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Abstract: Lipid metabolic reprogramming is one of the hallmarks of hepatocarcinogenesis and
development. Therefore, lipid-metabolism-related genes may be used as potential biomarkers for
hepatocellular carcinoma (HCC). This study aimed to screen for genes with dysregulated expression
related to lipid metabolism in HCC and explored the clinical value of these genes. We screened
differentially expressed proteins between tumorous and adjacent nontumorous tissues of hepatitis
B virus (HBV)-related HCC patients using a Nanoscale Liquid Chromatography–Tandem Mass
Spectrometry platform and combined it with transcriptomic data of lipid-metabolism-related genes
from the GEO and HPA databases to identify dysregulated genes that may be involved in lipid
metabolic processes. The potential clinical values of these genes were explored by bioinformatics
online analysis tools (GEPIA, cBioPortal, SurvivalMeth, and TIMER). The expression levels of the
secreted protein (angiopoietin-like protein 6, ANGPTL6) in serum were analyzed by ELISA. The
ability of serum ANGPTL6 to diagnose early HCC was assessed by ROC curves. The results showed
that serum ANGPTL6 could effectively differentiate between HBV-related early HCC patients with
normal serum alpha-fetoprotein (AFP) levels and the noncancer group (healthy participants and
chronic hepatitis B patients) (AUC = 0.717, 95% CI: from 0.614 to 0.805). Serum ANGPTL6 can
be used as a potential second-line biomarker to supplement serum AFP in the early diagnosis of
HBV-related HCC.

Keywords: hepatocellular carcinoma; lipid metabolism; serum; biomarker; early diagnosis; ANGPTL6;
AFP; ADH4; SLC27A5B; TTC36

1. Introduction

According to global cancer statistics for 2020, liver cancer ranked seventh in incidence
and second in cancer-related mortality [1]. Hepatocellular carcinoma (HCC) is the most
common type of primary liver cancer, accounting for approximately 70–90% of cases [2,3].
Because HCC patients often lack symptoms in the early stages, by the time they are
diagnosed, they may have missed the best time to receive surgical treatment [4]. This is one
of the reasons for the poor prognosis of HCC patients [5]. Histopathological examination is
the gold standard for the diagnosis of HCC, but this examination is more invasive to the
patient. In addition, puncture through tissue biopsy has the potential to lead to the spread
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of tumor cells [6]. Heterogeneity within the tumor tissue leads to inaccurate sampling,
and there is still a probability of false negative results [7,8]. Imaging and serological tests
are also used to diagnose HCC. However, screening for lesions by ultrasonography may
be influenced by the operator’s empirical judgment and may easily miss microscopic
lesions [9,10]. Multiphasic computed tomography (CT) or magnetic resonance imaging
(MRI) can improve the accuracy of HCC diagnosis but at a higher cost [11]. In addition, it
has been reported that indeterminate nodules still require tissue biopsy for confirmation
due to the poor performance of CT and MRI diagnosis of HCC smaller than 1 cm [12,13].
Serological tests are inexpensive and easy to standardize during the test operation. More
importantly, serological testing is a noninvasive test. Therefore, this test makes it easier to
obtain samples and reflects the patient’s status at the time more comprehensively, avoiding
the spatial and temporal heterogeneity of tumors [7]. Serum alpha-fetoprotein (AFP) is a
widely used biomarker for HCC in clinical practice. However, the application of serum
AFP in the diagnosis of early-stage HCC is limited because of its low sensitivity and
specificity [10,14]. Therefore, researchers have been searching for novel biomarkers to
compensate for the limitations of serum AFP in diagnosing early HCC.

Chronic hepatitis B virus (HBV) infection is a major influential factor in the occurrence
of HCC [15]. Especially in China, the incidence of HBV-associated HCC remains higher
than that of HCC associated with other etiologies [16,17]. However, the mechanism of
hepatocarcinogenesis is complex, and its mechanism is still not fully elucidated. With a
better understanding of cancer, metabolic reprogramming is now considered to be one of
the hallmarks of cancer [18]. In particular, abnormalities in lipid metabolism during can-
cerogenesis and progression are receiving increasing attention [19–22]. The reprogramming
of lipid metabolism provides a large amount of energy for tumor cells and promotes their
growth [19,23]. Studies have shown that HBV infection and disorders of lipid metabolism
can synergistically promote the occurrence of HCC [24–28]. In addition, lipid-metabolism-
related genes and the lipid metabolome can be used as potential biomarkers for HBV-related
HCC [29,30]. However, studies on lipid metabolism are mainly focused on cardiovascular
diseases and metabolic syndromes [31–40], and studies on the comprehensive analysis of
lipid metabolism in HCC are still relatively few.

In this study, we investigated differentially expressed proteins (DEPs) between tu-
morous and adjacent nontumorous tissues of HBV-related early-stage HCC patients using
a Nanoscale Liquid Chromatography–Tandem Mass Spectrometry (Nano-LC-MS/MS,
Thermo Fisher Scientific, Waltham, MA, USA) platform analysis and combined it with
transcriptomic data of lipid-metabolism-related genes from public databases to identify
genes that may be involved in dysregulated processes of lipid metabolism. The genes were
evaluated for their potential clinical features at the DNA, RNA, and protein levels. More
importantly, we hope to identify potential serum biomarkers that can assist AFP in the
early diagnosis of HBV-related HCC. A flow chart of this study is presented in Figure 1.
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Figure 1. Flow chart of this study. Abbreviations: GEO, Gene Expression Omnibus; T, tumorous 
tissues of HCC patients; N, adjacent nontumorous tissues of HCC patients; DEGs, differentially 
expressed genes; HPA, Human Protein Atlas; DEPs, differential expression proteins; Nanoscale 
Liquid Chromatography–Tandem Mass Spectrometry, Nano-LC‒MS/MS; TCGA, The Cancer 
Genome Atlas; GTEx, Genotype-Tissue Expression; ANGPTL6, angiopoietin-like protein 6; AFP, 
alpha-fetoprotein; ELISA, enzyme-linked immunosorbent assay; HCC, hepatocellular carcinoma; 
HCs, healthy controls; CHB, chronic hepatitis B; ROC; receiver operating characteristic. 
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First, we queried 18 datasets from the Gene Expression Omnibus (GEO) database on 
3rd September 2021 by search terms (((metabolic[All Fields] OR metabolomic[All Fields]) 

Figure 1. Flow chart of this study. Abbreviations: GEO, Gene Expression Omnibus; T, tumorous
tissues of HCC patients; N, adjacent nontumorous tissues of HCC patients; DEGs, differentially
expressed genes; HPA, Human Protein Atlas; DEPs, differential expression proteins; Nanoscale Liquid
Chromatography–Tandem Mass Spectrometry, Nano-LC-MS/MS; TCGA, The Cancer Genome Atlas;
GTEx, Genotype-Tissue Expression; ANGPTL6, angiopoietin-like protein 6; AFP, alpha-fetoprotein;
ELISA, enzyme-linked immunosorbent assay; HCC, hepatocellular carcinoma; HCs, healthy controls;
CHB, chronic hepatitis B; ROC; receiver operating characteristic.

