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Abstract: Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor that mediates 
numerous biological processes in all living cells. Multiple NAD+ biosynthetic enzymes and NAD+-
consuming enzymes are involved in neuroprotection and axon regeneration. The nematode 
Caenorhabditis elegans has served as a model to study the neuronal role of NAD+ because many 
molecular components regulating NAD+ are highly conserved. This review focuses on recent 
findings using C. elegans models of neuronal damage pertaining to the neuronal functions of NAD+ 
and its precursors, including a neuroprotective role against excitotoxicity and axon degeneration as 
well as an inhibitory role in axon regeneration. The regulation of NAD+ levels could be a promising 
therapeutic strategy to counter many neurodegenerative diseases, as well as neurotoxin-induced 
and traumatic neuronal damage. 
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1. NAD+ Biosynthesis Pathway in C. elegans 
Nicotinamide adenine dinucleotide (NAD+) is found in all living cells and plays an essential role 

in many fundamental biological processes, such as metabolism, cell signaling, gene expression, and 
DNA repair [1]. NAD+ is synthesized through two metabolic pathways, either a de novo pathway or 
salvage pathways. In a de novo pathway, NAD+ can be synthesized from the degradation of the 
essential amino acid L-tryptophan via the kynurenine pathway (Figure 1) [2,3]. The derivatives of the 
kynurenine pathway have been linked to both the progression and protection of neurological 
disorders and neurodegenerative diseases [4]. The kynurenine pathway produces quinolinic acid 
(QA), which is converted to nicotinic acid mononucleotide (NaMN) by QA 
phosphoribosyltransferase (QPRTase) and merges with the Preiss–Handler salvage pathway [5]. QA 
is a known neurotoxin [6,7]; thus, a proper clearing mechanism should be fulfilled by QPRTase. 
Although the de novo pathway is conserved in C. elegans, no QPRTase homolog has been found [8]. 
A recent study showed that the enzyme uridine monophosphate phosphoribosyltransferase (UMPS), 
encoded by the umps-1 gene in C. elegans, possesses QPRTase activity [9]. A lack of umps-1 in C. elegans 
results in decreased levels of global NAD+ and increased steady-state levels of QA, indicating that 
UMPS-1 is required for NAD+ de novo synthesis in place of the missing QPRTase in C. elegans [9]. 
Thus, the de novo NAD+ biosynthesis pathway is functionally conserved in C. elegans. However, the 
neuronal roles of the kynurenine pathway in C. elegans are yet to be determined. 
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Figure 1. The de novo Nicotinamide adenine dinucleotide (NAD+) biosynthesis pathway starts with 
the degradation of the essential amino acid tryptophan via the kynurenine pathway and produces 
quinolinic acid, which merges with the Preiss–Handler salvage pathway and produces NAD+. TDO, 
Tryptophan-2,3-dioxygenase; IDO, Indoleamine-2,3-dioxygenase; KFase, Kynurenine formamidase; 
KMO, Kynurenine-3-monooxygenase; HAAO, 3-hydroxyanthranilate 3,4-dioxygenase; ACMS, α-
amino-β-carboxymuconate-ε-semialdehyde; AMS, α-aminomuconate semialdehyde; ACMSD, 
ACMS decarboxylase; QPRTase, QA phosphoribosyltransferase. Green text: general enzyme names 
or events; red text: C. elegans genes encoding corresponding enzymes. 

