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Figure S1. Effects of knockdown of activin/TGF-β type 1 receptors in INA-6 myeloma cells. To check for 

a possible involvement of the activin/TGF-β type 1 receptors ALK4, ALK7, or ALK5 in activin-induced 

activation of the two different SMAD branches, we did transient knockdown with siRNA targeting these 

receptors in INA-6 myeloma cells. The cells were treated 2 days post transfection with activin A (50 

ng/mL) or activin B (10 ng/mL) for 2 hours. ALK4, ALK7 or ALK5 mRNA levels (a-c, left) were measured 

by PCR using the comparative Ct method and GAPDH as housekeeping gene. The graph represents 

mean±s.e.m. of n=3 independent experiments. Two-tailed, paired t-test was performed (*P≤0.05, 

**P≤0.01, ****P≤0.0001). The effect of reduced ALK4, ALK7, or ALK5 mRNA on relative activin A- or 

activin B-induced activation of SMAD1/5 (a-c, middle) or SMAD2 (a-c, right) was calculated based on 

signal intensities of the SMADs and GAPDH for normalization. The graphs represent mean±s.e.m. of 

n=3 independent experiments. Two-way ANOVA, Bonferroni’s multiple comparisons test was 

performed (*P≤0.05, ***P≤0.001, ns (not significant) P>0.05).   
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Figure S2. Effects of ALK2 knockdown in HepG2 cells. To check for a possible involvement of the BMP 

type 1 receptor ALK2 in activin-induced activation of the two different SMAD branches, we did transient 

knockdown with siRNA targeting ALK2 in HepG2 cells. The cells were treated the day after transfection 

with activin A (20 ng/mL) or activin B (60 ng/mL) for 1 hour. The effect of reduced ALK2 mRNA on 

relative activin A- or activin B-induced activation of SMAD1/5 (a) or SMAD2 (b) was calculated based 

on signal intensities of the SMADs and GAPDH for normalization. The graphs represent mean±s.e.m. of 

n=5 independent experiments. Two-way ANOVA, Bonferroni’s multiple comparisons test was 

performed (*P≤0.05, **P≤0.01, ns (not significant) P>0.05). (c) ALK2 mRNA levels were measured by PCR 

using the comparative Ct method and GAPDH as housekeeping gene. The graph represents mean±s.e.m. 

of n=5 independent experiments. A two-tailed, paired t-test was performed (**P≤0.01). 
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Figure S3. Activin-induced SMAD activity was not caused by an autocrine TGF-β loop. IH-1 (a) and 

INA-6 (b) cells were treated with activin A (20 ng/mL for IH-1 and 50 ng/mL for INA-6) and activin B (4 

ng/mL for IH-1 and 10 ng/mL for INA-6) for 4 h and TGFB1 mRNA was measured by PCR using the 

comparative Ct method and GAPDH as housekeeping gene. The graphs represent mean±s.e.m. of n=3 

independent experiments. One-way ANOVA, Dunnett’s multiple comparisons test was performed (ns 

(not significant) P>0.05). IH-1 cells were treated for 1 h with activin A (20 ng/mL), activin B (4 ng/mL) or 

TGF-β (5 ng/mL) with or without soluble TGFβRII-Fc (10 µg/mL) to look for a possible contribution of 

TGF-β activity on activation of SMAD1/5 (c) or SMAD2 (d). INA-6 cells were treated for 1 h with activin 

A (50 ng/mL), activin B (10 ng/mL) or TGF-β (0.5 ng/mL) with or without soluble TGFβRII-Fc (10 µg/mL) 

to look for a possible contribution of TGF-β activity on activation of SMAD1/5 (e) or SMAD2 (f). The 

graphs represent mean±s.e.m. of n=3 independent experiments. Two-way ANOVA, Bonferroni’s 

multiple comparisons test was performed (*P≤0.05, ns (not significant) P>0.05). 
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Table S1. Approved HUGO gene names for TGF-β family receptors  

Alias name Approved symbol Approved name 

ALK1 ACVRL1 activin A receptor like type 1 

ALK2 ACVR1 activin A receptor type 1 

ALK3 BMPR1A bone morphogenetic protein receptor type 1A 

ALK4 ACVR1B activin A receptor type 1B 

ALK5 TGFBR1 transforming growth factor beta receptor 1 

ALK6 BMPR1B bone morphogenetic protein receptor type 1B 

ALK7 ACVR1C activin A receptor type 1C 

ActRIIA ACVR2A activin A receptor type 2A 

ActRIIB ACVR2B activin A receptor type 2B 

BMPRII BMPR2 bone morphogenetic protein receptor type 2 

TGFβRII TGFBR2 transforming growth factor beta receptor 2 

AMHRII AMHR2 anti-Mullerian hormone receptor type 2 

Gene symbols and names of TGF-β family receptors as approved by the HUGO gene nomenclature committee 

(HGNC, https://www.genenames.org/).  

  



Table S2. TGF-β/SMAD inhibitors; reported inhibitory potential.  

 BMP Type 1 receptors Activin/TGF-β Type 1 receptors 

Name ALK1 ALK2 ALK3 ALK6 ALK4 ALK7 ALK5 

K02288 ++++ ++++ +++ ++++ ++  ++ 

ML347 +++ +++ -     

LDN-193189  ++++ +++ ++ ++  ++ 

SB431542     + + ++ 

RepSox       ++++ 

ZC-47-C95 - - - -   ++ 

The information on IC50 values for K02288, ML347, LDN-193189, SB431542, and RepSox was retrieved from 

various sources.(1-5)  ZC-47-C95 was resynthesized compound 18a (6) retrieved from Novartis. ”+” indicates IC50 

values between 1-10 µM, “++”; between 0.1-1 µM, “+++”; between 0.01-0.1 µM, “++++”; between 0.001-0.01 µM, 

and “-“ >10 µM.  
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