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Abstract: Severely ill coronavirus disease 2019 (COVID-19) patients show elevated concentrations
of pro-inflammatory cytokines, a situation commonly known as a cytokine storm. The p38 MAPK
receptor is considered a plausible therapeutic target because of its involvement in the platelet
activation processes leading to inflammation. This study aimed to identify potential natural product-
derived inhibitory molecules against the p38α MAPK receptor to mitigate the eliciting of pro-
inflammatory cytokines using computational techniques. The 3D X-ray structure of the receptor
with PDB ID 3ZS5 was energy minimized using GROMACS and used for molecular docking via
AutoDock Vina. The molecular docking was validated with an acceptable area under the curve
(AUC) of 0.704, which was computed from the receiver operating characteristic (ROC) curve. A
compendium of 38,271 natural products originating from Africa and China together with eleven
known p38 MAPK inhibitors were screened against the receptor. Four potential lead compounds
ZINC1691180, ZINC5519433, ZINC4520996 and ZINC5733756 were identified. The compounds
formed strong intermolecular bonds with critical residues Val38, Ala51, Lys53, Thr106, Leu108,
Met109 and Phe169. Additionally, they exhibited appreciably low binding energies which were
corroborated via molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) calculations.
The compounds were also predicted to have plausible pharmacological profiles with insignificant
toxicity. The molecules were also predicted to be anti-inflammatory, kinase inhibitors, antiviral,
platelet aggregation inhibitors, and immunosuppressive, with probable activity (Pa) greater than
probable inactivity (Pi). ZINC5733756 is structurally similar to estradiol with a Tanimoto coefficient
value of 0.73, which exhibits anti-inflammatory activity by targeting the activation of Nrf2. Similarly,
ZINC1691180 has been reported to elicit anti-inflammatory activity in vitro. The compounds may
serve as scaffolds for the design of potential biotherapeutic molecules against the cytokine storm
associated with COVID-19.

Keywords: COVID-19; coronavirus; p38 MAPK; cytokine storm; anti-inflammatory compounds;
natural products; molecular dynamics simulation; molecular docking

1. Introduction

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [1,2]. It is a positive-sense single-stranded RNA virus [3]
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belonging to the Coronaviridae family. They are uniquely enveloped non-segmented viruses
with large surface spike proteins observed as corona (crown-like) projections using elec-
tron microscopy [4]. The virus is transmitted through droplets, contacts, fecal-oral, blood,
mother-to-child, airborne, fomite, and animals to humans [5–8]. COVID-19 symptoms
include fever, dry cough, runny nose, sore throat, loss of taste and smell, and difficulty
in breathing [9]. During critical stages, complications observed include acute respira-
tory distress syndrome (ARDS), pneumonia, septic shock, arrhythmia, and disseminated
intravascular coagulation [9–11].

Several studies on these complications have reported elevated levels of plasma
cytokines [12], a condition referred to as cytokine storm [13]. The p38 mitogen-activated
protein kinase (MAPK) is critical in COVID-19 cytokine storms [14,15]. In the human host,
angiotensin II (AngII), a pro-inflammatory peptide hormone, mediates its effects through
p38 MAPK activation [14,16]. Angiotensin-converting enzyme 2 (ACE2) converts (Ang II)
into angiotensin 1–7 (Ang 1–7), which binds to the Mas receptor. This counterbalances the
pro-inflammatory effects of Ang II by decreasing the activation of p38 MAPK [17]. Upon
cell entry, SARS-CoV-2 binds and downregulates ACE2 [18,19]. The loss of ACE2 activity
upon viral entry allows for unbridled inflammation [14]. The p38 MAPK is implicated in
the propagation of the SARS-CoV-2 lifecycle [14] and this results from enhanced replication
due to increased MAPK activity [15]. Moreover, SARS-CoV, a close neighbor of the SARS-
CoV-2 virus, expresses a protein that directly upregulates p38 MAPK in vitro [20] and this
process seems to be a pathogenic step in the lifecycle of many RNA respiratory viruses [21].
A study of the effect of p38 MAPK inhibitors on SARS-CoV infected mice reported an 80%
increase in survival after treatment [22]. The p38 MAPK is a plausible anti-inflammatory
drug target for COVID-19 patients and its inhibitors have been trialed for the treatment of
other ailments [23–25].

Anti-inflammatory compounds including dexamethasone are used as treatment op-
tions in COVID-19 patients [26], since no FDA-approved drugs specific for the treatment
and prevention of COVID-19 exist. There are over 2300 clinical trials per the Global Coron-
avirus COVID-19 Clinical Trial Tracker (https://www.covid-trials.org/ (accessed on 28
September 2020)) [27] on novel vaccines, drugs, and repurposed compounds including p38
MAPK inhibitor Losmapimod.

The use of computational methods has been suggested as a viable alternative for the
faster and cheaper discovery of COVID-19 therapeutic molecules [28–33]. Natural products
are used as COVID-19 remedies [34–37]. This is due to their structural and chemical
diversity which serves as a potent source of novel drug-like compounds [38,39]. Freely
available cheminformatics-based natural compound databases such as the Traditional
Chinese Database [40], African Natural Product Database [41], and the North African
Natural Product Database [42] collectively contain over 30,000 unique natural products.

Consequently, the work aims at finding potential natural product-derived inhibitory
molecules of p38 MAPK with the propensity to ameliorate the cytokine storm in severely
ill COVID-19 patients. This study utilized computational techniques including molecu-
lar docking, dynamics simulations, and characterization of binding mechanisms using
Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations. It further
predicted the pharmacological profiles and biological activity of drug-like and lead-like
anti-inflammatory molecules as potential inhibitors of p38 MAPK.

2. Materials and Methods
2.1. Protein Structure Retrieval and Processing

The experimentally solved 3D structure of p38α MAPK was retrieved from the Protein
Data Bank [43,44] with PDB ID: 3ZS5 [45]. Missing residues at 172–183 were initially
added via SwissModel [46]. PyMOL v 4.0.0 [47,48] was used for preprocessing the 3ZS5
protein structure by removing water molecules and other ligands. Molecular dynamics
(MD) simulation was performed using the Groningen Machine for Chemical Simulations
GROMACS version 2018 [49]. Optimized Potentials for Liquid Simulations (OPLS)/All

https://www.covid-trials.org/
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Atom (AA) force field was used to generate the protein topology and position restrain
files [50,51]. Periodic Boundary Conditions (PBC) were applied to the structure with the
protein centered 1 nm from the edge of a cubic box to monitor the movement of all particles
and avoid edge effects on the surface atoms [52]. The system was solvated with SPC
water [53,54] and neutralized with six Na atoms. The structure was energy minimized
using the steepest descent algorithm at 50,000 steps.

