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Abstract: The dynamical network biomarker (DNB) theory detects the early warning signals of
state transitions utilizing fluctuations in and correlations between variables in complex systems.
Although the DNB theory has been applied to gene expression in several diseases, destructive testing
by microarrays is a critical issue. Therefore, other biological information obtained by non-destructive
testing is desirable; one such piece of information is Raman spectra measured by Raman spectroscopy.
Raman spectroscopy is a powerful tool in life sciences and many other fields that enable the label-free
non-invasive imaging of live cells and tissues along with detailed molecular fingerprints. Naïve
and activated T cells have recently been successfully distinguished from each other using Raman
spectroscopy without labeling. In the present study, we applied the DNB theory to Raman spectra
of T cell activation as a model case. The dataset consisted of Raman spectra of the T cell activation
process observed at 0 (naïve T cells), 2, 6, 12, 24 and 48 h (fully activated T cells). In the DNB analysis,
the F-test and hierarchical clustering were used to detect the transition state and identify DNB Raman
shifts. We successfully detected the transition state at 6 h and related DNB Raman shifts during the T
cell activation process. The present results suggest novel applications of the DNB theory to Raman
spectra ranging from fundamental research on cellular mechanisms to clinical examinations.

Keywords: dynamical network biomarker (DNB) theory; Raman spectra; Raman spectroscopy; T cell
activation; transition state

1. Introduction

The dynamical network biomarker (DNB) theory [1,2] was developed to detect early
warning signals [3–7] at the transition state just before a state transition, such as the pre-
disease state before the transition from a healthy state to a disease state. The DNB theory
has been applied to gene expression in several diseases, such as lung injury [1,8–10], liver
cancer [1,9], breast cancer [9,10], influenza infection [10], type 1 and 2 diabetes [11,12],
metabolic syndrome [13] and hepatocellular carcinoma [8,14]. A landscape DNB (l-DNB)
with a single-sample network has recently been proposed [10,15–17]. The key concept of
the DNB theory is that the stability of the target system gradually decreases before the
transition and a subset of strongly correlated system variables begins to fluctuate due to
increased susceptibility to disturbances. These abnormal fluctuations peak at the transition
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state, namely, the state just before a transition. Therefore, by focusing on fluctuations and
correlations, particularly at the transition state, it is possible to detect the early warning
signals of an upcoming transition. It is important to note that the DNB theory is not limited
to the detection of pre-disease states; it may also be applied in principle to many other
cases in which the target system exhibits any type of transition and multivariate time-series
data throughout the transition process may be obtained [18].

Although the DNB theory has been applied to gene expression in several diseases,
destructive testing by microarrays is a critical issue. Therefore, other biological information
obtained by non-destructive testing is desirable; one such piece of information is Raman
spectra measured by Raman spectroscopy.

Raman spectroscopy, a vibrational spectroscopic technique that is widely used to
analyze molecular compositions in biological specimens (e.g., living cells and tissues), has
great potential for the detection of intrinsic signals associated with cell death [19], cell
differentiation [20,21], the activation status of immune cells [22,23] and disease states in
animal and human tissues [24–26] without labeling. The principle of Raman spectroscopy
involves the inelastic scattering of light by molecules.

The majority of light is scattered at the same frequency as incident light (Rayleigh
scattering). Raman scattering, which is markedly weaker than Rayleigh scattering, gains or
loses energy equivalent to the allowed molecular vibrations. A Raman spectrum is obtained
by measuring the number of scattered photons (light intensity) versus differences in the
frequency or wavenumber between scattered light and incident light (Raman shifts). Raman
spectral data offer the advantage of shape bands, which may be assigned to molecular
species or functional moieties; therefore, numerous studies, including our own, have been
published on Raman spectroscopy for biological applications. Investigations on reliable
biomarkers to discriminate between differences in various cellular states (e.g., naïve and
activated T cells and B cells) have been achieved with Raman spectroscopy combined with
multivariate analyses, such as a principal component analysis (PCA) [20–26]. PCA is often
employed for the dimensional reduction of Raman spectral data, which has thousands of
data points, many of which include weak signals of interest or highly correlated information
on biological states. For example, the application of the partial least square, PCA and a
hierarchical component analysis to the Raman spectra of sera from healthy women and
women with endometriosis enabled us to distinguish between both states [27]. Raman
spectroscopy combined with multivariate analyses detected chemical changes in blood, the
liver and brain caused by magnetic field exposure [28]. In the present study, we introduced
fluctuations in and correlations between elements at the transition state in contradistinction
to previous studies that did not focus on these fluctuations.

