus of the
remainder of the fusion-protein expression tag. Aminoalcohol 9 is not an entry of the library referred
to herein but was found accidentally during an effort to replace the common cryoprotectant glycerol
for other projects [26]. Figure 2 shows an overview of the occupied sites.
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Figure 2. Overview of fragment binding sites. Fragments are shown in orange with omit 2mFo −
DFc maps in blue at 1 σ and mFo − DFc maps in green at 3 σ. Active site binders are shown with
the interacting amino acids in stick representation. Remotely binding fragments are shown with the
surface representation of adjacent protein molecules. Hydrazides 1 (A) and 2 (B) and sulfonamide 3
(C) coordinate to the ZnII cofactor; salicylic acid (4, D) coordinates to the ZnII-bound water molecule.
Anilide 5 (E) is accommodated in a hydrophobic cavity on the rim of the funnel-shaped active site,
which is covered by a proline residue of a symmetry mate and additionally entraps a water molecule.
Cyclic carbamate (S)-6 (F) coordinates to the C-terminus and a Trp sidechain and donates a hydrogen
bond to the PCMB molecule of a symmetry mate. Fluorinated compound 7 (G) and pyrazole 8 (H) are
covalently attached to the remainder of the fusion-protein tag from protein expression.



Biomolecules 2020, 10, 518 4 of 11

4. Discussion

4.1. Active-Site Binders

Hydrazides 1 and 2 occupy the active site of hCAII and coordinate the ZnII cofactor with the
Nβ and carbonyl O-atom of the hydrazide function, which results in a pentacoordinated cofactor.
The second methyl group of fragment 2 was not visible in the electron density. The phenyl rings are
involved in a π-interaction with the side chain of Leu198. Notably, the coordination geometry enables
a hydrogen bond between Nβ of the hydrazide group and the side chain hydroxy function of Thr199.
This entails a different orientation of the phenyl moiety compared to the complex of hCAII with its
prototypical inhibitor benzenesulfonamide 10 (BSA) [17], and triggers a flip of the sidechain of Leu198,
which was also observed in the complex of hCAII with N-hydroxybenzamide (11) by Di Fiore et al.
(Figure 3) [27].
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Figure 3. (A) Chemical formulas of prototypical hCAII inhibitor benzenesulfonamide (BSA, 10) and
N-hydroxybenzamide (11). (B) Comparison of crystal structures of hydrazide fragment 1 (orange) and
BSA (10, purple, 6GDC [17]) and the respective side chains of Leu198. (C) Comparison of 1 with the
analogous N-hydroxybenzamide 11 (teal, 4FL7) [27].

Unsurprisingly, sulfonamide 3 can be expected to bind to hCAII, and does so with the conventional
geometry. Salicylic acid (4) binds in a fashion that was observed previously for other hydroxybenzoic
acids in complex with hCAII. Its carboxylate function interacts via a hydrogen bond with the
ZnII-bound hydroxide ion/water molecule. It furthermore interacts with the side chain of Thr200,
a state similar to the pre-binding S-state defined by Gaspari et al. for the binding of BSAs to hCAII and
already observed by Martin and Cohen for variously hydroxylated benzoic acid derivatives [28,29].
Surprisingly, aminoalcohol 9, notably only its (R)-enantiomer, is found to occupy the active site. Indeed,
sulfonamides are known to bind hCAII as anions, which can be expected to account for the better
part of their high affinity for this specific enzyme [30]. Fragment 9 can be assumed to be protonated
under the experimental conditions used in the production of the crystal of hCAII-9 (6SDJ), so the
loss of one proton to liberate a lone pair is required before binding. However, it seems unlikely that
the primary amine functionality of 9 should lose a second proton to bind as anion. This assumption,
combined with the lack of an aromatic π-system which distinctly contributes to the affinity of 10 and
its derivatives, suggests a minor affinity of (R)-9 [31]. However, rac-9 was investigated as a putative
novel cryoprotectant for hCAII crystals and thus was used in a considerable concentration of 2.6 m,
which would compensate for a lack of affinity. Due to its small size and supposedly weak affinity, 9
falls in line with the so-called MiniFrags presented by O’Reilly et al. and impressively demonstrates
the capability of weakly binding organic chemical probes to map binding-site properties and to further
increase our understanding of protein binding pockets, e.g., with respect to their chiral preferences [32].
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4.2. Remote Binders