2.2. Screening Library of Compounds

A library of 38,271 natural product compounds comprising 2277 compounds from
the North African Natural Product Database [42], 833 compounds from the African Nat-
ural Product Database [41], and 35161 compounds from the Chinese Natural Product
Database [40] was retrieved. The compounds were filtered using DataWarrior [55] with
molecular weights between 250 g/mol and 350 g/mol [56,57]. Further, compounds pre-
dicted as mutagenic, causing reproductive effects, irritant, and tumorigenic were eliminated
via DataWarrior. Known p38 MAPK inhibitors used as controls for the molecular dock-
ing were Losmapimod, ARRY-797, Dilmapimod, Doramapimod, Pamapimod, PH-797804,
SB 202190, SB 203580, Talmapimod, VX-702, and Skepinone-L with PubChem compound
IDs 11552706, 46883775, 10297982, 156422, 16220188, 22049997, 5169, 176155, 9871074,
10341154, and 45279963, respectively.

2.3. Validation of Docking Protocol

The easyROC [58] was used to generate the receiver operating characteristic (ROC)
curve. The ROC curve was used to validate the ability of Autodock Vina to discriminate
between active and decoy compounds. The SMILES of the eleven inhibitors served as
inputs for the generation of 50 decoys each via Directory of Useful Decoys (DUD-E) [59].
Each decoy has similar physicochemical properties to a known inhibitor but is chemi-
cally distinct [59]. A total of 561 compounds comprising 11 actives and 550 decoys were
screened against the p38 MAPK structure. The 11 actives comprised the known inhibitors
of p38 MAPK.

2.4. Virtual Screening of Ligands

AutoDock Vina [60] was used to screen the library against the p38α MAPK protein
structure. The pre-filtered library was imported into OpenBabel [61] and minimized using
the Universal Force Field (Uff) for 200 steps and optimized using the conjugate gradient. A
grid box of dimensions (78.35, 47.84, 49.86) Å and center (9.97, 30.65, 20.29) Å was used for
docking with a default exhaustiveness of eight.

2.5. Pharmacological Profiling

The pharmacokinetic and physicochemical profiles of the compounds were predicted
via SwissADME [62] with the Simplified Molecular Input Line-Entry System (SMILES) of
the compounds as inputs.

2.6. Elucidation of the Protein-Ligand Interactions

LigPlot+ [63] was used to generate the 2D protein-ligand interactions with default
settings. The best poses of the hits were saved in “.pdb” file formats and then visualized
using PyMOL.

2.7. Prediction of Biological Activities of Hit Compounds

The biological activities of the hits were predicted using the Bayesian-based Predic-
tion of Activity Spectra for Substances (PASS) [64]. The SMILES files of the compounds
were used to perform structural similarity searches for antiviral and anti-inflammatory
compounds with a DrugBank [65] similarity threshold of 0.7.
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2.8. Molecular Dynamics Simulation of Protein-Ligand Complexes

MD simulations of the protein-ligand complexes were performed using GROMACS
2020 version [49]. The 3ZS5 protein topologies were generated using the GROMOS96 43a1
force field [66] in GROMACS, whereas the ligand files were generated via the PRODRG [67].
Each complex was solvated with water molecules in a cubic box of size 5.0 nm and
neutralized with six Na ions. Energy minimization of each complex was conducted for
50,000 steps using the steepest descent algorithm. The ligands were restrained before
the canonical ensemble, and then the isothermal-isobaric ensemble. Equilibration of each
complex was performed for 100 ps apiece and final MD simulation was conducted for
100 ns with time steps of 2 fs under PME. The free binding energies were computed using
G_mmpbsa [68]. The binding free energy contribution per residue was calculated using
MM-PBSA and the output plots generated with R.

3. Results and Discussion
3.1. Protein Structure Retrieval and Analysis

The PDB database contains several solved p38α MAPK structures. The p38α is the
most expressed isoform of the p38 MAPK [69]. The selected protein structure with PDB
ID: 3ZS5 was solved using x-ray diffraction at a high resolution of 1.6 Å. This ensured the
detailed representation of the water-mediated hydrogen-bonding network [45]. 3ZS5 has
also being used in a previous computational study [70] and it is bound to the inhibitor
SB 203580 [45]. The structure is a monomer consisting of 362 residues and is made up of
two domains comprising N- and C-terminal domains. The N-terminal domain is composed
of largely β-sheets, while the C-terminal domain is essentially helical [71]. The catalytic
ATP binding site is found between the two domains (Figure 1). This site is characterized
by a peptide flip, resulting in the presentation of two hydrogen-bond donors in the ATP
pocket, a clear distinction from the acceptor-donor-acceptor pattern normally present in
the ATP pocket of other protein kinases [45]. One large binding cavity with a surface area
of 1040.309 Å2 and volume 1365.552 Å3 was predicted via CASTp 3.0 [72].
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Figure 1. A surface representation of the structure of p38 MAPK (Chain A). The catalytic ATP binding
pocket is colored green. The structure is a monomer with a binding cavity of 1365.552 Å3.

3.2. Docking Protocol Validation

The docking protocol of AutoDock Vina [60] was validated using the ROC curve.
Eleven inhibitors with their respective decoys were screened against the p38 MAPK struc-
ture to generate a ROC curve. The ROC curve evaluates the performance of AutoDock
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Vina to classify inhibitors from decoys [73]. An area under the curve (AUC) value of 1 is
considered perfect, while an AUC below 0.5 signifies poor classification [74]. Additionally,
an AUC value of 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is very good, and above 0.9 is
excellent [75,76]. The obtained AUC computed from the ROC curve was 0.704 (Figure 2),
which is considered acceptable [75]. This indicates that AutoDock Vina reasonably distin-
guishes between active and inactive compounds of p38 MAPK. AutoDock Vina is more
accurate than AutoDock 4 in selecting anti-SARS-CoV-2 Mpro compounds [77]. Moreover,
AutoDock Vina was employed successfully to screen compounds against p38 MAPK, which
were found to inhibit p38 MAPK in vitro [70].
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Figure 2. Evaluating the performance of the virtual screening via ROC curve. Binding energies from
the screening of inhibitors and decoys against the p38 MAPK receptor were used to generate the
curve. An AUC of 0.704 was obtained from the ROC curve.