Alternatively, NAD+ can be produced from NAD+ precursors, which include nicotinic acid (NA), 
nicotinamide riboside (NR), and nicotinamide (NAM) (Figure 2A–C) [10,11]; the salvage synthesis 
from NA is termed the Preiss–Handler pathway [12,13]. These three compounds are termed vitamin 
B3 or niacin and can be taken up from the diet. These compounds are also produced within cells as 
intermediates of NAD+ biosynthesis. NAD+ is consumed and converted to NAM by various enzymes, 
such as poly(ADP-ribose) polymerases (PARPs), sirtuins, and Sarm1 [8,14]. At least two types of 
NAM salvage pathways are known: vertebrates use a one-step pathway, whereas yeast and 
invertebrates use a two-step pathway. Vertebrates convert NAM into nicotinamide mononucleotide 
(NMN) by Nicotinamide phosphoribosyltransferase (NAMPT), which is then converted to NAD+ by 
Nicotinamide mononucleotide adenylyltransferase (NMNAT) (Figure 2A). In primitive eukaryotes, 
including yeast, C. elegans, and Drosophila, NAMPT activity has not been found [8]. In these species, 
NAM is converted to NA using a nicotinamidase, which then enters the Preiss–Handler pathway 
(Figure 2B,C). 

Despite the presence of the de novo pathway, the salvage pathways are essential in animals. 
Interestingly, in C. elegans, mutants lacking components of the de novo pathway show normal 
viability, while some mutants lacking components of the salvage pathways show lethality. So far, 
two genes are found to be essential for viability, nmat-2 (Nicotinamide Mononucleotide 
AdenylylTransferase-2) and qns-1 (Glutamine-dependent NAD+ Synthase-1) [15]. nmat-2 encodes a 
C. elegans NMNAT homolog, and qns-1 encodes a NAD+ synthase (NADS) homolog. The 
homozygous nmat-2 or qns-1 offspring of heterozygous mutants are viable but sterile, whereas 
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homozygous mutants produce no offspring [15], suggesting that maternally or paternally derived 
NAD+ is likely critical for embryogenesis. In contrast, the other enzymes in either de novo or salvage 
pathways (the protein encoded by tdo-2, afmd-1, kmo-1, haao-1, umps-1, pnc-1, pnc-2, nprt-1, nmat-1, or 
nmrk-1) are found to be non-essential for animal survival, although some mutants show a low 
fecundity. Thus, in C. elegans, NMAT-2 and QNS-1 are likely rate-limiting or nonredundant among 
the components in the NAD+ biosynthesis pathways. 

 
Figure 2. NAD+ biosynthesis pathway in (A) vertebrates, (B) yeast and invertebrates, and (C) C. 
elegans. PARylated, Poly Adenosine diphosphate (ADP)-Ribosylated; ADPR, ADP-ribose; cADPR, 
cyclic ADPR. 
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2. Neuroprotective Effect of NAD+ in C. elegans 

The NAD+ biosynthesis pathway appears to play a role in protecting neurons from damage and 
stresses. Depending on the duration of the harmful stimulus, the types of damage can be classified 
into acute (short-term) and chronic (long-term) injuries (Figure 3A,B) [16]. Acute axon injuries 
physically sever axons into two parts, which can be manifested by transecting neurons or laser-
assisted microsurgical cutting of the individual axons. Chronic injuries result from persistent 
neuronal stresses such as the expression of harmful proteins or hazardous environmental conditions. 
In response to these acute or chronic injuries, neurons may undergo axon degeneration, cell death, or 
axon regeneration. These neuronal responses can vary depending on the types of damage [16]. 

 
Figure 3. C. elegans models of neuronal damage. (A) Acute axon injury by laser-assisted axotomy. (B) 
Chronic neuronal damage models. 

2.1. Acute Axon Injuries 

In an acute axon injury, the axon is severed (axotomy) into two fragments in relation to the cell 
body: a proximal fragment and a distal fragment. The proximal axon fragment may undergo axonal 
regeneration, whereas the distal axon fragment often undergoes a rapid axonal degeneration (Figure 
3A). Axon degeneration is an early feature of most neuronal injuries and is a primary cause of 
functional impairment. The degeneration of axons distal to a lesion site is highly stereotyped and is 
known as Wallerian degeneration [17,18]. In this process, the distal part of an axon first experiences 
a latent phase. It then undergoes a catastrophic fragmentation into numerous pieces, after which the 
pieces are completely removed via a genetically encoded “self-destruction” program [19]. 

