
Supplementary Material

Table S1: Anti-proliferative and anti-inflammatory potential of 10 plant extracts used in folk medicines.

Plant extract	Cell viability HPK, EC ₈₀	Anti-proliferative effect Pso-like NHK.1, EC50	Inhibition of IL-6 Pso-like HPK, EC50	Inhibition of IL-8 Pso-like HPK, EC50
Asiatic pennywort (Centella asiatica)	168.5 ± 4.33 μg/ml	198.80 ± 1.71 μg/ml	no anti-inflammatory effect	133.90 ± 1.51 μg/ml
Brahmi (Bacopa monniera L.)	84.02 ± 1.35 μg/ml	158.80 ± 1.15 μg/ml	38.21 ± 1.12 μg/ml	66.36 ± 1.16 μg/ml
Buckbean (Menyanthes trifoliata L.)	73.7 ± 4.44 μg/ml	34.75 ± 1.14 μg/ml	5.16 ± 1.75 μg/ml	6.43 ± 2.91 μg/ml
Gentian (Gentiana lutea)	187.8 ± 1.35 μg/ml	229.00 ± 1.41 µg/ml	no anti-inflammatory effect	303.60 ± 1.39 μg/ml
Guggul (Commiphora mukul)	25.83 ± 1.22 μg/ml	24.97 ± 1.60 μg/ml	11.53 ± 2.32 μg/ml	14.62 ± 1.43 µg/ml
Hop (Humulus lupulus)	0.22 ± 1.15 μg/ml	0.20 ± 1.14 µg/ml	0.38 ± 0.01 µg/ml	$0.84 \pm 0.14 \ \mu g/ml$
St John's wort (Hypericum perforatum)	0.35 ± 1.08 μg/ml	0.69 ± 1.06 μg/ml	0.34 ± 0.23 μg/ml	0.65 ± 0.004 μg/ml
Mango ginger (Curcuma amada)	2.12 ± 1.16 μg/ml	3.95 ± 1.06 μg/ml	2.12 ± 1.09 μg/ml	$2.08\pm1.08~\mu\text{g/ml}$
Purple coneflower (Echinacea purpura)	61.36 ± 1.18 μg/ml	227.10 ± 1.98 μg/ml	55.67 ± 6.32 μg/ml	4.85 ± 1.38 μg/ml
Sweet indraja (Wrightia tinctoria)	no effect on cell viability until 400 µg/ml	no anti-proliferative effect	133.30 ± 1.08 µg/ml	124.30 μg/ml ± 1.28 μg/ml
Controls				
Dithranol	0.03 ± 0.01 μg/ml	0.07 ± 0.19	0.02 ± 0.001 μg/ml	0.01 ± 0.01 µg/ml

Cells were treated with the corresponding extracts in a range from 0.2 to 400 µg/mL. For cell viability tests, HPKs were incubated with the extracts for 24 h and the CellTiter-Glo2.0 Assay was performed (n = 3). For measurement of cell proliferation, psoriasis-like immortalized HPK (iHPK) were generated from iHPK [1,2] using IL-17A, IL-22 and TNF- α . These cells were then treated for 24 h with the corresponding extracts (*n* = 3). The IL-6 and IL-8 protein level was measured by ELISA in the supernatant of psoriasis-like HPKs after 24 h extract treatment (*n* = 3, technical replicates). EC₅₀ (half-maximal effective concentration) and EC₈₀ (in the cell viability assay showing 80% viable cells) were calculated using GraphPad Prism.

(b)

Figure S1. Effect of psoriasis cytokines (cytokines (IL-17, IL-22. TNF- α , 20 ng/mL) in HPK on cell proliferation and cell cytotoxicity. (**a**) Cell proliferation was measured in untreated HPK or psoriasis-like HPK (HPK treated with psoriasis cytokines for 72 h; Pso) with the BrdU assay (*n* = 6). (**b**) Cytotoxicity was measured in the cell supernatant of untreated HPK and psoriasis-like HPK (Pso) with the LDH kit from Roche according to the manufacturer's instructions (*n* = 3).

The treatment with psoriasis cytokines shows a statistically significant increase in cell proliferation with less than 4% cell toxicity, so that the cytotoxicity can be neglected.

References

- Sprenger, A.; Küttner, V.; Biniossek, M.L.; Gretzmeier, C.; Boerries, M.; Mack, C.; Has, C.; Bruckner-Tuderman, L.; Dengjel, J. Comparative Quantitation of Proteome Alterations Induced by Aging or Immortalization in Primary Human Fibroblasts and Keratinocytes for Clinical Applications. *Mol. BioSyst.* 2010, 6, 1579–1582, doi:10.1039/C003962D.
- 2. Hawley-Nelson, P.; Vousden, K.H.; Hubbert, N.L.; Lowy, D.R.; Schiller, J.T. HPV16 E6 and E7 Proteins Cooperate to Immortalize Human Foreskin Keratinocytes. *EMBO J.* **1989**, *8*, 3905–3910.