Primary amine 5 was found to occupy a hydrophobic cavity on the rim of the active site funnel (see
Figure S1 in the Supplementary Materials). It is held in place by a charge-assisted hydrogen bond with
the side chain of Asp72 and furthermore interacts with two water molecules. One mediates a contact
between the anilide N-atom and the side chain of Glu69 (W1); the other (W2) is entrapped between
the fragment’s primary amine function and the carbonyl oxygen atom of the amide. Additionally,
the phenyl ring interacts with the side chain of Ile91 via the π-system, which is furthermore involved
in an interaction with the sidechain of Pro237 of a symmetry-related mate. Moreover, an interaction
between a lone pair of the carbonyl oxygen atom of the symmetry mate’s amide bond between Pro237
and Glu236 and the fragment’s acetamide group in a fashion similar to the Bürgi–Dunitz trajectory
can be inferred [33–35]. Thus, the binding of 5 is likely irrelevant for drug discovery, as its binding is
enabled by the crystal packing, rather than by genuine affinity for the position on the rim of the hCAII
active site.

Fragment 6 was used as racemate. The (S)-enantiomer was found to bridge the gap between
C-terminus and the sidechain of Trp192. Furthermore, the secondary amine is likely protonated and
interacts with the carboxylate function of the crystallization agent PCMB of a symmetry-related mate.

4.3. Covalently Attached Fragments

Unexpectedly, fragments 7 and 8 were found to be covalently bound to Gly-4, which is part of the
remnants of the N-terminal fusion protein expression tag. Curiously, 7 is linked to the N-terminus,
via an unknown atom that is distinctly visible in the electron density. Given the circumstance that
the soaking conditions contained a high amount of polyethylene glycol (PEG) 400, the linker can
reasonably be assumed to be a methylene unit, which was installed by incorporation of one molecule of
formaldehyde, which is known to be present in solutions containing PEG 400 [36]. A possible reaction
is shown in Scheme 1.
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Scheme 1. Possible mechanism for the reaction between the N-terminus of the hCAII-expression tag
protein with 7. The N-terminal primary amine reacts with formaldehyde under loss of water to yield
an imine. This in turn is nucleophilically attacked by 7 with concurrent proton transfer to yield the
final protein-small-molecule hybrid.

Fragment 7 itself is involved in some interesting interactions (see Figure S2 in the Supplementary
Materials). It is known that the S-atom of a Met side chain is often found in the vicinity of π-donors such
as aromatic rings and amide bonds, with which it engages mostly through dispersive interactions [37].
Especially the nucleobase adenine is often found in the company of Met side chains in crystallographic
models. While the π -system of adenine is distributed over the whole molecular scaffold, this cannot
be the case for compound 7, given its three CH2 units. However, the hydrazinecarboximidamide
substructure and the difluorophenyl moiety, which are connected by a Csp2 atom, provide an extended
π-system that can be expected to act as binding partner for the S-atom of the Met side chain. Given the
comparably close distance of 3.3 Å between the Oδ1 atom of the side chain of Asp71 of a symmetry
mate and the covalently linked N-atom of 7, an interaction can be inferred, which resembles that
between an Asp side chain and the positively charged aromatic scaffold of a false-positive fragment
screening hit against endothiapepsin, discovered by Cramer et al. [15] It is reasonable to assume that,
in fact, a charged interaction is formed, given that the hydrazinecarboximidamide substructure can be
considered basic, thus bearing a positive charge that can be distributed over several atoms (Scheme 2),
which will furthermore be beneficial for the interaction between 7 and the S-atom of Met1.
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Furthermore, the side chain of Ser73 of the symmetry mate might interact with the N3 atom of 7
that is involved in the delocalization of a putative positive charge. An interaction that is often found for
fluorinated compounds is the interaction between an F-atom and an amide bond [38]. The para-F-atom
of 7 exerts such an interaction with the amide bond between Gln158 and Lys159 in a symmetry mate, at
a distance of 3.2 Å. Furthermore, the distance of 3.2 Å between the meta-F-atom of 7 and the Cδ2-atom
of Leu57 of a different symmetry mate is in the same range as the sum of the van der Waals radii of an
aliphatic C-atom and an aromatically bound F-atom of 3.17 Å [39]. Given the unusual observation
of a linkage between the protein and ligand, it was tried to reproduce the binding of 7 in a 1.50 m
trisodium citrate solution, both with and without the presence of DMSO. The latter salt is a well-known
preservative added to prevent decomposition or undesirable chemical changes of pharmaceutical
products. Figure 4 clearly shows that 7 is not found in the site described above in either condition.
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Figure 4. Close-up of the binding site of 7 with electron density maps shown at 1 σ (2mFo-DFc, blue)
and 3 σ (mFo-DFc, green). (A) Crystal structure of fragment 7 and putative methylene unit as covalent
linker to the N-terminus, as refined in 6S9Z with omit electron density maps. (B) Structure obtained
from a crystal soaked in the above trisodium citrate conditions in presence of DMSO. Fragment 7 and
the putative methylene unit from 6S9Z, as shown in (A), are superimposed. Electron density maps are
shown after automated refinement and indicate that 7 does not bind under these conditions. (C) Same
as (B), but for a crystal soaked in the above trisodium citrate conditions in the absence of DMSO.