Wallerian degeneration is delayed dramatically in (1) the Wallerian degeneration slow (Wlds) 
mutant mice, (2) the Sarm1 null mutant mice, and (3) Nmnat overexpressed mice [20–23], suggesting 
that the Wallerian degeneration is an active molecular mechanism. First, Wlds is a spontaneous 
mutant gene that encodes a fusion protein, WLDs, which likely has a sustained NMNAT activity in 
the cytosol [24]. Second, SARM1 exhibits a NADase activity [25], and SARM1 activation thus reduces 
NAD+ levels and vice versa [26,27]. Third, NMNAT is an NAD+-synthesizing enzyme, and loss-of-
function studies suggest that NMNAT in healthy neurons plays a protective role in inhibiting axon 
degeneration [28,29]. These observations support the idea that sustaining high levels of NAD+ inhibits 
or delays Wallerian degeneration. 

The Wallerian degeneration paradigm has also been studied in C. elegans. Following a laser 
axotomy, C. elegans sensory and motor neurons exhibit an axon degeneration with a morphological 
similarity to the Wallerian degeneration, such as axonal swelling, thinning, breaks, and clearance. 
However, this axon degeneration occurs independently of the WLDs, NMNAT, and SARM1 
pathways because the overexpression of Wlds or the endogenous Nmnat gene, or the lack of Sarm1 (C. 
elegans homolog, tir-1) showed no protective role against axon degeneration [30]. These observations 
suggest that high levels of NAD+ may not inhibit axon degeneration in all neuron types or acute 
injuries. Further experiments are needed to clarify this point. 
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2.2. Chronic Injuries 

Chronic neuronal stressors can cause axon degeneration and excitotoxicity (Figure 3B). Chronic 
stressors include several neurodegenerative diseases and exposure to chronic neurotoxins such as 
heavy metals and chemotherapeutic drugs [31]. Exposure to low levels of chronic excitotoxin may 
result in a slow pathological cascade, axonal degeneration, and pathology. In many neuropathies, the 
axon’s most terminal connections are lost and are termed “dying back degeneration” [32,33]. Severe 
excitotoxicity can result in the initiation of cell death pathways. 

C. elegans is a valuable model for studying the underlying mechanisms of chronic axon injuries. 
The processes of synaptic release, trafficking, and production of neurotransmitters are conserved in 
C. elegans, and the neuronal morphology, changes in gene expression and neurotransmitters, and 
behaviors can be examined. We summarize the function of the C. elegans NAD+ pathway in chronic 
neuronal injuries by stressors, including a genetic model of excitotoxin, several neurodegenerative 
diseases, and exposure to chemotherapeutic agents. 