3.3. Pre-Filtering of Library and Molecular Docking Studies

A total of 7282 out of the 38,271 natural products were obtained after pre-filtering.
These compounds had molecular weights between 250 g/mol and 350 g/mol, and were
predicted to be non-toxic. The compounds were screened against the ATP-binding pocket
of p38 MAPK and were ranked based on their binding energies. AutoDock Vina combines
both empirical scoring functions and knowledge-based potentials to compute the binding
energies of compounds [60]. ZINC38321631, a compound annotated in the TCM database,
had the lowest binding energy of −12.4 kcal/mol, whereas ZINC5734567 had the highest
binding energy of −2.5 kcal/mol. Among the known inhibitors, SB 202190 had the least
binding energy of −11.0 kcal/mol, followed by SB 203580 with −10.9 kcal/mol. Losmapi-
mod that is currently undergoing clinical trial had binding energy of −9.3 kcal/mol, whilst
that of Dilmapimod was −7.9 kcal/mol. In this study, a threshold of −11.0 kcal/mol was
used for selecting hits. Selected compounds had lower binding energies relative to the
known inhibitors. A previous study used a threshold of −10.0 kcal/mol for p38 MAPK [78].
Another docking study on the potential inhibitors of p38 MAPK identified a promising
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compound with a binding energy of −11.1 kcal/mol [79]. A total of 42 compounds and
two inhibitors (SB 202190 and SB 203580) were selected for downstream analysis.

3.4. Pharmacological Profiling of Hit Compounds

Pharmacological profiling studies are important aspects of the drug development
pipeline. The human intestinal absorption, permeability glycoprotein (P-gp) binding, and
cytochrome P450 3A4 (CYP450) inhibition were considered [80]. The human intestinal
absorption measures the likelihood of absorption for orally administered drugs into the
bloodstream. Two of the hits, namely ZINC85550217 and ZINC85543655 were predicted to
have low GI absorption. Additionally, 16 out of the 42 compounds including ZINC38321631
were predicted as P-gp substrates with likely decrease in drug bioavailability [81,82].
CYP3A4 is responsible for the metabolism of about 50% of all drugs [83]. The two standard
inhibitors (SB 202190 and SB 203580) were predicted as CYP3A4 inhibitors. A total of 17 hits
were predicted to be CYP3A4 inhibitors suggesting they may interfere with the metabolism
of other drugs. After eliminating compounds predicted to have poor pharmacological
profiles, 18 compounds were selected as promising hits (Supplementary Table S1) with
none of them violating Lipinski’s rule of five for evaluating drug-likeness.

3.5. Visualization and 2-D Representation of Protein-Ligand Interactions

Hydrogen bonding and hydrophobic contacts are critical in the stabilization of a
ligand within the binding pocket of a receptor [84]. All 18 selected hit compounds were
observed to bind firmly in the binding pocket of the receptor. ZINC95486106 had the lowest
binding energy of −12.1 kcal/mol. It formed hydrogen bonding with Met109 (bond length
of 3.03 Å) and hydrophobic contacts with Val30, Ala51, Val38, Leu171, Leu108, Gly170,
Lys53, Tyr35 and Phe169 (Figure 3a). Eight other compounds comprising ZINC95913720,
ZINC95919076, ZINC33832090, ZINC1691180, ZINC4520996, ZINC4215683, ZINC4023706
and ZINC70454959 formed at least one hydrogen bond with the residues of the binding
pocket (Table 1). ZINC4215683 formed three hydrogen bonds with residues Glu71 and
Lys53. It also formed hydrophobic contacts with Gly170, Tyr35, Phe169, Val38, Leu86,
Leu104, Leu171, Thr106, Leu75 and Val105. Additionally, ZINC95913720 formed a hydro-
gen bond with Lys53 and hydrophobic contacts with Val30, Ala51, Val38, Leu108, Gly170,
Tyr35, Phe169, and Val38 (Figure 3b). ZINC95919076 formed a hydrogen bond with Lys53
and hydrophobic contacts with Val30, Ala51, Val38, Leu108, Gly170, Tyr35, Phe169, Val138,
and Met109 (Figure 3d). ZINC1691180 also formed a hydrogen bond with Tyr35 (bond
length of 3.17 Å) and hydrophobic contacts with Val30, Ala51, Val38, Phe169, Val38, Met109,
Glu71, Leu75, Leu104, Thr106 and Gly31. ZINC4520996 formed hydrogen bonds with Tyr35
and hydrophobic contacts with Ala51, Val38, Val30, Lys53, Gly31, Glu71, Thr106, Phe169,
Leu104 and Thr106. ZINC4023706 formed three hydrogen bonds with residues Tyr35
and Gly170, and hydrophobic contacts with Phe169, Leu104, Leu75, Glu71, Thr106, Val38,
Ala51, Lys53, Val20 and Gly31. ZINC33832090 had binding energy of −11.8 kcal/mol and
formed hydrophobic interactions with Ala51, Val38, Gly170, Tyr35 and Phe169 (Figure 3c).
It also interacted with Lys53 via hydrogen bonding of length 3.18 Å (Table 1 and Figure 3c).
The known inhibitors SB 202190 and SB 203580 formed only hydrophobic interactions with
Tyr35, Val38, Ala51, Lys53, Leu104, Thr106, Leu108, Met109, Phe169, Gly170, and Leu171.
Residues worth noting are Ala51, Val38 and Phe169, which interacted separately with 15,
17, and 18 molecules, respectively. These three residues can be considered critical in the
stabilization of ligands in the binding pocket. These critical residues also interacted with
both SB 202190 and SB 203580. Previous studies identified Lys53, Leu108 and Met109 as
crucial residues [45,71,85,86], whilst another identified Phe169 as important [87].
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Table 1. Summary of the protein-ligand interactions generated with LigPlot+ for the top 18 hits and 2 inhibitors. The
binding energies, number of hydrogen bonds, hydrogen bond interacting residues with their respective bond lengths, and
hydrophobic contacts of the compounds are shown.