Fragment 8 is also covalently attached to Gly-4 but without a linker. Rather, a chemical reaction
involving only fragment and protein might have occurred through two possible pathways. Either, the
primary amine of Gly-4 replaces the protonated primary amine function of 8, or the reaction proceeds
vice versa (Scheme 3).



Biomolecules 2020, 10, 518 7 of 11

Biomolecules 2020, 10, x 6 of 11 

 
Scheme 2. Protonation of the small-molecule moiety of the hCAII–7 hybrid and possible resonance 
structures. R represents the difluorophenyl substituent. 

Furthermore, the side chain of Ser73 of the symmetry mate might interact with the N3 atom of 7 
that is involved in the delocalization of a putative positive charge. An interaction that is often found 
for fluorinated compounds is the interaction between an F-atom and an amide bond [38]. The para-
F-atom of 7 exerts such an interaction with the amide bond between Gln158 and Lys159 in a 
symmetry mate, at a distance of 3.2 Å. Furthermore, the distance of 3.2 Å between the meta-F-atom 
of 7 and the Cδ2-atom of Leu57 of a different symmetry mate is in the same range as the sum of the 
van der Waals radii of an aliphatic C-atom and an aromatically bound F-atom of 3.17 Å [39]. Given 
the unusual observation of a linkage between the protein and ligand, it was tried to reproduce the 
binding of 7 in a 1.50 M trisodium citrate solution, both with and without the presence of DMSO. The 
latter salt is a well-known preservative added to prevent decomposition or undesirable chemical 
changes of pharmaceutical products. Figure 4 clearly shows that 7 is not found in the site described 
above in either condition.  

 
Figure 4. Close-up of the binding site of 7 with electron density maps shown at 1 σ (2mFo-DFc, blue) 
and 3 σ (mFo-DFc, green). (A) Crystal structure of fragment 7 and putative methylene unit as covalent 
linker to the N-terminus, as refined in 6S9Z with omit electron density maps. (B) Structure obtained 
from a crystal soaked in the above trisodium citrate conditions in presence of DMSO. Fragment 7 and 
the putative methylene unit from 6S9Z, as shown in A, are superimposed. Electron density maps are 
shown after automated refinement and indicate that 7 does not bind under these conditions. (C) Same 
as B, but for a crystal soaked in the above trisodium citrate conditions in the absence of DMSO. 

Fragment 8 is also covalently attached to Gly-4 but without a linker. Rather, a chemical reaction 
involving only fragment and protein might have occurred through two possible pathways. Either, 
the primary amine of Gly-4 replaces the protonated primary amine function of 8, or the reaction 
proceeds vice versa (Scheme 3). 

 

Scheme 3. One possible mechanism for the reaction between the N-terminus of the remainder of the 
expression tag of the hCAII-fusion protein with 8. Under the assumption of a protonated N-terminal 

Scheme 3. One possible mechanism for the reaction between the N-terminus of the remainder of the
expression tag of the hCAII-fusion protein with 8. Under the assumption of a protonated N-terminal
primary amine, the primary amine of compound 8 replaces the N-terminus, putatively in an SN2
reaction, given the electron withdrawing nature of the adjacent amide bond omitted here.

The presence of both 7 and 8 in this spot can be an indicator for the favorable accommodation
of (aromatic) π-systems. Notably, the sidechain of Met1 is not visible in the presence of 8 and might
suggest that the π-system of 8 is too small to interact favorably. Furthermore, protonation of the
heterocycle is unlikely, given its comparably high acidity (pKa = 2.49 at 25 ◦C [40]), which prevents the
formation of a charged interaction with Asp71.