2.2.1. Genetic Model of Neuronal Excitotoxicity 

Neuronal excitotoxicity is often induced by an excessive release of the neurotransmitter 
glutamate and triggers neurite degeneration and neuronal death [34–36]. Hyperactivation of the 
degenerin channel MEC-4 (MEChanosensory abnormality-4) (MEC-4(d)) can trigger axon 
degeneration and the cell death of C. elegans neurons (Figure 4A) [37]. Stereotypically, axons become 
swollen and later truncated; cell bodies become vacuolated and then disappear. In the mec-4(d) 
excitotoxic model of C. elegans mechanosensory (touch-sensing) neurons, touch response is impaired 
[38]. These defects are rescued by the inhibition of calcium increase and mitochondrial dysfunction 
[38]. In addition, overexpression of NMNAT/NMAT-2 protects the cell body and axons against mec-
4(d)-triggered degeneration, and enables a neuronal function such as touch response (Figure 4B) [38]. 
Here, reactive oxygen species (ROS) are identified as a key intermediate of neuronal degeneration 
triggered by MEC-4(d) stimuli. Interestingly, caloric restriction and systemic antioxidant treatment 
(ROS scavengers such as trolox and ascorbic acid) help decrease oxidative damage and protect both 
cell bodies and axons from mec-4(d)-triggered degeneration. However, it remains to be determined 
how an increase of NMNAT or NAD+ levels is responsible for relieving oxidative damage and playing 
a neuroprotective role. Interestingly, the neuroprotective effects of NMNAT seem to be variable 
according to the type of nerve injuries. In C. elegans, NMNAT is required to inhibit or delay a genetic 
insult-induced chronic axon degeneration, but not an injury-induced acute axon degeneration [30,38]. 
Additionally, the relationships between NAD+ levels and the regulation of calcium signaling also 
remain to be further studied. Advances in live-cell and in vivo imaging technology will allow us to 
track the changes of NAD+ and NAD+ intermediates in different subcellular compartments. They will 
enable us to reveal linkages among NAD+ levels, oxidative stress, calcium surge, and neuron 
degeneration. 
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Figure 4. C. elegans models of chronic neuronal damage. (A) In the mec-4(d) excitotoxic model of C. 
elegans mechanosensory neurons, intracellular calcium increase and mitochondrial dysfunction 
produce oxidative stress, which triggers neurodegeneration and eventually an impaired touch 
response. (B) Relieving oxidative stress with various strategies protects neurons against degeneration 
and rescues touch response defects. 

Another C. elegans study using the mec-4(d) neurotoxic model identifies that a lack of 
mitochondrial sirtuin sir-2.3, homologous to mammalian Sirt4, is protective in neuronal death [39]. 
Sirtuins use NAD+ as a co-substrate in their enzymatic reaction. Interestingly, blocking the NAD+ 
salvage pathway by the knockout of nicotinamidase/pnc-1 protects neurons from another neurotoxic 
model such as hypoxic ischemia with azide at low pH [39]. The neuroprotective effects seen in sir-2.3 
or pnc-1 loss-of-function mutants are not additive, suggesting that sir-2.3 and pnc-1 are in a common 
genetic pathway. pnc-1 mutants display a dramatic increase in NAM levels and a mild decrease in 
NAD+ levels [40]. When considering NAM as a pan-sirtuin inhibitor, although the effects of NAM are 
highly complicated [41], high levels of NAM in pnc-1 mutants may inhibit SIR-2.3. Furthermore, ROS 
is eliminated more efficiently in animals that lack sir-2.3 than wild types, under caloric restriction 
conditions. Thus, the protective effects of sir-2.3 mutants seem to be mediated by the reduction of 
oxidative damage, which is similar to that seen under nmat-2-overexpressed conditions, suggesting 
that sir-2.3 and nmat-2 have opposite roles in neuronal protection. Therefore, it would be interesting 
to explore whether or how NAD+ augmentation in mitochondria is critical to efficiently eliminating 
ROS. 

2.2.2. C. elegans Models of Neurodegenerative Diseases 

Neuronal excitotoxicity has been described as a contributing factor in several pathologies, 
including Huntington’s disease, Alzheimer’s disease, and Parkinson’s disease. C. elegans serves as an 
efficient model system for these age-dependent neurodegenerative disease studies [42]. 
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Huntington’s Disease 

Huntington’s disease (HD) is an inherited, autosomal, dominant neurological disorder that leads 
to the progressive degeneration of neurons. In HD, protein denaturation occurs because of a toxic 
mutation of the huntingtin protein containing an abnormally long polyglutamine (polyQ) tract. 
Parker and colleagues established the HD model in C. elegans and studied the expression of a 
fragment of the huntingtin gene in the mechanosensory neurons. These worms show a mutant 
huntingtin-dependent cytotoxicity as well as a touch response defect [43]. The upregulation of C. 
elegans sir-2.1/Sirt1 recovers the axonal morphology, which in turn allows the touch response to 
function [43]. In addition, treatment with a sirtuin activator, resveratrol [44], shows a similar effect. 
Such effects are lost in sir-2.1 mutants, indicating that the mode of action for the protection from 
mutant huntingtin toxicity is through SIR-2.1. Considering that NAD+ is the rate-limiting co-substrate 
for SIRT1, increased levels of NAD+ presumably activate SIRT1 like resveratrol; however, this 
remains to be determined. Conversely, as mentioned above, the knockout of a mitochondrial sirtuin 
sir-2.3/Sirt4 protects neurons from mec-4(d)-triggered degeneration [39]. Thus, the neuroprotective 
effects of sirtuins are variable. 