2. Materials and Methods
2.1. Identification of DEGs from Microarray Data

First, we queried 18 datasets from the Gene Expression Omnibus (GEO) database on
3 September 2021 by search terms (((metabolic[All Fields] OR metabolomic[All Fields]) OR
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metabonomic[All Fields]) AND ((HCC[All Fields] OR (“carcinoma, hepatocellular”[MeSH
Terms] OR hepatocellular carcinoma[All Fields])) OR (“liver neoplasms”[MeSH Terms]
OR liver cancer[All Fields]))) AND “Homo sapiens”[porgn] AND (“gse”[Filter] AND
“Expression profiling by array”[Filter] AND “attribute name tissue”[Filter]). Second,
the datasets were filtered according to the following criteria: (1) primary HCC; (2) un-
treated patients; (3) tumorous tissues and paired adjacent nontumorous tissues from
more than 50 patients; and (4) research content related to lipid metabolism. Finally, only
one dataset (GSE102079 [41]) containing 91 patients met our filtering criteria. GEO2R
(http://www.ncbi.nlm.nih.gov/geo/geo2r, accessed on 3 September 2021) is an online
web tool that allows researchers to screen differentially expressed genes (DEGs) between
HCC tumorous tissues and paired adjacent nontumorous tissues in GSE102079. The filter
criteria of logFC (fold change) > 1 and adjusted p-value < 0.01 were used to identify the sig-
nificantly upregulated DEGs. The filter criteria of logFC < −1 and adjusted p-value < 0.01
were used to identify the significantly downregulated DEGs. We also downloaded the
data from GSE63898[42] (including 228 HCC and 168 nontumorous cirrhotic samples),
GSE76427[43] (including 52 paired HCC and adjacent nontumorous cirrhotic samples), and
GSE107170[44] (including 10 paired HBV-related HCC and nontumorous samples, nine
paired HCV-related HCC and nontumorous samples, and five paired HDV-related HCC
and nontumorous samples) to analyze ANGPTL6 expression (Table S1).

2.2. Functional Enrichment Analyses of DEGs

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and biological
process functional enrichment analyses of DEGs were autogenerated by using the Database
for Annotation, Visualization and Integrated Discovery (DAVID, http://david.ncifcrf.gov/,
last accessed on 8 July 2022) [45]. p < 0.05 and false discovery rate (FDR) ≤ 0.01 were set as
the thresholds [46]. Then, we selected the top 3 functional enrichment annotations with the
lowest p-values and FDRs for visual analysis.

2.3. Gene Expression Clusters of Transcriptomics Data in Tissues

Gene expression clusters were obtained from the Human Protein Atlas (HPA) website
(version 21, https://www.proteinatlas.org/humanproteome/tissue/expression+cluster,
last accessed on 8 July 2022). According to the RNA expression data of genes in tissue
samples, the protein-coding genes were clustered into gene expression clusters of various
tissue types by Louvain clustering. The resulting clusters are annotated to describe common
features in terms of specificity and function. This annotation is based on the overrepresen-
tation analysis of biological databases, including Gene Ontology, Reactome, PanglaoDB,
TRRUST, and KEGG pathways, as well as HPA classification, including subcellular location,
proteins, secretion location, and classification, as well as specificity for human tissues,
single cell types, immune cells, brain regions, and cell lines. In addition, a reliability score
is set for each cluster to represent the confidence of specificity and function assignment.

2.4. Gene Expression Profiling Interactive Analysis (GEPIA) for Validating Gene Expression and
Survival Analysis

GEPIA is an online database with an updated version (GEPIA2, http://gepia2.cancer-
pku.cn, last accessed on 8 July 2022). GEPIA2 provides RNA sequencing expression data of
9736 tumors and 8587 normal samples from The Cancer Genome Atlas (TCGA) and the
Genotype-Tissue Expression (GTEx) Portal, based on a standard processing pipeline [47]. In
the “Expression Analysis” module, the differential expression of individual genes between
liver hepatocellular carcinoma (LIHC) tissues and normal tissues was analyzed by ANOVA.
RNA sequencing expression data of tumor tissues compared matched normal data from
TCGA normal and GTEx data. Box plots were generated, where |Log2FC| greater than or
equal to 1, and a p-value less than or equal to 0.01 were considered significant differences in
the expression of the individual gene between LIHC and normal tissues. Overall survival
(OS) and disease-free survival (DFS) analyses of LIHC patients were performed by Kaplan-

http://www.ncbi.nlm.nih.gov/geo/geo2r
http://david.ncifcrf.gov/
https://www.proteinatlas.org/humanproteome/tissue/expression+cluster
http://gepia2.cancer-pku.cn
http://gepia2.cancer-pku.cn
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Meier survival curves in the “Survival Analysis” module. The expression levels of a single
gene higher and lower than 50% (median value) were defined as the high-expression group
and the low-expression group, respectively [48]. A hazard ratio (HR) was calculated by the
Cox PH mode. The 95% confidence interval (CI) as a dotted line was drawn in the survival
plots. A log rank p < 0.05 was considered statistically significant.

2.5. cBioPortal for Exploring the Correlation between Gene Expression and Methylation

cBioPortal (https://www.cbioportal.org, portal version 4.1.17, last accessed on 8 July 2022)
is a comprehensive public website for analyzing and visualizing multidimensional cancer
genomics data [49,50]. We selected a dataset of LIHC (TCGA, Firehose Legacy), a genomic
profile with mRNA expression z-scores relative to all samples (log RNA Seq V2 RSEM) (a z-
score threshold of ±2.0), and an Illumina methylation (HM450) profile. Then, we analyzed
the correlation between the mRNA expression z-scores of a single gene and its methylation
levels from all samples with a Spearman correlation coefficient. A p-value < 0.05 was con-
sidered statistically significant. Absolute values of correlation coefficients were considered
as follows: from 0.00 to 0.19 as very weak, from 0.20 to 0.39 as weak, from 0.40 to 0.59 as
moderate, from 0.60 to 0.79 as strong, and from 0.80 to 1.0 as very strong [48]. Additionally,
correlation coefficients between 0.6 and 1.0 were considered to have a strong/very strong
positive correlation, and correlation coefficients between −0.6 and −1.0 were considered to
have a strong/very strong negative correlation.

2.6. SurvivalMeth for Exploring the Correlation between DNA Methylation and the Prognosis of
HCC Patients

SurvivalMeth (http://bio-bigdata.hrbmu.edu.cn/survivalmeth/, last accessed on
8 July 2022) is a web server with a collection of 81 DNA methylation profiles in 13,371 sam-
ples of 36 cancers from the TCGA, GEO, and Cancer Cell Line Encyclopedia (CCLE)
databases [51]. We used the 450K (Illumina Infinium HumanMethylation450 BeadChip)
experimental platform to explore the effect of DNA methylation levels of genes on the
prognosis of HCC patients and selected the “samr” method for case-control differential
analysis. All other options were set by default, e.g., “Threshold value” was set as “0.01”,
“Absolute Difference” was set as “0”, and “Grouping Strategy” was set to “Maxstat”. The
prognostic index was calculated based on the DNA methylation matrix and the coefficient
obtained from the proportional hazard regression model, and patients were classified into
low- and high-risk groups by the cutoff value of the prognostic index. The Kaplan–Meier
plot created by sample ID, rank, survival time, patient status (alive or dead), risk group,
and prognostic index was used to assess the correlation between DNA methylation levels
of a single gene and the prognosis of HCC patients.

2.7. Tumor Immune Estimation Resource (TIMER) for Exploring the Correlation between Gene
Expression and Immune Infiltration

TIMER is a web server (https://cistrome.shinyapps.io/timer/, last accessed on 8 July 2022)
that encompasses 10,897 samples covering 32 cancer types from the TCGA database to
assess the correlation of gene expression level (log2 TPM) with immune infiltration level in
different cancer types [52,53]. Six types of infiltrating immune cells were used to establish
these correlations, including B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils,
and dendritic cells.