4.4. Pan-Dataset Density Analysis

The weak population of binding sites results in a weak density for the bound ligand, which renders
its identification by visual inspection of the electron-density maps firstly speculative, and secondly
highly tedious, if not impossible. For a sufficiently large number of crystallographic datasets of the
same protein, it is nowadays possible to unveil such binding events by the pan-dataset density analysis
(PanDDA) method [41]. PanDDA, in short, relies on a density ‘ground-state’, which is generated as
an average of the datasets included in the analysis [41]. A proportion of the ground-state is then
subtracted from each individual dataset to reveal ‘changed states’, such as ligand binding [41]. The
hCAII datasets collected in the course of the above fragment-screening campaign were subjected to
PanDDA. Surprisingly, only fragments 1, 4 and 5 out of the eight identified hits and no additional
binding events were found in this analysis, although visual inspection after a run of the in-house
automated refinement pipeline described in reference [12] clearly identified the residual five binders.
A putative explanation for the low success rate could have been a non-optimal averaging of datasets
to produce the ground-state model. Possibly, this was caused by the fact that soaking times ranged
from 15 h at most to three min minimum across the investigated crystals. This became necessary,
as we observed that the exposition of crystals to several fragments led to partial or even complete
loss of diffraction power, often without visible degradation of the crystals. Such a distinct difference
in soaking time can be expected to cause differences, e.g., in the degree to which a binding site that
accommodates solvent molecules in the apo-state is occupied by a fragment. Therefore, a PanDDA
run was carried out only with datasets from crystals that had been submerged in the soaking drop for
15 h, which resulted in the detection of fragments 1–5 and 7. This analysis still missed fragment 8,
but supports the hypothesis of the influence of deviating soaking times on electron density. However,
analysis considering datasets soaked for only 3 min revealed not a single hit but should at least have
identified fragment 6. Figure 5 shows the PanDDA event maps for the identified binding events, based
on the 15 h soaking exposure.
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5. Conclusions

The active site of hCAII is occupied by four out of 96 possible compounds, three of which directly
coordinate to the ZnII cofactor. Compounds 1 and 2 are, although not surprisingly, found given the
inhibitory action of the structurally highly similar N-hydroxybenzamide, to the best of our knowledge
the first hydrazide inhibitors of hCAII deposited in the PDB. Although probably not relevant for
medicinal chemistry purposes, the binding of four additional fragments in various sites enabled by
crystal packing partially revealed that this fragment library is also suited to explore binding sites that
feature less common binding partners such as the sulfur atoms of Met and Cys side chains. It has the
potential to reveal possibilities for interactions that might not be initially apparent, such as interactions
between amide bonds, as for 5, or the interactions between fluorine atoms and either amide bonds or
aliphatic groups. A PanDDA run of all 96 datasets showed a low success rate of only three identified
events, out of eight bound fragments that were found by visual inspection of the electron density
maps after an automated refinement. A differently assembled PanDDA run, with a subset of datasets
obtained from crystals that were all soaked for 15 h, showed an increased number of identified binding
events of six bound fragments, and thereby supports the notion, that different soaking times impact the
electron density distribution distinctively in crystals. An explanation for this might be that a soaking
time of 15 h is sufficiently long to enable full equilibration of all unit cells with ingredients from the
surrounding medium. In this context, the unsuccessful recovery of a known binder from a subset of
datasets that were exposed to the soaking medium for a drastically shorter period of only three minutes
means that the equilibration of the crystal with the soaking drop had not been accomplished. This can
be expected to result in distinct differences in the distribution of electron density across unit cells and to
be increasingly pronounced with increasing crystal size. This last reasoning would furthermore entail
not only drastic differences within one, but across several crystals, and might well be an explanation
for the unsuccessful PanDDA run, with datasets obtained after a soaking period of 3 min.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/4/518/s1,
Figure S1: Binding mode of Fragment 5, Figure S2: Binding mode of Fragment 7, Figure S3: Binding mode of
Fragment 8, Table S1: Crystallographic data, Table S2: Structural formulas of screened fragments in the 96-entry
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library; Identified hits are colored in orange and referenced by the numbers used the main article; blue coloring
indicates a soaking time of 15 h and green coloring a soaking time of 3 min of the individual fragments.
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