Mammalian sirtuins are NAD+-dependent deacylases, and there are seven sirtuin homologs 
(SIRT1–SIRT7) with varied subcellular localizations [45]. SIRT1 in the brain exerts neuroprotection 
against ischemic injury and neurodegenerative diseases, such as HD [46]. In the mouse model of HD, 
SIRT1 activation by resveratrol reduces the peripheral nerve deficits. However, it leads to no 
significant improvement in central nervous system deficits such as motor impairment and striatal 
atrophy [47]. SIRT1 mediates neuroprotection in mice HD models through activation of the brain-
derived neurotrophic factor expression [48]. Additionally, the brain-specific knockout of Sirt1 
exacerbates the brain pathology, and the overexpression of Sirt1 improves neuronal survival [49]. In 
contrast to SIRT1, the closest homolog of SIRT1, SIRT2, is detrimental to HD, because inhibition of 
SIRT2 protects neurons in animal models of HD [50,51]. These results again show the variable effects 
of sirtuins in neuroprotection. 

In fly HD models, the genetic and pharmacological reduction of the Drosophila SIRT1 homolog 
results in the clearance of mutant huntingtin and neuroprotection [52]. Based on this finding, clinical 
trials using Selisistat (an inhibitor of SIRT1) [53] to counter the toxicity induced by huntingtin were 
conducted, but no clinically relevant effects have been published [54–56]. Currently, no therapeutics 
are available to treat HD. 

Alzheimer’s Disease 

A study using another C. elegans model of neurodegenerative disease, the Alzheimer’s disease 
(AD) model [57–59], showed a link between NAD+ levels and mitophagy induction [60]. Mitophagy, 
the removal of damaged mitochondria through autophagy, is impaired in AD patients and the C. 
elegans AD model [60]. The typical pathology of AD is the accumulation of damaged mitochondria 
[61]. C. elegans models of AD have been established by overexpressing amyloid-β or tau proteins. One 
of the NAD+ precursors, NR, reduces amyloid-β proteotoxicity in both C. elegans and mouse models 
of AD [62]. Mitophagy stimulation via supplementation with another NAD+ precursor, NMN, 
reverses memory impairment in the C. elegans model of AD [60]. Mitophagy enhancement also 
abolishes AD-related tau hyperphosphorylation in human neurons and reverses memory 
impairment in transgenic tau mice [60]. These results suggest that the supplementation of NAD+ 
precursors may help remove defective mitochondria and reduce proteotoxicity in AD patients, 
although the underlying mechanism remains unknown. 

Parkinson’s Disease 

Parkinson’s disease (PD) is an adult-onset neurological movement disorder with a progressive 
degeneration of the dopaminergic neurons. At the cellular level, PD is characterized by the 
accumulation of α-synuclein in large masses called Lewy bodies [63]. Both genetic and toxicant C. 
elegans models of PD have been derived [64]. One of the genetic models of PD is generated by 
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expressing the human SNCA/PARK gene, which encodes α-synuclein [65]. In this PD model, the 
expression of α-synuclein causes the loss of the dopaminergic neurons, deficits in dopamine-
dependent behavior, and decreased dopamine levels. One study shows that blueberry extracts 
attenuate α-synuclein protein expression, and lower the expression of sir-2.1/Sirt1 [66]. These 
observations suggest that a reduced SIR-2.1/SIRT1 activity may be beneficial to the attenuation of α-
synuclein. 