ZINC ID/Drug
Name

Binding Energy
(kcal/mol).

Number of
Hydrogen Bonds

Hydrogen Bond
Residues

Hydrogen Bond
Length (Å) Hydrophobic Contacts

ZINC95486106 −12.1 1 Met109 3.03
Val30, Ala51, Val38,
Leu171, Leu108, Gly170,
Lys53, Tyr35, Phe169

ZINC95913720 −11.8 1 Lys53 3.26
Val30, Ala51, Val38,
Leu108, Gly170, Tyr35,
Phe169

ZINC33832090 −11.8 1 Lys53 3.18 Ala51, Val38, Gly170,
Tyr35, Phe169

ZINC95919076 −11.7 1 Lys53 2.89
Val30, Ala51, Val38,
Leu108, Gly170, Tyr35,
Phe169, Val138, Met109

ZINC1691180 −11.6 1 Tyr35 3.17
Val30, Ala51, Val38,
Phe169, Glu71, Leu75,
Leu104, Thr106, Gly31

ZINC5519433 −11.6

Ala51, Val38, Gly170,
Lys53, Tyr35, Phe169,
Leu75, Leu86, Ile84,
Leu104, Val105, Thr106

ZINC4520996 −11.6 1 Tyr35 3.16

Ala51, Val38, Val30,
Lys53, Gly31, Glu71,
Thr106 Phe169, Leu104,
Thr106

ZINC1531907 −11.6

Ala51, Val38, Gly170,
Lys53, Tyr35, Phe169,
Leu75, Leu86, Ile84,
Leu104, Val105, Thr106

ZINC4098804 −11.6

Ala51, Val38, Gly170,
Lys53, Tyr35, Phe169,
Leu75, Leu86, Ile84,
Leu104, Val105, Thr106

ZINC95919075 −11.5
Ala51, Val30, Gly170,
Lys53, Tyr35, Phe169,
Val38, Met109, Leu108

ZINC13302897 −11.4 Ala51, Gly170, Lys53,
Tyr35, Phe169, Val38,

ZINC4215683 −11.2 3 Glu71, Lys53 [2] 2.81, 3.12, 2.90

Gly170, Tyr35, Phe169,
Val38, Leu86, Leu104,
Leu171, Thr106, Leu75,
Val105

ZINC13302884 −11.2

Val30, Val38, Ala51,
Thr106, Leu104, Glu71,
Leu75, Lys53, Phe169,
Tyr35

ZINC13302890 −11.2
Leu171, Val38, Gly170,
Tyr35, Lys53, Phe169,
Ala51

ZINC4023706 −11.1 3 Tyr35, Gly170 [2] 3.22, 3.18, 3.17

Phe169, Leu104, Leu75,
Glu71, Thr106, Val38,
Ala51, Lys53, Val20,
Gly31
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Table 1. Cont.

ZINC ID/Drug
Name

Binding Energy
(kcal/mol).

Number of
Hydrogen Bonds

Hydrogen Bond
Residues

Hydrogen Bond
Length (Å) Hydrophobic Contacts

ZINC5733756 −11.1

Leu75, Ile84, Leu104,
Lys53, Phe169, Leu171,
Tyr35, Val38, Leu171,
Thr106

ZINC70454959 −11.1 1 Lys53 2.95 Tyr35, Gly170, Leu171,
la51, Val138, Phe169

ZINC85993836 −11.1

Tyr35, Val38, Ala51,
Lys53, Leu75, Ile84,
Val105, Leu104, Thr106,
Phe169, Gly170

SB 202190 −11.0

Tyr35, Val38, Ala51,
Lys53, Leu104, Thr106,
Leu108, Met109, Phe169,
Gly170, Leu171

SB 203580 −10.9

Tyr35, Val38, Ala51,
Lys53, Leu104, Thr106,
Leu108, Met109, Val30,
Phe169, Gly170, Leu171

3.6. Biological Activity Prediction

The prediction of activity spectra for substances (PASS) [64] was employed to predict
relevant biological activities of the hits. PASS utilizes structural-activity relationship
to predict the potential biological activities and mechanisms. When probable activity
(Pa) is greater than the probable inactivity (Pi) for a particular compound activity and
Pa > 0.3, it is essential to test in vitro the predicted activity [57,88]. The biological activities
that were considered included anti-inflammation, kinase inhibition, antiviral, platelet
aggregation inhibition and immunosuppression. PASS predictions are usually corroborated
experimentally [89,90]. ZINC5519433 was predicted as a platelet aggregation inhibitor
(Pa = 0.509 and Pi = 0.008), and antiviral (rhinovirus) with Pa = 0.470 and Pi = 0.037.
Platelet activation accelerates inflammation and can lead to disseminated intravascular
coagulation, a condition observed in critically ill COVID-19 patients [91,92]. ZINC5733756
was predicted as antiviral (influenza) with Pa = 0.755 and Pi = 0.004, anti-inflammatory
(Pa = 0.694 and Pi = 0.017), and antiviral (rhinovirus) with Pa = 0.599 and Pi = 0.006.
ZINC4023706 was predicted to be antiviral (influenza) with Pa = 0.764 and Pi = 0.004, anti-
inflammatory (Pa = 0.693 and Pi = 0.017), and antiviral (rhinovirus) with Pa = 0.554 and
Pi = 0.011. ZINC95486106 was predicted as anti-inflammatory (Pa = 0.694 and Pi = 0.017),
antiviral (influenza) with Pa = 0.716 and Pi = 0.005, Beta-adrenergic receptor kinase inhibitor
(Pa = 0.823, Pi = 0.011), G-protein-coupled receptor (GPCR) kinase inhibitor (Pa = 0.823 and
Pi = 0.011), and RNA-directed RNA polymerase inhibitor (Pa = 0.518 and Pi = 0.006). More
so, ZINC1691180 and ZINC4520996 were revealed as anti-inflammatory (Pa = 0.645 and
Pi = 0.024), antiviral (rhinovirus) with Pa = 0.525 and Pi = 0.017, and antiviral (influenza)
with Pa = 0.748 and Pi = 0.004. ZINC1691180 has been shown to elicit anti-inflammatory
response in mice [93].