In the present study, we applied the DNB theory to Raman spectra of T cell activation
as a model case. The combination of the DNB theory and Raman spectroscopy will provide
additional information to that obtained from current multivariate analyses. We reanalyzed
the Raman spectral data of T cell activation, which we previously investigated using PCA
and a linear discriminant analysis (LDA) [22]. We selected data as a model case and
attempted to detect the transition state and also identify DNB Raman shifts that exhibited
abnormal fluctuations at the transition state. The initial and final states corresponded to
naïve and fully activated T cells, respectively. Based on the DNB theory, we expected a
transition state to exist during the T cell activation process and attempted to detect it.

2. Materials and Methods
2.1. Overview of the DNB Theory

Figure 1 shows a conceptual diagram of the DNB theory. Stable state 1 (the initial state)
corresponds to the local minimum of the potential and is stable against disturbances (see the
blue ball on the light gray line). However, when the potential well becomes very shallow at
the transition state, the system becomes susceptible to disturbances and exhibits abnormal
fluctuations (see the red ball). The state then moves along the slope of the potential shown
by the black line and eventually settles into another state (see the green ball in stable state 2).
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The DNB theory aims at detecting early warning signals at the transition state by focusing
on fluctuations together with a network composed of correlated elements.
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Figure 1. A conceptual diagram of the DNB theory.

The basic flow of the DNB analysis is listed below. Each detail is discussed in
later paragraphs.

1. Preprocessing;
2. F-test for the evaluation of fluctuations;
3. Correlations to evaluate the relationships between fluctuating variables;
4. Clustering to define DNB candidates;
5. DNB scores to identify the transition state and DNB elements.

In addition to these series of procedures, specific processing is expected to be required
for the biological data of interest.

Data for each time point are described as the matrix X = xik (i = 1, . . . , N, k = 1, . . . , K),
where i and k are the indices of the variables and a sample of data, respectively. N is the
total number of variables and K is the number of samples at the time point. The mean
mi(X) and standard deviation si(X) are defined as

mi(X) =
∑K

k=1 xik

K
, (1)

si(X) =

√
∑K

k=1(xik −mi(X))2

K− 1
. (2)

The one-tailed F-test is performed to evaluate fluctuations in intensity (see Equation (2))
at each variable. The F-test is a statistical test that uses an F-distribution and its null
hypothesis is that the variances of two groups being compared are the same. The data
points of the two groups are assumed to independently follow normal distributions. At
each time point, we select variables with significantly larger variances than the control
(0 h). Multiple testing corrections using the Benjamini–Hochberg method are performed to
suppress the false discovery rate. The p values obtained from the F-test are sorted in an
ascending manner and converted to q values with the formula qi = (pi N)/i, where i is the
element index and N is the number of elements. Variables satisfying q ≤ 0.05 are extracted
as fluctuating elements.