Exposure to heavy metals, such as methylmercury or excess manganese, also makes a toxicant 
model of PD because it is linked to a dopaminergic dysfunction in C. elegans and mammals [67–71]. 
Exposure to methylmercury or chronic exposure to manganese in low doses causes the depletion of 
the cellular NAD+ levels, mitochondrial dysfunction, and oxidative stress [72]. It is possible that high 
levels of ROS induce DNA damage and, in turn, trigger the activity of the DNA damage response 
protein, PARP, which likely causes the depletion of the NAD+ levels (Figure 5). Interestingly, NAD+ 
pretreatment decreases methylmercury-induced oxidative stress, dopaminergic toxicity, and 
behavioral deficits [72]. It would be interesting to investigate how the global changes of 
mitochondrial dysfunction and oxidative stress cause dopaminergic neuron-specific defects. A cell-
specific visualization study of NAD+ levels would help explore the precise mechanisms. 

 
Figure 5. C. elegans models of Parkinson’s disease with chronic heavy metals treatments. 
Methylmercury (MeHg) and excess manganese (Mn2+) lead to a dopaminergic neuronal loss 
resembling Parkinson’s disease. (Left) Methylmercury is transported across the membrane into the 
dopaminergic neuron and induces mitochondrial dysfunction, oxidative stress, and, finally, 
neurodegeneration. (Right) Excess manganese hinders iron transport, and iron deficiency causes 
mitochondrial dysfunction, oxidative stress, and DNA damage. PARPs are activated to prevent DNA 
damage, but an excessive PARP activity leads to NAD+ depletion, which presumably fails to reduce 
oxidative stress, and eventually induces dopaminergic neurodegeneration. SMF, divalent cation 
transporter. 
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2.2.3. Chemotherapeutic Agents 

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common disorders 
caused by cancer treatments, affecting up to 80% of cancer patients [73]. CIPN pathology is a “dying 
back” axon degeneration of the distal nerve endings [74]. Taxol is used widely as a chemotherapeutic 
agent, even though it has been shown to induce axonal degeneration in cancer patients and in 
experimental models [75]. Axon degeneration in the form of axonal swelling, thinning, and gaps is 
seen in elderly worms and is significantly greater in taxol-treated animals [76]. 

C. elegans treated with taxol shows a significant growth retardation. This defect is reversed by 
the expression of the non-nuclear-localized mutant form of the mouse Nmnat1 gene. In addition, taxol 
dramatically reduces the basal expression of a mitoUPR (mitochondrial Unfolded Protein Response) 
reporter, serving as a marker of mitochondrial proteostasis, and it was restored by the expression of 
non-nuclear mouse NMNAT1 [76]. Thus, NMNAT is suggested to provide protection from a taxol-
induced axonal pathology. These observations suggest that NMNAT may ameliorate mitochondrial 
proteostasis stress and protect neurons from an axonal damage. 

3. Regulation of Axon Regeneration in C. elegans 

The laser-assisted axotomy technique has established C. elegans as a valuable model to study the 
molecular mechanisms of axon regeneration [77]. Transgenic animals with fluorescently labeled 
single neurons are subjected to laser axotomy, and then the regenerating axons are analyzed. Laser 
severing of the C. elegans axon does not cause neuronal death but does cause severe axonal damage. 
Although a calcium surge is often neurotoxic, a proper calcium influx following axonal damage is 
considered to be beneficial because it triggers injury responses, including robust axon regeneration 
[78–81]. This neuronal injury response contributes to the recovery of the functional impairments 
caused by the injury. For example, the axonal injury of motor neurons causes locomotory defects, and 
regenerating this injured axon is likely required to recover the animal’s locomotion [77]. 