2.8. Ethical Statement

Written informed consent was given by all participants before starting this study.
Ethical approvals for this study were obtained from the Research Ethics Committee of
Tianjin Medical University Cancer Institute and Hospital (protocol No. bc2020098 and
No. bc2021224).

https://www.cbioportal.org
http://bio-bigdata.hrbmu.edu.cn/survivalmeth/
https://cistrome.shinyapps.io/timer/
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2.9. Tissue Sample Collection and Nano-LC-MS/MS Analysis

In our previous study, we collected eight pairs of tumorous and adjacent nontumorous
tissue samples from HBV-related HCC patients with Barcelona Clinic Liver Cancer (BCLC)
stage A and obtained data on the identification of proteins in these tissues by Nano-
LC-MS/MS detection and analysis [30]. In the current study, we selected proteins that
were highly expressed or lowly expressed in all tumorous tissues to further screen for
DEPs. The conditions for screening were an FDR-adjusted p-value < 0.01, a fold-change
value > 5 or <0.5, and a p-value < 0.01. We used these data to explore whether the proteins
encoded by DEGs were differentially expressed between tumorous tissues and adjacent
nontumorous tissues.

2.10. Serum Sample Collection and Storage

HCC patients and CHB patients were recruited at the Department of Hepatobiliary of
Tianjin Medical University Cancer Institute and Hospital from July 2018 to September 2022.
Healthy participants (healthy controls, HCs) were enrolled at the Cancer Prevention Center
of Tianjin Medical University Cancer Institute and Hospital. We defined the early stages of
HCC by the BCLC staging system of stage 0-A [54,55]. Inclusion criteria were as follows:
patients with untreated and histopathological diagnosis of primary HCC and cirrhosis;
patients with HCC judged to be stage 0-A by BCLC staging; HCC and cirrhosis patients
with chronic HBV infection (Persistent HBV infection of more than 6 months duration is
defined as chronic HBV infection).; healthy participants whose physical examination report
values are within the normal reference range for all indicators and who are not indicated
to have any chronic diseases. Exclusion criteria were as follows: participants less than
or equal to 18 years of age; patients with a history of other neoplasms; patients with a
history of anti-HCC therapy or ongoing drug therapy; patients with a history of infection
other than HBV infection; participants with endocrine, cardiovascular, or renal disease;
participants who were breastfeeding or had a history of alcohol abuse; any factor causing
abnormal elevation of serum AFP in healthy participants, such as pregnancy or any type of
liver disease.

All peripheral blood samples were collected from 7:00 a.m. to 8:00 a.m. after the
participants had fasted for at least 6 h. The collected tubes containing peripheral blood
samples were centrifuged at 4 ◦C for 15 min at 3000 rpm. Next, 400 µL of serum sample was
obtained from the upper layer of the tubes and stored at −80 ◦C until required for enzyme-
linked immunosorbent assays (ELISAs). Briefly, a total of 51 serum samples from patients
with early-stage HCC, 19 serum samples from CHB patients with cirrhosis, 11 serum
samples from CHB patients without cirrhosis, and 32 serum samples from HCs were
tested and analyzed to assess the ability of ANGPTL6 to diagnose HBV-related early-stage
primary HCC.

2.11. ELISAs of Serum ANGPTL6

Serum ANGPTL6 levels were measured according to the manufacturer’s instructions
using ELISA kits (SEN468Hu; Cloud-Clone Corp., Katy, TX, USA). The standard was recon-
stituted with the standard diluent. The reconstitution produced diluted standard solutions
of 2ˆ104 pg/mL, 1ˆ104 pg/mL, 5000 pg/mL, 2500 pg/mL, 1250 pg/mL, 625 pg/mL, and
312 pg/mL. The standard diluent without the standard was considered a blank (standard
solutions of 0 pg/mL). First, 100 µL each of the diluted standard solutions, blank, and
serum samples were added to 96-well plates and incubated in the dark at 37 ◦C for 1 h.
Then, the liquid in each well was removed. Second, 100 µL of Detection Reagent A working
solution (including biotinylated ANGPTL6 antibody) was added to each well and incu-
bated in the dark at 37 ◦C for 1 h. Next, 96 wells were washed, dried, and performed
3 times. Third, 100 µL of Detection Reagent B working solution (including horseradish
peroxidase (HRP)-labeled avidin) was added to each well and incubated in the dark at
37 ◦C for 30 min. A total of 96 wells were washed, dried, and performed 5 times. After that,
90 µL of substrate solution was added to each well and incubated at 37 ◦C for 15 min. When
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the liquid was made blue by adding a substrate solution to each well, 50 µL of stop solution
was added to each well to turn the liquid yellow. Finally, the optical density (O.D.) value of
each well was immediately measured at 450 nm using a Multiskan FC Microplate Reader
(Thermo Fisher Scientific, Waltham, MA, USA). Replicate readings for each standard and
sample were averaged, and the mean value of the standard O.D. at zero concentration
was subtracted. The concentrations of the standard used for creating a standard curve
were 2ˆ104 pg/mL, 1ˆ104 pg/mL, 5000 pg/mL, 2500 pg/mL, 1250 pg/mL, 625 pg/mL, and
312 pg/mL. The ANGPTL6 concentration of the standard is used as the vertical coordinate,
and the O.D. value as the horizontal coordinate to plot the standard curve and create the
regression equation. The ANGPTL6 concentration of the serum sample was calculated via
the O.D. value of the sample and the regression analysis of the standard curve. All samples
and standards were assayed in duplicate. All assays were blinded to disease status.

2.12. 1H-Nuclear Magnetic Resonance (1H-NMR) Experiments

For the first time, we collected serum samples from 27 patients with early-stage HCC
and 17 HCs (from July 2018 to December 2020) for 1H-NMR (Bruker 600 MHz NMR
spectrometer, Bruker BioSpin, Rheinstetten, Germany) testing. The 1H-NMR test platform
detects 112 lipoprotein subfraction indicators in serum samples, and its methodological
details are the same as those described in the methods of one of our previous studies [30].
The testers were not aware of clinical information about the samples.

2.13. Statistical Analysis

SPSS statistical software for Windows, version 25.0 (IBM, Armonk, NY, USA) and
Prism 9.0 (GraphPad Software, San Diego, CA, USA) were used for statistical analysis of the
obtained data. If continuous variables were normally distributed, they were expressed as
the mean ± standard deviation, and the differences between the two groups were compared
using Student’s t tests. If continuous variables were nonnormally distributed, they were
expressed as the median (interquartile range), and the differences between the two groups
were compared using the Mann-Whitney U test (nonparametric analyses). Two groups of
categorical variables were analyzed using chi-square tests. Correlations between serum
ANGPTL6 and other laboratory indices were analyzed using Spearman’s rank correlation
analysis. Spearman’s r > 0.3 or < −0.3 and p < 0.05 were considered to indicate a significant
correlation between the two groups. The heatmap of correlations was drawn using Origin
2021 software. We used MedCalc 18.2.1 software to create receiver operating characteristic
(ROC) curves to evaluate the diagnostic performances of serum ANGPTL6 level in patients
with early primary HCC by the area under the ROC curves (AUCs). The median expression
level of ANGPTL6 in the tissues of early HCC patients with follow-up information was
the cutoff value, and early HCC patients were divided into an ANGPTL6 high expression
group and an ANGPTL6 low expression group in the GSE76427 dataset. The prognostic
value of ANGPTL6 levels in early HCC patients was assessed by Kaplan-Meier curves. A
p < 0.05 (2-sided) was considered statistically significant.