3.7. The Rationale for the Selection of Compounds

A lead compound is a molecule that is likely to be of therapeutic relevance and may be
modified to improve potency, selectivity, and pharmacological profiles [94]. After screening
a library of 7282 pre-filtered compounds against the p38 MAPK structure, 42 compounds
with binding energies ≤ −11.0 kcal/mol were selected for pharmacological profiling. A
total of 18 compounds were selected from this lot as promising hits due to predicted
good pharmacological profiles. The protein-ligand interactions of the promising hits were
evaluated to identify residues critical for binding. Further biological activity predictions
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were performed to identify compounds with relevant biological activities and mechanisms
of action. The multistage techniques informed the selection of five compounds, namely
ZINC5519433, ZINC5733756, ZINC95486106, ZINC1691180, and ZINC4520996 (Table 2).
The selected compounds were predicted as having plausible pharmacological profiles
including high gastrointestinal absorption, non-Pgp substrates, and non-CYP3A4 inhibitors.
Assessment of their predicted biological activities showed all five to have anti-inflammatory
and antiviral propensities, with Pa > Pi and Pa > 0.3.
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Table 2. A list of selected compounds with their 2D structures and common /IUPAC names.

Ligand ID Common/IUPAC Name 2D Structure

ZINC5519433 Zuihonin A
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60 ns, where it dropped to 2.02 nm. The p38 MAPK-ZINC4520996, p38 MAPK-
ZINC1691180, p38 MAPK-ZINC95486106, p38 MAPK-SB 203580, and p38 MAPK-SB 
202190 complexes were observed to be stable over the simulation time with average Rg of 
2.12 nm, 2.13 nm, 2.13 nm, 2.14 nm, and 2.15 nm, respectively. These were close to the 
average Rg of 2.12 nm exhibited by the unbound protein. A stably folded protein main-
tains a reasonable steady radius of gyration throughout the simulation [114]. 

ZINC5519433 had binding energy of −11.6 kcal/mol (Table 1). It formed hydrophobic
interactions with residues including Lys53, Thr106 and Phe169, which have been reported
in other studies to be critical in ligand binding (Table 1). It is 71% structurally similar to
macelignan via DrugBank [95]; a natural compound that attenuates the activation of p38
MAPK and has exhibited anti-inflammatory activity [96]. Previous experimental studies
showed ZINC5519433 as a kinase inhibitor and selective to c-Jun N-terminal kinases
(JNK) [97]. This corroborates our studies on the potential lead-likeness of ZINC5519433. A
further lead optimization may likely increase its selectivity towards p38 MAPK [98].

ZINC1691180 and ZINC4520996 were both predicted to have a binding energy of
−11.6 kcal/mol (Table 1). Both formed hydrogen bonding with Tyr35, with varying
lengths and hydrophobic contacts with some critical residues (Table 1). ZINC1691180
has been reported to evoke anti-inflammatory properties via regulating the production of
inflammatory factor TNFα in mice [93]. TNFα mediates the activation of p38 MAPK [99]
and obstruction of this pathway with ZINC1691180 could be useful in severe COVID-19
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cases. ZINC5733756 had binding energy of −11.1 kcal/mol due to strong intermolecular
interaction with residues including Thr106 and Phe169 (Table 1). Moreover, ZINC5733756
is 73% structurally similar to estradiol, a hormone that exerts anti-inflammatory activities
by targeting the activation of Nrf2 [100].

Furthermore, ZINC95486106 formed interactions with critical residues namely Lys53,
Leu108, and Phe169 contributing to its binding energy of −12.1 kcal/mol. It was also
predicted to be GPCR and Beta-adrenergic receptor kinase inhibitors via PASS with Pa > 0.8.

The inhibitory constants (Ki) of the selected compounds and the known inhibitors
were calculated (Supplementary Table S2) using a previously described method [57,101].
All the selected compounds had lower predicted Ki values than all the known inhibitors
used herein (Supplementary Table S2), indicating their inhibitory potential [102]. For the
selected compounds, ZINC95486106 was predicted to have the lowest Ki value of 1.348 nM
while ZINC57337556 had the highest Ki value of 7.291 nM. ZINC1691180, ZINC5519433,
and ZINC4520996 had the same predicted Ki value of 3.135 nM (Supplementary Table S2).
For the known inhibitors, the predicted Ki values ranged from 8.63 nM to 1.62 µM
(Supplementary Table S2). The known inhibitors were experimentally determined to have
IC50 values ranging from 3.7 to 41.2 nM (Supplementary Table S2) [103–107]. ARRY-797
with the lowest IC50 value of 4.5 nM had binding energy of −9.5 kcal/mol, which is higher
than that of SB 20358 (−10.9 kcal/mol) with the highest IC50 value 41.2 nM.

3.8. Molecular Dynamics Simulation of Selected Compounds

A 100 ns MD simulation was performed on eight structures consisting of the unbound
protein, the complexes of the five selected compounds, and the two known p38 MAPK
inhibitors SB 203580 and SB 202190. This was aimed at probing the structural stability and
conformational changes in physiological conditions [108]. The parameters evaluated were
the root mean square deviation (RMSD), the radius of gyration (Rg), and the conformational
changes with time.