3.1. Inhibitory Role of NMNAT and NADS in Axon Regeneration 

This laser axotomy paradigm enables the screening of many genetic regulators controlling axon 
regeneration. Yishi Jin and Andrew D. Chisholm laboratories have pioneered this technique in C. 
elegans and screened numerous genes involving axon regeneration of the mechanosensory neurons 
[15,82]. One of their findings shows that NAD+ biosynthesis likely inhibits axon regeneration [15]. 
They have examined loss-of-function mutants of each gene encoding enzymes in the NAD+ salvage 
pathways, such as the C. elegans orthologs of NMNAT (nmat-1 and nmat-2), NADS (qns-1), 
nicotinamide riboside kinase (NRK) (nmrk-1), nicotinate phosphoribosyltransferase (NAPRT) (nprt-
1), and nicotinamidase (pnc-1 and pnc-2) (Figure 2C). Among them, three independent nmat-2 
mutants and a qns-1 mutant show increased axon regeneration following the injury of 
mechanosensory neurons, indicating that nmat-2 and qns-1, catalyzing the terminal steps of the NAD+ 
salvage pathways, inhibit axon regeneration in C. elegans (Figure 6A). 
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Figure 6. NAD+ regulating axon regeneration. (A) Axon regeneration in mechanosensory neurons is 
increased in nmat-2 and qns-1 mutants, and axon regeneration in GABA motor neurons is increased 
in parp-1 and parp-2 mutants. Thus, these genes play an inhibitory role in axon regeneration. (B) 
Speculation of the relationship between NAD+ levels and the PARP–PARG pathway in inhibiting 
axon regeneration. By utilizing NAD+, PARP proteins synthesize long chains of poly(ADP-ribose) 
(PAR) on target protein X that may inhibit axon regeneration. 

Importantly, the enzymatic properties of NMAT-2 are essential for the inhibition of axon 
regeneration because the active site motif [83] mutation of nmat-2 exhibits a phenotype similar to that 
of the null mutants of nmat-2 [15]. Thus, the role of NMAT-2 in axon regeneration likely requires its 
enzymatic activity so that it may activate through a different downstream pathway. Consistent with 
the inhibitory role of nmat-2/NMNAT in axon regeneration in C. elegans, the overexpression of 
NMNAT leads to impaired sensory axon regeneration in Drosophila [84]. Together, these data suggest 
conserved roles of NMNAT in hindering axon regeneration, at least in invertebrate animal models. 

Another distinct feature of NMAT-2 in axon regeneration, when compared to its neuroprotection 
effect, is cell autonomy. In Drosophila and mice, the neuroprotective effect of NMNAT is cell-
autonomous [29,85]. In contrast, NMAT-2 inhibits axon regeneration via several tissues in C. elegans. 
The phenotype of the nmat-2 null mutant is restored by an nmat-2 transgene under the endogenous 
promoter. However, the transgenic expression of NMAT-2 in individual tissues of the intestine, 
epidermis, or neurons fails to restore the phenotype. It is restored to normal only by the combined 
expression of NMAT-2 in all three tissues. These results suggest that NAD+ may have activated 
inhibitory factors in neuronal and non-neuronal tissues. An intriguing possibility that has not yet 
been explored is that Nmnat or NAD+ biosynthesis plays a role in the gut–brain–skin axis regulating 
axon regeneration. It would be interesting to know how the interplay among NMNAT proteins 
expressed in different tissues affects neuronal events. 

