## Supporting Information

## Substrate-dependent Sensitivity of SIRT1 to Nicotinamide Inhibition

 Stacia Rymarchyk, ${ }^{\dagger}$ Wenjia Kang, ${ }^{\ddagger}$ Yana Cen ${ }^{\ddagger, \#, *}$${ }^{\dagger}$ Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446
£Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219
\#Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219
*Correspondence: ceny2@vcu.edu, phone: 804-828-7405

Figure S1. SDS-PAGE image of purified recombinant human SIRT1.


Figure S2. SIRT1-catalyzed pH-independent base exchange.


Base exchange reactions were performed at pH 6.5 (closed square) and 8.5 (triangle). The reactions were carried out in 100 mM phosphate buffer containing $500 \mu \mathrm{M} \mathrm{NAD}{ }^{+}, 500 \mu \mathrm{M}$ p53K382Ac, 300,000 cpm ${ }^{14} \mathrm{C}-\mathrm{NAM}$, and various concentrations of NAM. The reactions were initiated by the addition of $0.5 \mu \mathrm{M}$ of SIRT1 and were incubated at $37^{\circ} \mathrm{C}$ for 10 min before being quenched by $8 \mu \mathrm{~L}$ of $10 \%$ TFA. Rates were determined as described in "Materials and Methods", plotted as a function of NAM concentration, and best fits of points to the Michaelis-Menten equation were performed by Kaleidagraph ${ }^{\circledR}$.

Figure S3. pH effects on NAM inhibition.


The reactions were performed in 100 mM phosphate buffer at pH 6.5 (triangle) or 8.5 (closed square) containing $500 \mu \mathrm{M} \mathrm{NAD}^{+}, 500 \mu \mathrm{M}$ p53K382Ac, and various concentrations of NAM. The reactions were initiated by the addition of $0.5 \mu \mathrm{M}$ of SIRT1 and were incubated at $37^{\circ} \mathrm{C}$ for 30 min before being quenched by $8 \mu \mathrm{~L}$ of $10 \%$ TFA. Rates were determined as described in "Materials and Methods" and plotted as a function of NAM concentration. The points were fitted to the equation: $v=v_{0}-v_{\text {inh }}\left(\frac{[I]}{K_{i}+[I]}\right)$ using Kaleidagraph $®$.