The RMSD is a metric used to assess the stability of a protein structure [109]. An RMSD
plot of the p38 MAPK-ligand complexes that tend to converge is indicative of a stable
and well-equilibrated system [110]. Considering the p38 MAPK-ZINC5519433 RMSD plot,
a steady rise to 0.38 nm was observed during the 1 ns of simulation. It then descended
and maintained an average RMSD of 0.3 nm (Figure 4a). Moreover, the RMSD of the p38
MAPK-ZINC5733756 complex gradually rose to 0.42 nm around 15 ns and quickly dropped
to an average RMSD of 0.3 nm around 17 ns (Figure 4a). It maintained the average RMSD
of 0.3 nm till about 62 ns, where a sharp rise to an average of 0.45nm was observed till the
end of the 100 ns simulation period (Figure 4a). The p38 MAPK-ZINC4520996 complex
experienced a rise in RMSD to 0.45 nm around 13 ns and maintained stability till the end of
the simulation time (Figure 4a). An initial rise to 0.40 nm during the first 6 ns was observed
for the p38 MAPK-ZINC1691180 complex (Figure 4a). The RMSD dropped to about 0.32 nm
around 20 ns and was maintained till the 100 ns period (Figure 4a). Additionally, the RMSD
plot for p38 MAPK-ZINC95486106 revealed stability after 15 ns, with an average RMSD of
0.33 nm (Figure 4a). Considering the known inhibitors, average RMSDs of 0.35 nm and
0.38 nm were observed for the SB 203580 and SB 202190-p38 MAPK complexes, respectively.
The p38 MAPK complexes of ZINC5519433, ZINC95486106, ZINC1691180, ZINC4520996,
SB 203580 and SB 202190 had lower average RMSDs relative to the unbound protein
(Figure 4a). This may suggest stability induced by ligand binding.

In a pharmacophore-guided study to identify p38 MAPK inhibitors, a 10 ns MD
simulation was performed on the most potent molecule (compound 48) and the protein
complex [111]. It was observed that the RMSD ranged between 0.5 to 2.5 Å
(0.05 to 0.25 nm) [111]. Other MD simulation studies on p38 MAPK-ligand complexes
reported RMSD values up to about 0.6 nm [112,113] consistent with the results presented
herein. The Rg was measured to evaluate the compactness of the protein systems during
the MD simulation [114]. The Rg of p38-MAPK-ZINC5519433 fell from 2.25 nm to 2.20 nm
during the first 5 ns and it further rose and peaked at 2.26 nm around 9 ns. It then fluc-



Biomolecules 2021, 11, 653 13 of 25

tuated over the remaining time with an average Rg of 2.20 nm (Figure 4b). For the p38
MAPK-ZINC5733756 complex, an initial Rg of 2.2 nm was obtained and it then fluctuated
around 2.15 nm until 60 ns, where it dropped to 2.02 nm. The p38 MAPK-ZINC4520996,
p38 MAPK-ZINC1691180, p38 MAPK-ZINC95486106, p38 MAPK-SB 203580, and p38
MAPK-SB 202190 complexes were observed to be stable over the simulation time with
average Rg of 2.12 nm, 2.13 nm, 2.13 nm, 2.14 nm, and 2.15 nm, respectively. These were
close to the average Rg of 2.12 nm exhibited by the unbound protein. A stably folded
protein maintains a reasonable steady radius of gyration throughout the simulation [114].
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The distance between the centre of mass of a protein and an inhibitor influences the
molecular interactions, which in turn play a crucial role in the structural stability of the
protein-ligand complexes [115]. Snapshots at 25 ns intervals (time step = 0, 25, 50, 75,
and 100 ns) were generated to elucidate the position and binding modes of the ligands
during the 100 ns MD simulation period (Figure 5 and Supplementary Figure S1). In the
snapshot analysis, all the ligands were observed to stably bind in the ATP binding pocket
of the p38 MAPK protein throughout the 100 ns simulation time. Moreover, the number
of hydrogen bonds over the simulation time with a distance cut-off of 0.35 nm was also
generated (Figure 6). The 2D protein-ligand interaction profiles of the snapshot frames
of the protein-ligand complexes at time intervals of 25 ns were also generated to study
the interactions during the 100 ns simulation period (Supplementary Figures S2 and S3).
For the p38 MAPK-ZINC1691180 complex, the hydrogen bond of length 3.17 Å with
Tyr35 before MD (Supplementary Figure S2a) was lost at 25 ns and was not formed again
throughout the simulation time. However, at 75 ns, ZINC1691180 formed a new hydrogen
bond with Ser32 of bond length 2.96 Å, which was lost at 100 ns (Figure S3a). For the p38
MAPK-ZINC4520996 complex, the hydrogen bonding with Tyr35 pre-MD was not present
at 25 ns (Supplementary Figures S2b and S3b). However, at 50 ns, ZINC4520996 formed
a new hydrogen bond with Asp112 of bond length 3.01 Å (Supplementary Figure S3b).
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The hydrogen bond with Asp112 was lost at 75 ns and re-formed at 100 ns with a
bond length of 3.2 Å (Figure S3b). For the p38 MAPK-ZINC5519433 complex, the ligand
was observed to form a hydrogen bond at 25 ns with Gly170 of bond length of 3.15 Å
(Supplementary Figure S3d). However, at 50, 75, and 100 ns, there were no hydrogen bonds
observed. For the protein-ZINC95486106 complex, the hydrogen bond with Met109 (bond
length of 3.03 Å) was lost throughout the simulation time (Supplementary Figures S2c and S3c).
However, at 100 ns, two hydrogen bonds were observed with Ser32 of a bond length of
2.73 Å and Lys15 with a bond length of 3.06 Å (Supplementary Figure S3c). For the p38
MAPK-ZINC5733756 complex, ZINC5733756 did not form any hydrogen bond with the
protein before MD (Supplementary Figure S2e). At 25 ns, ZINC5733756 was observed to
form one hydrogen bond with Asp112 of length 2.86 Å. At 50 ns, it formed two hydrogen
bonds with the p38 MAPK protein composed of one with Asp112 (bond length of 2.71 Å)
and the other with Asn115 (bond length of 2.70 Å). Hydrogen bonds with Asp112 and
Asn115 of lengths 2.65 and 3.14 Å were observed at 75 ns, respectively (Supplementary
Figure S3e). At 100 ns, ZINC5733756 maintained only one hydrogen bond of length 2.70 Å
with Asp112 (Supplementary Figure S3e). The multiple hydrogen bonds formed indicate
the strong interactions between ZINC5733756 and the p38 MAPK protein throughout the
simulation period and could influence the activity of the ligand [116].