3. Results
3.1. Identification of DEGs and Functional Enrichment Analyses

Our study focused on the characterization of dysregulated gene expression involved
in aberrant lipid metabolism processes in HCC, so we developed strict criteria for screening
datasets in the GEO database (details of the screening are presented in the Section 2).
Ultimately, we selected the GSE102079 dataset for the follow-up study. We downloaded the
gene expression profiles of 91 HCC tumorous tissues and adjacent nontumorous tissues and
obtained 578 upregulated DEGs and 734 downregulated DEGs in the GSE102079 dataset.
Afterward, we annotated these upregulated DEGs and downregulated DEGs separately by
DAVID for functional enrichment (Figure 2, Tables S2 and S3). The upregulated DEGs were
significantly enriched mainly in KEGG pathways, including cell cycle, DNA replication, and
p53 signaling pathways. For biological processes, these DEGs were significantly enriched,
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mainly in cell division and cell cycle. The downregulated DEGs were significantly enriched
mainly in KEGG pathways, including metabolic pathways, complement, and coagulation
cascades, and retinol metabolism. For biological processes, these DEGs were significantly
enriched, mainly in lipid metabolism.
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Figure 2. KEGG pathway and biological process enrichment analyses of 1312 DEGs from the
GSE102079 dataset. (A) KEGG pathway and biological process enrichment analyses of 578 upregu-
lated DEGs. (B) KEGG pathway and biological process enrichment analyses of 734 downregulated
DEGs. In these bubble charts, the y-axis labels present enriched the top 3 terms of KEGG pathway,
UniProt KW biological process, and GO biological process analyses. The x-axis labels present gene
counts, which represent the number of DEGs enriched in a KEGG pathway term or a biological
process term. The bubble sizes represent gene counts, and color intensity represents -log10 (p values)
of the significantly enriched terms. Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes;
KW, Keywords; GO, Gene Ontology.

3.2. Identification of DEGs Related to Hemostasis and Lipid Metabolism

Interestingly, the gene expression clusters of liver tissue that we found with high anno-
tation reliabilities in the HPA website were 144 genes for metabolism-related clusters (https:
//www.proteinatlas.org/humanproteome/tissue/expression+cluster#cluster15, last ac-
cessed on 8 July 2022) and 80 genes for hemostasis and lipid metabolism (HLM)-related clus-
ters (https://www.proteinatlas.org/humanproteome/tissue/expression+cluster#cluster60,
last accessed on 8 July 2022). Similar results are reflected in the functional enrichment
results of the 1312 DEGs of GSE102079, i.e., metabolic pathways, lipid metabolism, and
coagulation cascades. Therefore, we compared these 1312 DEGs with the list of 144 genes
related to hepatic metabolism and selected the overlapping genes. We obtained 30 DEGs
related to hepatic metabolism (Figure 3A). In the same way, we compared these 1312 DEGs
with the list of 80 genes related to hepatic HLM and selected the overlapping genes. We
obtained 42 DEGs related to hepatic HLM (Figure 3B).

https://www.proteinatlas.org/humanproteome/tissue/expression+cluster#cluster15
https://www.proteinatlas.org/humanproteome/tissue/expression+cluster#cluster15
https://www.proteinatlas.org/humanproteome/tissue/expression+cluster#cluster60
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Figure 3. Venn diagrams of overlapping genes. (A) Thirty overlapping genes between 1312 DEGs
(from the GSE102079 dataset) and 144 hepatic metabolism-related genes (from a gene expression
cluster of the HPA website) represent hepatic metabolism-related DEGs in a Venn diagram. (B) Forty-
two overlapping genes between 1312 DEGs (from the GSE102079 dataset) and 80 hepatic HLM-related
genes (from a gene expression cluster of the HPA website) represent hepatic HLM-related DEGs in a
Venn diagram.

3.3. The mRNA Expression Levels of DEGs in the TCGA and GTEx Databases

We analyzed the differential expression at the transcript level of these 72 DEGs
(30 DEGs related to hepatic metabolism and 42 DEGs related to hepatic HLM) between
HCC tissues and normal liver tissues with RNA-Seq data from the TCGA and GTEx
databases, and the expression of 47 DEGs in HCC tissues showed potentially greater ro-
bustness by comparing data from different studies. The transcript levels of these 47 DEGs
were significantly differentially expressed between HCC tissues and normal liver tissues,
including 19 DEGs related to hepatic metabolism and 28 DEGs related to hepatic HLM
(Figures S1 and S2).

3.4. Identification of DEPs Encoded by the DEGs

Subsequently, we obtained the data of DEPs between eight primary HCC tumorous
tissues and paired adjacent nontumorous tissues by Nano-LC-MS/MS platform analysis
(Clinical characteristic information of eight HCC patients is shown in Table S4). To avoid
heterogeneity between the protein expression of our collection of tissues and the gene
expression of tissues in public databases [56], we selected proteins that were consistent
with the differential expression trends in the transcript levels of these DEGs. We finally
identified that 10 of these 47 DEGs encoded proteins with significant differential expression.
The expression levels of these proteins were significantly lower in HCC tissues than in
nontumorous tissues (Figure 4A). The 10 DEPs encoded by the DEGs are annotated in
Figure 4B. These 10 DEGs included a DEG related to hepatic metabolism [phytanoyl-
CoA dioxygenase domain containing 1(PHYHD1)] and 9 DEGs related to hepatic HLM
[mannose binding lectin 2 (MBL2), tetratricopeptide repeat domain 36 (TTC36), C-type
lectin domain family 4 member G (CLEC4G), glycogen synthase 2 (GYS2), cytochrome
P450 family 2 subfamily C member 9 (CYP2C9), C-type lectin domain family 4 member M
(CLEC4M), alcohol dehydrogenase 4 (class II), pi polypeptide (ADH4), solute carrier family
27 member 5 (SLC27A5), and angiopoietin-like 6 (ANGPTL6)].
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cg16806210, and cg24222440) of TTC36 were significantly higher in the high-risk group 
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Figure 4. The heatmap of 10 DEPs between HCC tissues and paired adjacent nontumorous tissues.
(A) The heatmap of 10 DEPs. (B) The annotated information of the DEG-encoded proteins. Abbre-
viations: ADH4, alcohol dehydrogenase 4 (class II), pi polypeptide; ANGPTL6, angiopoietin-like 6;
CLEC4G, C-type lectin domain family 4 member G; CLEC4M, C-type lectin domain family 4 member
M; CYP2C9, cytochrome P450 family 2 subfamily C member 9; GYS2, glycogen synthase 2; MBL2,
mannose-binding lectin 2; PHYHD1, phytanoyl-CoA dioxygenase domain containing 1; SLC27A5,
solute carrier family 27 member 5; TTC36, tetratricopeptide repeat domain 36; FC, fold change.