3.2. Inhibitory Role of PARPs in Axon Regeneration 

In C. elegans, PARPs and poly(ADP-ribose) glycohydrolases (PARGs) show opposing effects on 
axon regeneration [86]. PARPs catalyze the transfer of ADP-ribose from NAD+ onto protein substrates 
(Figure 2B), whereas PARGs remove poly(ADP-ribose) from proteins [87]. The NAD+-consuming 
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PARP encoding genes in C. elegans, parp-1 and parp-2, inhibit the axon regeneration of the GABA 
motor neurons (Figure 6A), whereas the PARG encoding genes, parg-1 and parg-2, enhance it [86,88]. 
Importantly, a pharmacological PARP inhibitor (A966492) significantly enhances axon regeneration 
when administered after injury in vivo in C. elegans motor neurons and in vitro in mammalian cortical 
neurons [86]. Treatment using a PARP inhibitor post-injury also improves the behavioral recovery in 
C. elegans, indicating that PARP inhibition after injury is sufficient to improve axon regeneration. 
Currently, chemical PARP inhibitors are in preclinical and clinical trials for indications, including 
various cancer and stroke therapies [89,90]. These results suggest that the PARG–PARP balance may 
determine axon regeneration by regulating the poly(ADP-ribose) levels on target proteins [91]. Thus, 
identifying protein substrates of PARPs and PARGs will require further investigation in the future. 
When considering the enhanced axon regeneration seen in both nmat-2 and parp-1/-2 mutant worms, 
it is speculated that decreased NAD+ levels in nmat-2 mutants are presumably not sufficient to 
activate regeneration inhibitory PARP proteins (Figure 6B). Thus, it is possible that the NAD+ may 
act through the PARP pathway, which remains to be determined. 

The effects of PARPs on mammalian axon regeneration have been tested in multiple studies with 
variable results [92,93]. Brochier and colleagues identified PARP1 as a critical mediator of multiple 
growth-inhibitory signals [93]. In vitro models of axonal injury reveal that the exposure to growth-
inhibitory signals promotes PARP1 activation and the accumulation of PAR in neurons, which leads 
to an axon regeneration failure. The pharmacological inhibition or genetic depletion of PARP1 is 
sufficient to promote regeneration. However, Wang and colleagues found that the inhibition of 
PARylation fails to increase axon regeneration or improve functional recovery after an adult 
mammalian CNS injury [92]. These conflicts might be due to the different types of neurons being 
tested. The axonal regenerative effects of PARPs remain unclear. 

4. Conclusions and Future Perspectives 

NAD+ biosynthesis pathways are functionally conserved in C. elegans, and emerging evidence is 
revealing the critical role that NAD+ plays in neuronal protection and axon regeneration. The effects 
of NAD+ have been studied in various neuronal damage models of C. elegans. Unlike the mammalian 
Wallerian degeneration paradigm, the sustained high levels of NAD+ show no effects in inhibiting or 
delaying axon degeneration in an acute injury model of C. elegans. In chronic injury models, however, 
high levels of NAD+ influence neuronal protection, which presumably helps reduce the oxidative 
stress produced by the cytosolic calcium surge and mitochondrial dysfunction (Figure 7A). The C. 
elegans laser-assisted axotomy paradigm enables the screening of many genes in the NAD+ pathways. 
All known components in NAD+ salvage pathways and several NAD+ consuming enzymes have been 
tested. In sensory neurons, NMNAT/NMAT-2 and NADS/QNS-1 are found to inhibit axon 
regeneration, suggesting that decreased levels of NAD+ promote axon regeneration (Figure 7A). In 
motor neurons, PARPs inhibit axon regeneration, whereas PARGs promote it. It is speculated that 
PARP proteins are activated by high levels of NAD+ and that they activate regeneration inhibitory 
target proteins by PARylation (Figure 6B). Nonetheless, given the inhibitory role of NMNAT/NMAT-
2 and NADS/QNS-1 in sensory axon regeneration, it is necessary to issue a caution before 
manipulating NAD+ levels as a therapeutic strategy. As we come to understand NAD+ biology in 
greater detail, we may need to regulate the NAD+ levels in proper time frames and in specific tissues. 
For example, after neuronal damage, the treatment of high-dose NAD+ may help protect damaged 
neurons, but later, depleting NAD+ may help regenerate axons (Figure 7B). In the near future, a 
precise understanding of NAD+ biology may allow the development of NAD+-based therapeutic 
strategies for various neuronal damage conditions. 
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Figure 7. The relationship between NAD+ levels and the responses of damaged neurons in C. elegans. 
(A) High levels of NAD+ help protect damaged neurons, while low levels of NAD+ help promote axon 
regeneration (B) A proposed therapeutic strategy to improve recovery from neuronal damage by 
controlling NAD+ supplementation. 
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