3.9. Evaluation of Selected Compounds via MM-PBSA Calculations

MM-PBSA technique was used to estimate the free binding energies of the seven com-
plexes. This technique addresses limitations with current scoring functions [117,118]. The
binding free energy is a more reliable method of evaluating docking studies [77,117,119].
The other parameters computed included the van der Waal, electrostatic, polar, and
non-polar solvation energies (Table 3) [120,121]. The selected molecules comprising
ZINC5519433, ZINC95486106, ZINC5733756, ZINC1691180 and ZINC4520996 had pre-
dicted average free binding energies of −185.122, 30.620, −61.726, −146.008, and
−151.561 kJ/mol, respectively. SB 202190 and SB 203580 were predicted to have plau-
sible free binding energies of −166.369 kJ/mol and −236.175 kJ/mol, respectively (Table 3).
Since ZINC95486106 was the only selected compound with positive binding free energy, it
was eliminated as a potential lead. Optimization of the ligand structure in future studies
can improve its affinity to the p38 MAPK protein. The poor binding free energy could
largely be due to the high electrostatic energy relative to the other compounds (Table 4) and
hence may limit its lead likeness [57]. In all seven compounds assessed, the van der Waal
forces contributed favorably to the free binding energies [29,120,121]. However, the polar
solvation energy contributed large positive energies to binding in all the complexes [122].
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Figure 5. Snapshots at 25 ns intervals ((time step = 0, 25, 50, 75, and 100 ns) for the binding modes of the ligand-p38 MAPK
complexes. The cartoon representation shows (a) ZINC1691180, (b) ZINC4520996, (c) ZINC95486106, (d) ZINC5519433 and
(e) ZINC5733756- p38 MAPK complexes. The ligands are represented as spheres and the protein as cartoons. All the ligands
were observed to bind stably in the ATP binding pocket.
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Figure 6. The total number of hydrogen bonds formed between the selected compounds and the protein structure.
ZINC1691180, ZINC4520996, ZINC95486106, ZINC5519433, ZINC5733756, SB 202190, and SB 203580-p38 MAPK complexes
are represented as black, red, green, blue, yellow, brown and ash, respectively.

Table 3. The energy contributions for the protein-ligand complexes based on the MM-PBSA computations.

Name
Electrostatic

Energy
(kJ/mol)

Van Der Waal
Energy

(kJ/mol)

Polar solvation
Energy

(kJ/mol)

Non-Polar
Solvation Energy

(kJ/mol)

Binding Energy
(kJ/mol)

ZINC5733756 −15.833 ± 16.423 −118.111 ± 77.765 47.787 ± 28.117 −9.689 ± 8.856 −95.846 ± 74.930
ZINC5519433 −2.575 ± 7.169 −222.685 ± 10.572 58.332 ± 15.055 −18.194 ± 0.535 −185.122 ± 21.347

ZINC95486106 75.738 ± 77.290 −86.044 ± 50.930 49.672 ± 75.935 −8.747 ± 4.846 30.620 ± 42.755
ZINC1691180 −12.086 ± 5.07 −180.593 ± 17.415 63.084 ± 16.371 −16.413 ± 0.870 −146.008 ± 17.297
ZINC4520996 2.277 ± 5.466 −203.698 ± 17.665 66.835 ± 11.789 −16.976 ± 0.738 −151.561 ± 22.622

SB 202190 −2.041 ± 3.990 −209.281 ± 15.503 63.370 ± 16.798 18.417 ± 0.895 −166.369 ± 19.355
SB 203580 −5.094 ± 3.533 −280.578 ± 10.532 70.328 ± 22.075 −20.831 ± 1.546 −236.175 ± 26.555

Table 4. A table showing the per-residue energy contributions of the critical residues interacting with the ligands. The
energies were calculated from the MM-PBSA computations. The energy values are presented in kJ/mol.

Residue ZINC5733756 ZINC5519433 ZINC95486106 ZINC1691180 ZINC4520996 SB 202190 SB 203580

Tyr35 −0.0810 −4.0969 −0.0881 −1.9196 −0.5451 −1.6995 −3.0867
Val38 −3.8266 −8.7247 −0.7025 −7.6582 −4.7471 −11.3682 −4.3341
Ala51 −1.7431 −3.5809 −0.6868 −2.7066 −4.0012 −5.1339 −2.7369
Lys53 4.9439 4.3252 −12.3692 8.4199 13.3187 12.708 14.7836

Thr106 −0.6584 −6.1224 0.0030 0.5693 −0.1483 −2.5140 −6.7417
Leu108 −3.1269 −3.2785 −0.7509 −4.0640 −7.2590 −3.8154 −0.0608
Met109 −4.2382 −0.3931 −2.1912 −0.2787 −1.8900 −0.4842 −0.7980
Phe169 −5.8140 −9.2470 −1.3285 −14.5954 −6.8001 −14.9162 −10.2842
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Additionally, a per-residue decomposition of the binding energy was performed to
gain useful insight into important interactions of key residues (Figure 7 and
Supplementary Figure S4). Residues contributing binding free energies greater than
5 kJ/mol or less than −5 kJ/mol are worthy of consideration as critical for binding [57].
For the p38 MAPK-ZINC5519433 complex, critical residues Phe169 and Thr106 contributed
favorable energies of −9.2470 kJ/mol and −6.1224 kJ/mol, to ligand binding, respec-
tively (Table 4 and Figure 7). Asp168 was found to contribute unfavorable energy of
7.1894 kJ/mol (Figure 7). Moreover, only Phe169 contributed binding free energies of
±5.0 kJ/mol to ZINC5733756 binding (Table 4 and Supplementary Figure S4d). From
the energy decomposition plot, Tyr30, Tyr38, Leu167, and Phe169 were predicted as critical
residues that contributed favorably to ZINC1691180 binding (Table 4 and Supplementary
Figure S4a). However, Lys53 and Asp112 contributed adversely towards ZINC1691180
binding with energies of 8.4199 and 9.7176 kJ/mol, respectively. For ZINC4520996 complex,
Lys53, Leu167, Asp168, and Phe169 contributed energies of ±5.0 kJ/mol to binding (Table 4
and Supplementary Figure S4b). Altogether, Lys53 was found to contribute high repulsive
positive energies in the p38 MAPK-ZINC5519433, ZINC1691180, ZINC4520996, SB 203580
and SB 202190 complexes (Table 4), unfavorable for ligand binding in the ATP binding
pocket. Phe169 contributed favorable energies <−5.0 kJ/mol in all complexes examined
except ZINC95486106, corroborating its critical role in ligand binding as suggested in
previous studies [87,110].