3.5. Exploring the Clinical Value of the 10 DEGs

Many studies have reported that DNA methylation can lead to the silencing of
genes [57,58]. Since the mRNA expression of these 10 DEGs was downregulated in HCC
tissues (Figures S1 and S2), they were analyzed for methylation correlation. We ana-
lyzed the relationship between the mRNA expression and methylation abundance of these
10 genes based on cBioPortal (Table S5). The results showed that the mRNA expression
levels of TTC36, CYP2C9, and PHYHD1 were more closely and negatively correlated with
the corresponding DNA methylation levels (Figure 5 and Table S5, Spearman correlation
coefficient < −0.70 and p < 0.05). In particular, the high methylation levels of 2 CpGs
(cg24222440 and cg16806210) of TTC36 both had a positive correlation trend with the
pathologic tumor staging of HCC via SurvivalMeth automated analysis (Figure 6A). The
methylation risk score model showed that the methylation levels of 3 CpGs (cg01128850,
cg16806210, and cg24222440) of TTC36 were significantly higher in the high-risk group
than in the low-risk group (Figure 6B,C, p < 0.001), and HCC patients in the high-risk group
had a shorter OS [Figure 6D, HR = 2.05 (1.11–3.80) and p = 0.003].
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Methylation levels of 2 CpGs (cg24222440 and cg16806210) of TTC36 in HCC cancer tissues with 
different pathological stages. (B) A total of 375 HCC patient samples were divided into high- and 
low-risk groups at the optimal cutoff (prognostic index) of 2.808. The prognostic index was 
calculated according to the DNA methylation matrix and the coefficient (obtained from the 
proportional hazards regression model) of TTC36, and a high level of prognostic index implies a 

Figure 5. Correlations of methylation levels of (A) PHYHD1, (B) TTC36, and (C) SLC27A5 with
corresponding mRNA levels (analyzed by the cBioPortal platform). The y axis shows the mRNA
expression z-scores of the target gene relative to all samples. The x axis is the methylation level of the
target gene (obtained from the HumanMethylation450 BeadChip platform). A Spearman correlation
coefficient < −0.7 was considered to indicate a strong negative correlation. A p-value < 0.05 was
considered statistically significant. Abbreviations: HM450, HumanMethylation450 BeadChip; RSEM,
RNA-Seq by Expectation-Maximization.
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Figure 6. SurvivalMeth data showed a clinical correlation between TTC36 methylation levels.
(A) Methylation levels of 2 CpGs (cg24222440 and cg16806210) of TTC36 in HCC cancer tissues
with different pathological stages. (B) A total of 375 HCC patient samples were divided into high-
and low-risk groups at the optimal cutoff (prognostic index) of 2.808. The prognostic index was calcu-
lated according to the DNA methylation matrix and the coefficient (obtained from the proportional
hazards regression model) of TTC36, and a high level of prognostic index implies a high risk for the
patient. The “red curve” indicates the high-risk group. The “green curve” indicates the low-risk
group. (C) The methylation levels of 3 CpGs (cg01128850, cg16806210, and cg24222440) of TTC36 in
the high- and low-risk groups. *** p < 0.001. (D) The survival curve of the Kaplan–Meier plot showed
that HCC patients in the high-risk group had a lower survival probability [HR = 2.05 (1.11–3.80),
p < 0.01].
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Recently, it has been demonstrated that abnormal lipid metabolism is closely related
to the regulatory function of immune cells in the tumor microenvironment [59]. Therefore,
we evaluated the potential relevance of these 10 genes to infiltrating immune cells using
the TIMER web server (Table S6). The results showed that the expression level of SLC27A5
was more closely and negatively correlated with the infiltration level of 6 types of immune
cells (B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells)
than the other 9 DEGs (Table S6). The infiltration levels of macrophages were more closely
and negatively correlated with the expression levels of SLC27A5 than those of the other
five immune cells (Figure 7 and Table S6, partial correlation < −0.4 and p < 0.05).
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Figure 7. Correlation between SLC27A5 and infiltration levels of immune cells in HCC. Correlation
analysis of SLC27A5 expression and infiltration levels of immune cells in HCC using the TIMER
database. p < 0.05 and partial correlations < −0.3 or > 0.3 were considered to be statistically significant
correlations. Abbreviations: cor, correlation. TPM, transcripts per million; TIMER, Tumor Immune
Estimation Resource.

Through the GEPIA web server, we analyzed the correlation between the expression
of these 10 DEGs and the prognosis of HCC patients based on the LIHC sample data in
the TCGA database. The results of Kaplan-Meier survival analysis showed that lower
expression of ADH4 was significantly correlated with both poor DFS and OS among
HCC patients (Figure 8, log-rank p < 0.05). Similarly, the expression of CYP2C9, GYS2,
SLC27A5, and TTC36 was significantly and positively correlated with the OS of HCC
patients (Figure S3, log-rank p < 0.05).
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Figure 8. The prognostic value of ADH4 expression for HCC patients. Kaplan-Meier survival curves
were plotted using the online GEPIA platform. (A) Correlation of low ADH4 expression levels with
poor DFS in HCC patients. The DFS curve for patients with high ADH4 expression levels is shown
by the red solid line. The DFS curve for patients with low ADH4 expression levels is shown by the
blue solid line; (B) Correlation of low ADH4 expression levels with poor OS of HCC patients. The OS
curve for patients with high ADH4 expression levels is shown by the red solid line. The OS curve
for patients with low ADH4 expression levels is shown by the blue solid line. The 95% confidence
intervals are shown by the dashed line. p < 0.05 in the log-rank test was considered statistically
significant. Abbreviations: DFS, disease-free survival; OS, overall survival; n, number; GEPIA, Gene
Expression Profiling Interactive Analysis.
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To find secreted proteins in the 10 DEG-encoded DEPs between HCC tissues and
adjacent nontumorous tissues and as potential circulating biomarkers for the early diagnosis
of HCC, we used the HPA website to predict where these 10 DEG-encoded proteins are
mainly present in the human body. We found that ANGPTL6 (https://www.proteinatlas.
org/ENSG00000130812-ANGPTL6/blood+protein, accessed on 3 September 2021) and
MBL2 (https://www.proteinatlas.org/ENSG00000165471-MBL2/blood+protein, accessed
on 3 September 2021) may be secreted into the blood and speculated that they may have
potential values in peripheral blood for the diagnosis of HCC. Given the scarcity of reports
on ANGPTL6 in primary HCC, we chose ANGPTL6 for further exploration.

We downloaded GSE107170 from the GEO database and analyzed ANGPTL6 expression
in HBV-related HCC, HCV-related HCC, and HDV-related HCC tissues. ANGPTL6 expression
levels for the diagnosis of HBV-related HCC (Figure S4A), HCV-related HCC (Figure S4B),
and HDV-related HCC (Figure S4C) showed great accuracies. Next, we downloaded datasets
with BCLC staging information from the GEO database (GSE63898 and GSE76427). The
expression level of ANGPTL6 was effective in distinguishing HCC tissues from adjacent
nontumorous tissues and was more accurate than AFP for diagnosis, both at early stage
and at full stage of hepatocellular carcinoma (AUCANGPTL6 = 0.978 vs. AUCAFP = 0.654 for
diagnosing of early HCC in the GSE63898 dataset, ROC curves are shown in Figure 9A,B)
(AUCANGPTL6 = 0.975 vs. AUCAFP = 0.642 for diagnosing of HCC with all staging in the GSE63898
dataset, ROC curves are shown in Figure 9C,D) (AUCANGPTL6 = 0.918 vs. AUCAFP = 0.734 for di-
agnosing of early HCC in the GSE76427 dataset, ROC curves are shown in Figure 10A,B)
(AUCANGPTL6 = 0.944 vs. AUCAFP = 0.703 for diagnosing of HCC with all staging in the
GSE76427 dataset, ROC curves are shown in Figure 10C,D). In addition, the lower expres-
sion of ANGPTL6 was significantly and positively correlated with the poorer recurrence-free
survival of early HCC patients in the GSE76427 dataset (log-rank p = 0.0247) (Figure S5). In
a word, the transcript levels of ANGPTL6 in HCC tissues may have the potential to diagnose
early HCC. We further explored the potential value of serum ANGPTL6 in diagnosing
early HCC.
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Figure 9. Potential diagnostic values of ANGPTL6 and AFP levels for early-stage and all-stage HCC
in the GSE63898 dataset. (A) ROC curves for ANGPTL6 to differentiate HCC with early-stage (BCLC
0~A staging) and nontumorous cirrhotic tissues. (B) ROC curves for AFP to differentiate early-stage
HCC and nontumorous cirrhotic tissues. (C) ROC curves for ANGPTL6 to differentiate all-stage
HCC and nontumorous cirrhotic tissues. (D) ROC curves for AFP to differentiate all-stage HCC and
nontumorous cirrhotic tissues. Abbreviations: AFP, alpha-fetoprotein; AUC, area under the ROC
curve; CI, confidence interval.
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chronic HBV infection [16,17], so this study was conducted with HBV-related early HCC. 
We collected serum samples from 32 HCs, 30 CHB patients, and 51 patients with HBV-
related early-stage primary HCC (Tables S7–S9) and measured the expression levels of 
ANGPTL6 in serum by ELISA. We first recruited 17 HCs and 27 early-stage primary HCC 
patients from July 2018 to December 2020. Serum ANGPTL6 levels were significantly 
higher in patients with early HCC than in HCs (Figure 11A, p = 0.035). Serum AFP levels 
were also significantly higher in patients with early HCC than in HCs (Figure 11B, p < 
0.001), but there was no significant correlation between serum ANGPTL6 levels and AFP 
levels in these subjects (Figure 11C, r = −0.183, p = 0.361). 

Figure 10. Potential diagnostic values of ANGPTL6 and AFP levels for early-stage and all-stage HCC
in the GSE76427 dataset. (A) ROC curves for ANGPTL6 to differentiate HCC with early-stage (BCLC
0~A staging) and paired adjacent nontumorous tissues. (B) ROC curves for AFP to differentiate early-
stage HCC and paired adjacent nontumorous tissues. (C) ROC curves for ANGPTL6 to differentiate
all-stage HCC and paired adjacent nontumorous tissues. (D) ROC curves for AFP to differentiate
all-stage HCC and paired adjacent nontumorous tissues.

3.6. Serum ANGPTL6 Levels for the Diagnosis of Early Primary HCC

In China, the etiological composition of HCC is mainly composed of HCC with chronic
HBV infection [16,17], so this study was conducted with HBV-related early HCC. We
collected serum samples from 32 HCs, 30 CHB patients, and 51 patients with HBV-related
early-stage primary HCC (Tables S7–S9) and measured the expression levels of ANGPTL6
in serum by ELISA. We first recruited 17 HCs and 27 early-stage primary HCC patients
from July 2018 to December 2020. Serum ANGPTL6 levels were significantly higher in
patients with early HCC than in HCs (Figure 11A, p = 0.035). Serum AFP levels were also
significantly higher in patients with early HCC than in HCs (Figure 11B, p < 0.001), but
there was no significant correlation between serum ANGPTL6 levels and AFP levels in
these subjects (Figure 11C, r = −0.183, p = 0.361).
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Given that serum AFP concentration was measured by the Roche Cobas® 
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Figure 11. The expression levels of serum ANGPTL6 and AFP between early-stage HCC patients
and HCs. (A) High levels of serum ANGPTL6 in early-stage HCC patients (n = 27) compared with
those in HCs (n = 17) (p = 0.035). (B) High levels of serum AFP in early-stage HCC patients (n = 27)
compared with those in HCs (n = 17) (p < 0.001). (C) The correlation of serum ANGPTL6 and serum
AFP was analyzed using Spearman’s rank correlation analysis. * p < 0.05. *** p ≤ 0.001. Abbreviations:
num, number.

Given that serum AFP concentration was measured by the Roche Cobas® electrochem-
ical immunoluminescence analyzer (Roche Diagnostics, Mannheim, Germany), the normal
reference range for serum AFP levels is suggested in the instrument and reagent manual
to be AFP ≤ 7 ng/mL [60]. We first recruited 27 early-stage primary HCC patients, of
whom 8 patients had serum AFP ≤ 7 ng/mL, and then we additionally recruited 15 HCs,
19 HBV-related cirrhosis patients, 11 CHB patents (without cirrhosis), and 24 early-stage
primary HCC patients with serum AFP ≤ 7 ng/mL. In total, we collected 32 serum samples
with normal levels of AFP from early-stage HCC patients (Tables S8 and S9). The serum
AFP levels of these HCC patients were not significantly different from those of 32 HCs
(Table S8, p = 0.063). The serum AFP levels of these HCC patients were not significantly
different from those of 30 CHB patients without HCC (including 19 HBV-related cirrhosis
patients and 11 CHB patients without cirrhosis) (Table S9, p = 0.053). If liver abnormalities
are ignored because the subject’s serum AFP level is within the normal reference range, this
will result in a missed diagnosis. Therefore, we analyzed the expression levels of serum
ANGPTL6 between these 32 HCC patients, 30 CHB patients, and 32 HCs, and surprisingly
found that serum ANGPTL6 expression levels were significantly higher in these HCC
patients than in CHB and HCs, respectively (Figure 12A and Tables S8 and S9, p < 0.05).
Serum ANGPTL6 levels could distinguish early HCC patients with normal serum AFP
levels from CHB patients (AUC = 0.684) with 96.67% specificity and could distinguish early
HCC patients with normal serum AFP levels from HCs (AUC = 0.747) with 84.37% sensitiv-
ity. Furthermore, serum ANGPTL6 could effectively differentiate between the noncancer
group (HCs and CHB patients) and early-stage HCC patients with serum AFP ≤ 7 ng/mL
(Figure 12B and Tables S10 and S11, AUC = 0.717, 95% CI: 0.614 to 0.805) with 50.0%
sensitivity and 91.9% specificity.

Therefore, we suggest that serum ANGPTL6 is a potential second-line biomarker
for bridging the gap in the diagnosis of early HCC with AFP. To our knowledge, we
found for the first time that serum ANGPTL6 has the potential diagnostic ability to dis-
tinguish between the noncancer group and early-stage primary HCC patients with serum
AFP ≤ 7 ng/mL.

Moreover, we examined serum samples from the first collection of 44 subjects (27 HCC
patients and 17 HCs) by 1H-NMR, in which 76 lipoprotein subfraction levels were signifi-
cantly different between the two groups (Table S12, p < 0.05). Serum ANGPTL6 levels in
these HCC patients were significantly positively correlated with the levels of 12 lipopro-
tein subfractions (H2H, H1FC, H2FC, HDCH, HDFC, HDPL, HDA1, L2PN, L2CH, L2PL,
L2AB, and TPA1) (Spearman’s r > 0.3, p < 0.05) and negatively correlated with the levels
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of 6 lipoprotein subfractions (L5PN, L4FC, L5FC, L5PL, L5AB, and H4A2) (Spearman’s
r < −0.3, p < 0.05) (Figure 13 and Table S13). The lipoprotein subfractions are annotated in
Table S12.
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normal serum AFP levels (AFP ≤ 7 ng/mL). (A) Serum ANGPTL6 levels were higher in early HCC
patients with normal serum AFP levels (n = 32) than in CHB patients with normal serum AFP levels
(n = 30) (p = 0.013). Serum ANGPTL6 levels were higher in early HCC patients with normal serum
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levels was used to distinguish between early HCC patients with normal serum AFP levels and the
noncancer group (CHB patients and HCs). * p < 0.05. *** p ≤ 0.001.
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4. Discussion