Figure 7. Molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) plot of binding free energy contribution
per-residue of ZINC5519433-p38 MAPK complex. Fluctuations of the residues Tyr35, Val38, Ala51, Lys53, Thr106, Leu108,
Met109, and Phe169 are colored red.
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4. Summary and Potential Implication of the Study on COVID-19-Induced
Cytokine Storm

The binding of SARS-CoV-2 to the human ACE2 and cell entry has been shown to
downregulate ACE2 [18,19], which in turn leads to uncontrolled inflammation [14]. ACE2
is known to convert angiotensin-II to angiotensin (1–7), which binds to the MAS receptor
(MASR) to promote vasodilation, vascular protection, anti-fibrosis, anti-proliferation, anti-
inflammation, and anti-angiogenesis [123]. Angiotensin-II signals pro-inflammatory, pro-
vasoconstrictive, and pro-thrombotic activity through p38 MAPK activation, which is
counter-balanced by Angiotensin (1–7) downregulation of p38 MAPK activity [14]. The
downregulation of ACE2 leads to poor conversion of angiotensin -II to angiotensin (1–7).
Studies on the complications of SARS-CoV-2 infection have reported higher levels of plasma
cytokines, a condition known as the cytokine storm [12,13,124]. SARS-CoV was reported
to upregulate p38 MAPK activity via a viral protein [20] and SARS-CoV-2 has also been
suggested to employ a similar mechanism [14]. The p38 MAPK has thus been identified as
critical in the COVID-19 cytokine storms [14,15].

Therefore, this study sought to identify potential p38 MAPK inhibitors which could
be explored as useful in ameliorating the cytokine storms in severely ill COVID-19 pa-
tients. Pharmacoinformatics-based approaches including molecular docking and dy-
namics studies predicted four potential lead compounds with good binding affinity
to the p38 MAPK protein and negligible toxicity. The predicted biological activities
of the selected compounds showed that they possessed anti-inflammatory, kinase in-
hibition, antiviral, platelet aggregation inhibition, and immunosuppression activities.
Dexamethasone, which is an anti-inflammatory compound is used as a treatment op-
tion in COVID-19 patients [26]. Moreover, Losmapimod, which is a p38 MAPK in-
hibitor, is currently undergoing clinical trials for use as a treatment option in severely
ill COVID-19 patients (https://clinicaltrials.gov/ct2/show/NCT04511819 (accessed on 8
April 2021)). Herein, ZINC5519433 was predicted as a platelet aggregation inhibitor and
anti-rhinovirus. ZINC5733756 was also predicted as an anti-inflammatory, anti-influenza,
and anti-rhinovirus. Moreover, ZINC1691180 and ZINC4520996 were predicted to be
anti-inflammatory and antiviral. Interestingly, ZINC1691180 has previously been shown to
elicit an anti-inflammatory response in mice [93]. The effects of the predicted compounds
as potential inhibitors of p38 MAPK to possibly reduce the cytokine storm can be investi-
gated experimentally. The plethora of predicted activities and mechanisms serve as clues
that warrant further evaluation of these compounds. The molecules can be optimized as
well as used for fragment-based de novo drug design of potential novel biotherapeutics.
These predicted compounds can help fuel the pace of searching for effective antivirals with
anti-inflammatory activity.

5. Conclusions

The study used multistage computational techniques to predict four natural product-
derived molecules comprising ZINC5733756, ZINC1691180, ZINC4520996 and ZINC5519433,
which have the potential to inhibit the p38 MAPK. The compounds were selected based
on high binding affinity and plausible binding mechanisms with the p38 MAPK protein
structure obtained through molecular dynamics simulations including MM-PBSA. Key
residues Tyr38, Ala51 and Phe169 were corroborated as critical for binding, which could
guide the design and selection of future p38 MAPK inhibitors. Furthermore, these drug-like
compounds were predicted as anti-inflammatory, kinase inhibitors, antiviral, platelet ag-
gregation inhibitors, and immunosuppressive. Since the activation of the p38 MAPK leads
to hyperinflammation in severely ill COVID-19 patients, the potential of these molecules
to attenuate the cytokine storm can be explored. Further in vitro and in vivo evaluations
of the suggested molecules could be undertaken to corroborate the predicted inhibitory
activity. The study can serve as a clue for the design of novel p8α MAPK selective inhibitors
which may have therapeutic implications in COVID-19-induced cytokine storm.

https://clinicaltrials.gov/ct2/show/NCT04511819
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11050653/s1, Table S1: Predicted pharmacokinetics of the 18 selected hits and two
inhibitors. The profiles used were gastrointestinal (GI) absorption, cytochrome P450 (CYP) 3A4
and permeability glycoprotein (P-gp) substrates. Also included is the number of violations of
Lipinski’s rule of five, Table S2: Predicted inhibitory constants (Ki) and binding energy of the selected
compounds and those of the known inhibitors. Also, included are the experimentally determined
inhibition constants of known inhibitors., Figure S1: Snapshots at 25 ns interval (time step = 0,
25, 50, 75 and 100 ns) for the binding modes of the (a) SB 202190, and (b) SB 203580 ligand-p38
MAPK complexes, Figure S2: 2D representation of the protein-ligand complexes before MD for
(a) ZINC1691180, (b) ZINC4520996, (c) ZINC95486106, (d) ZINC5519433, and (e) ZINC5733756-p38
MAPK complexes, Figure S3: 2D representation of the protein-ligand complexes at 25 ns, 50 ns,
75 ns and 100 ns for (a) ZINC1691180, (b) ZINC4520996, (c) ZINC95486106, (d) ZINC5519433 and
(e) ZINC5733756 (f) SB 202190 and (g) SB 203580- p38 MAPK complexes, Figure S4: Molecular
mechanics Poisson-Boltzmann surface area (MM-PBSA) plot of binding free energy contribution
per-residue for (a) ZINC1691180, (b) ZINC4520996, (c) ZINC95486106, (d) ZINC5733756, (e) SB
202190, and (f) SB 203580-p38 MAPK complexes. Fluctuations of the residues Tyr35, Val38, Ala51,
Lys53, Thr106, Leu108, Met109 and Phe169 are colored red.
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