Metabolic reprogramming processes in HCC cells are of increasing interest. The pur-
pose of metabolic reprogramming is to provide large amounts of energy for the adaptive
growth and proliferation of tumor cells [61–63]. Among them, lipid metabolic repro-
gramming is one of the key features of hepatocarcinogenesis and development [61,64,65].
The dysregulated expression of genes related to lipid metabolism is involved in the lipid
metabolic reprogramming process [66,67]. In the current study, we filtered datasets from
the GEO database for studies on lipid metabolism in HCC and identified many DEGs
from the GSE102079 dataset. Second, some lipid-metabolism-related DEGs were screened
by a gene expression profile related to hepatic lipid metabolism provided by the HPA
website. Through bioinformatic analysis of DEGs at the transcription level and mass spec-
trometry analysis of DEGs at the protein level, 10 DEGs that could encode DEPs were
finally screened, and some of them were hypothesized to be possibly associated with lipid
metabolism in HCC.

By exploring the clinical characteristics of the dysregulated expression of these genes,
we found that the transcript levels of TTC36, SLC27A5, and PHYHD1 were significantly
negatively correlated with their own methylation levels. In particular, the transcript level
and methylation level of TCC36 may have potential prognostic value. Our findings are
consistent with previous reports. TTC36, a prognostic marker for HCC, is reported to
encode a protein also called heat shock binding protein 21 (HBP21), which is a positive
regulator of the natural antiviral immune response [68,69]. The downregulation of HBP21 in
HCC is mainly caused by its allelic deletion and promoter methylation, and its upregulated
expression in HCC cells can promote apoptosis [70]. It has been found that PHYDH1 may
affect the efficiency of fatty acid metabolism [71]. Although the role of PHYHD1 in HCC is
unclear, Zheng et al. [72] found low expression and high methylation levels of PHYHD1
in HCC tissues. SLC27A5 acts as a tumor suppressor and has anti-proliferative and anti-
migratory abilities in HCC cells [73,74]. It is also involved in fatty acid transport and bile
acid metabolism, and its expression is downregulated by DNA hypermethylation [73].
Many reports suggest that its expression can be used as a potential marker to predict the
prognosis of HCC patients [74–77]. In addition, we found that SLC27A5 expression was
significantly negatively correlated with infiltrating levels of the five immune cell types.
Notably, SLC27A5 expression was more negatively correlated with macrophage infiltration.
Macrophages, as the “scavengers” in the body, are often recruited around necrotic tissues
to perform the function of removing dead and dying cells [78,79]. Activated macrophages
can kill tumor cells and participate in anti-tumor immunity [79]. On the other hand,
tumors reprogram the metabolism of macrophages, which may lead to the conversion
of macrophages to M2 subtype-like tumor-associated macrophages (TAMs) in the tumor
microenvironment [78]. Qian et al. [79] described the characteristics of macrophages in the
tumor microenvironment. They summarized a large amount of published experimental and
clinical data and concluded that TAMs could promote tumor progression to malignancy
and may promote the immune escape of tumor cells in the tumor microenvironment. Lipid
accumulation has been reported in TAMs [80]. Su et al. [81] found that differentiation and
activation of TAMs require enhanced lipid accumulation and metabolism. Zhang et al. [82]
found that TAMs promote HCC cell migration in a fatty acid oxidation-dependent manner.
Changes in the lipid profile are present not only in cancer cells but also in immune cells
in the liver cancer microenvironment, which may help cancer cells better adapt to the
microenvironment [59]. In future studies, we will explore whether the lipid profile changes
in immune cells are associated with the dysregulation of the expression of certain genes.
ADH4, which is considered a liver marker related to lipogenesis and lipid regulation, has an
important role in the prevention of hepatic steatosis [83]. Many reports have found that low
ADH4 expression is a biomarker for predicting poor prognosis in patients with HCC [84–87].
We also found that ADH4 expression was significantly and positively correlated with both
OS and DFS in patients with HCC. Two DEG-encoded proteins are secreted proteins (MBL2
and ANGPTL6). Since more studies have been reported on the use of serum/plasma MBL2
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for the diagnosis of HCC [88–90], we focused on exploring the value of serum ANGPTL6
for the diagnosis of HCC.

Serum AFP is the most widely used biomarker for diagnosing HCC [10]. One study
reported that serum AFP predicted the risk of HCC in Caucasian patients with HBV-
monoinfection with compensated cirrhosis on long-term tenofovir or entecavir therapy [60].
They concluded that elevated serum AFP levels above 7 ng/mL significantly predicted the
development of HCC within one year in these patients but found that 69% of patients with
cirrhosis who eventually developed HCC had serum AFP less than or equal to 7 ng/mL
when they were diagnosed with HCC. In the current study, we enrolled a total of 32 patients
with early HCC whose serum AFP levels were in the normal reference range. Serum AFP
expression levels in these HCC patients were not significantly different compared to those
in the HCs or the CHB patients with serum AFP ≤ 7 ng/mL. Early-stage HCC patients
lack obvious symptoms [91]. When screening for HCC is performed in non-developed
countries, serum AFP testing may be the only means of determining whether a subject is at
risk for HCC due to the large number of people who need to be screened and the inability
to afford other costly tests. However, when a patient’s serum AFP is below the upper limit
of normal, he or she may not undergo further screening for HCC. These patients are most
likely to miss the best time to diagnose HCC. Therefore, there is a need to find new serum
biomarkers to compensate for the lack of AFP in diagnosing early HCC.

ANGPTL6 is a secreted angiogenic factor [92] that can promote endothelial cell migra-
tion and angiogenesis in AFP-producing gastric cancer [93]. ANGPTL6 also drives liver
metastasis of colorectal cancer cells [94]. However, in the present study, ANGPTL6 expres-
sion was downregulated in primary HCC tissues. These results implied that ANGPTL6
may play opposite roles in primary and secondary HCC. Currently, few studies have
reported the role of ANGPTL6 in the occurrence and development of primary HCC. To our
knowledge, only one study found elevated expression of serum ANGPTL6 in patients with
HCC compared to HCs and concluded that it has the potential as a diagnostic marker for
HCC [95]. In our study, serum ANGPTL6 was found for the first time to distinguish early
primary HCC patients with normal serum AFP levels from the noncancer group, with a
diagnostic accuracy of 71.7%. Serum ANGPTL6 is expected to be a second-line biomarker
to supplement AFP for the diagnosis of HBV-related early HCC. A study revealed that
adipose tissue can secrete ANGPTL6 [96]. Mitochondrial DNA in adipocytes encodes a
mitoribosomal protein, CR6-interacting factor 1, the deficiency of which leads to reduced
mitochondrial oxidative phosphorylation function, which induces increased expression of
the secretory factor ANGPTL6 but does not affect other angiopoietin-like proteins [96]. In
addition, researchers found that leptin, as an adipokine, can lead to increased serum levels
of ANGPTL6 [97]. They suggest that ANGPTL6 may act as a systemic metabolic stress
marker and that elevated serum levels of ANGPTL6 may be interpreted as a compensatory
upregulation of ANGPTL6 expression caused by metabolic dysregulation. Oike et al. [98]
found that overexpression of ANGPTL6 in the livers of mice reversed high-fat diet-induced
obesity in mice and suggested that targeted activation of ANGPTL6 in the liver could in-
crease the energy expenditure of the body. However, there seems to be no clear mechanism
to elucidate the specific role of ANGPTL6 in lipid metabolism. There is a complex inter-
action between the dysregulation of hepatic lipid metabolism and HBV infection, which
promotes hepatocellular carcinogenesis [24–28]. We found that the levels of some serum
lipoprotein subfractions were significantly different between patients with HBV-related
early HCC and HCs, suggesting possible changes in lipid metabolism in these patients with
HBV-related early HCC. Importantly, there were correlations between serum ANGPTL6
and a number of serum lipoprotein subfractions with significantly different changes in
HBV-related early HCC patients, speculating that elevated serum ANGPTL6 expression
in HBV-related early HCC patients may be associated with changes in lipid metabolism.
Verification of this speculation will be part of our future research.

Limitations of the present study: First, the exploration of potential clinical features
of lipid-metabolism-related DEGs was based on bioinformatics analysis. The specific
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mechanisms and clinical value of these genes involved in the reprogramming of lipid
metabolism will be elucidated by clinical sample validation and cell biology studies in the
future. Second, fewer clinical samples were included in exploring the diagnostic ability of
serum ANGPTL6 for early HCC. In future studies, we will collect clinical samples of HCC
of different etiologies to detect ANGPTL6 expression and more comprehensively analyze
the differences in its expression in HCC of different etiologies. Strengths of this study:
First, by ELISA of serum ANGPTL6 levels in HBV-related early primary HCC patients
with normal serum AFP levels and in the noncancer group, we identified ANGPTL6 as a
potential biomarker to compensate for the lack of ability of serum AFP to diagnose early
HCC. Second, we found that the expression levels of serum ANGPTL6 in HCC patients
were significantly correlated with the levels of some serum lipoprotein subfractions. Finally,
through a combination of bioinformatics analysis of public datasets and mass spectrometry
assay analysis of clinical tissue samples, we identified differential expression of ANGPTL6,
TTC36, SLC27A5, ADH4, PHYHD1, MBL2, GYS2, CYP2C9, CLEC4M, and CLEC4G between
HCC tissues and adjacent nontumorous tissues at the transcriptional and protein levels.

5. Conclusions

Overall, to our knowledge, we found for the first time that serum ANGPTL6 levels
have the potential to discriminate between the noncancer group and HBV-related early
primary HCC patients with normal serum AFP levels and observed that elevated serum
ANGPTL6 levels in HCC patients were associated with altered levels of some lipoprotein
subfractions. In addition, we aimed to screen for genes with dysregulated expression
related to lipid metabolism in HCC and identified 10 DEG-encoded proteins that were
differentially expressed between HCC tissues and adjacent nontumorous tissues. The
potential clinical characteristics of these DEGs were evaluated by methylation level cor-
relation analysis, immune cell infiltration level correlation analysis, and patient survival
correlation analysis. We found that the high methylation level of TTC36 was significantly
and negatively correlated with its mRNA expression. SLC27A5 expression was significantly
negatively correlated with macrophage infiltration levels. Low ADH4 expression was
significantly positively correlated with poor prognosis in HCC patients. This study pro-
vides valuable reference data for future studies on mechanisms related to lipid metabolism
in HCC and provides new ideas for the development of novel lipid-metabolism-related
biomarkers and targeted therapies based on lipid metabolism against tumors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12111700/s1, Figure S1: The differential expression levels of
19 hepatic metabolism-related genes were validated in 369 HCC tissues and 160 normal tissues from
TCGA and GTEx datasets. The tumor tissue group is shown in red, and the normal tissue group is
shown in gray. |log2FC| > 1 and p < 0.01 were considered statistically significant. * p < 0.01. Abbrevi-
ations: T, tumorous tissues of HCC patients; N, nontumorous tissues of HCC patients. Figure S2: The
differential expression levels of 28 hepatic HLM-related genes were validated in 369 HCC tissues
and 160 normal tissues from TCGA and GTEx datasets. The tumor tissue group is shown in red, and
the normal tissue group is shown in gray. |log2FC| > 1 and p < 0.01 were considered statistically
significant. * p < 0.01. Figure S3: Correlations of CYP2C9, GYS2, SLC27A5, and TTC36 expression
levels with the OS of HCC patients. p < 0.05 in the log-rank test was considered statistically sig-
nificant. Figure S4: Potential diagnostic values of ANGPTL6 levels for three types of virus-related
HCC in the GSE107170 dataset. (A) ROC curves for ANGPTL6 to differentiate HBV-related HCC and
paired adjacent nontumorous tissues. (B) ROC curves for ANGPTL6 to differentiate HCV-related
HCC and paired adjacent nontumorous tissues. (C) ROC curves for ANGPTL6 to differentiate
HDV-related HCC and paired adjacent nontumorous tissues. Figure S5: Kaplan-Meier curves for
the correlation between ANGPTL6 expression and the recurrence-free survival rate of early-stage
HCC patients. The “blue curve” indicates a low expression group of ANGPTL6 (n = 17). The “red
curve” indicates a high expression group of ANGPTL6 (n = 16). Table S1: Four datasets from the
GEO database. Table S2: KEGG pathway and biological process enrichment analyses of upregulated
DEGs. Table S3: KEGG pathway and biological process enrichment analyses of downregulated DEGs.
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Table S4: Clinical characteristic information of eight HCC patients. Table S5: Methylation analysis
of 10 DEGs in LIHC by the cBioPortal platform. Table S6: Correlation analysis of the expression
of 10 DEGs with the infiltration level of six immune cell types in HCC. Table S7: Characteristics
of early primary HCC patients. Table S8: Characteristics of HCs and early primary HCC patients
with normal serum AFP levels. Table S9: Characteristics of early primary HCC patients and CHB
patients with normal serum AFP levels. Table S10: Characteristics of early primary HCC patients
and the noncancer group with normal serum AFP levels. Table S11: Serum ANGPTL6 Levels for the
Diagnosis of Early Primary HCC with normal serum AFP levels. Table S12: Comparison of serum
lipoprotein subfraction levels in early-stage HCC patients and HCs. Table S13: Correlation analysis
of serum ANGPTL6 and selected lipoprotein subfractions in patients with early-stage HCC.
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DAVID Database for Annotation, Visualization, and Integrated Discovery
DEGs differentially expressed genes
DEPs differentially expressed proteins
DFS disease-free survival
FC fold change
FDR false discovery rate
GEO Gene Expression Ominibus
GEPIA Gene Expression Profiling Interactive Analysis
GYS2 glycogen synthase 2
HBP21 heat shock binding protein 21
HBV hepatitis B virus
HCC hepatocellular carcinoma
HLM hemostasis and lipid metabolism
HM450 HumanMethylation450 BeadChip
HPA Human Protein Atlas
HR hazard ratio
IQR interquartile range
KEGG Kyoto Encyclopedia of Genes and Genomes
LIHC liver hepatocellular carcinoma
MBL2 mannose binding lectin 2
Nano-LC-MS/MS Nanoscale Liquid Chromatography–Tandem Mass Spectrometry
OS overall survival
PHYHD1 phytanoyl-CoA dioxygenase domain containing 1
ROC receiver operating characteristic
RSEM RNA-Seq by Expectation-Maximization
SLC27A5 solute carrier family 27 member 5
TAM tumor-associated macrophages
TCGA The Cancer Genome Atlas
TIMER Tumor Immune Estimation Resource
TPM transcripts per million
TTC36 tetratricopeptide repeat domain 36
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