We then focus on the correlations among fluctuating variables that are not equally
distributed. The correlation coefficient is defined as follows:

rij(X) =
∑K

k=1(xik −mi(X))
(

xjk −mj(X)
)

(K− 1) si(X)sj(X)
, (3)

where j is the index of the variable different from the index i (j = 1, . . . , N). A hierarchical
clustering method is used to detect clusters with strong correlations among fluctuating
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variables. In hierarchical clustering, variables are iteratively merged according to a given
metric for evaluating dissimilarity based on rij in Equation (3) and a linkage method, giving
a tree-like diagram called a dendrogram. The dissimilarity d between variables is evaluated
based on d = 1− |rij|, where rij is the correlation coefficient between the i-th and j-th
variables. When the correlation is strong, either positive or negative, the dissimilarity is
close to zero. The average linkage method is used to evaluate the dissimilarity between
tentative clusters and, accordingly, a dendrogram is plotted. We cut the dendrogram at the
appropriate dissimilarity cut-off to define clusters.

To evaluate the validity of each DNB candidate group as an indicator of the transition
state, the DNB score, which is the product of the average standard deviation Is and average
correlation strength Ir [29], is calculated as follows:

IDNB = Is · Ir. (4)

A set of element indices of a DNB candidate group is denoted as S∗ and |S∗| denotes
its size. The average standard deviation Is and the average correlation strength Ir are
defined for each time point’s data matrix X as follows:

Is =
1
|S∗| ∑

i∈S∗
si(X), (5)

Ir =
2

|S∗|(|S∗| − 1) ∑
i,j∈S∗ , i<j

∣∣rij(X)
∣∣, (6)

where i and j are different indices. Since the F-test and hierarchical clustering are performed
at each time point, different DNB candidate groups are obtained for different time points.
We plotted the time evolution of Is, Ir and IDNB, defined by Equations (4)–(6), for each DNB
candidate group. If the DNB score showed a peak at the same time point when the DNB
candidate group was extracted, the time point was regarded as the transition state and the
corresponding elements were taken as DNB elements. We also investigate whether Is and
Ir both took high values at the time point.

Caution is needed when using the original DNB score [1] because Raman spectra
contain noise that cannot be ignored. Real-world data may contain noise or the system
may be divided into disconnected subgroups. Therefore, the redefined DNB score [29],
described by Equation (4), was used to avoid erroneous behavior.

2.2. Raman Spectra of the T Cell Activation Process

T cells are a class of immune cells that are involved in acquired immunity. They are
initially in a naïve state and are activated by antigen-presenting cells or stimulating factors
via the αβ-T cell receptor (TCR complex) and a co-stimulation, which is important for
antigen-induced activation. After being activated, T cells rapidly replicate and differentiate
to become effector T cells and this process generally takes 1–2 days. We extracted naïve
CD4+ T cells from splenic suspensions [22] obtained from DO11.10 TCR transgenic mice
on the BALB/c background. T cells were cultured on a plate pre-coated with antibodies
against CD3 and CD28 (1 µg/mL each, from BD Biosciences, Franklin Lakes, NJ, USA). All
Raman spectra used in the T cell analysis were those from a previous study [22].

Raman spectra were obtained with a home-built line scanning microscope based on
a Nikon Ti microscope (Nikon, Tokyo, Japan) equipped with a spectrometer (MK-300;
Bunkoh Keiki, Tokyo, Japan) as previously reported. T cells in Tyrode’s solution were
placed on silica coverslips (SPI supplies, West Chester, PA, USA) and observed through
a 40 × water immersion objective lens with a 1.27 numerical aperture (Nikon CFP Plan
Apo IR; Nikon). The sample was illuminated with a 532 nm laser at 2.4 mW/µm2. Cells
that died after observations were identified on a bright field image and removed from
the analysis.
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Data used in the present study were the same as those previously reported [22] with
slight modifications in the pre-processing of the spectrum. The time points examined
were 0 (the naïve state of T cells), 2, 6, 12, 24 and 48 h (fully activated T cells). Regarding
pre-processing, the cosmic ray was removed from spectra and the cell region was examined
using 1008 cm−1 intensity by Otsu’s binarization method [30]. Spectra from the cell region
were then averaged to obtain the spectrum of the cell, while spectra from the non-cell region
were subtracted as the background signal. The cell area was also calculated by counting
the number of pixels in the cell. The Raman shift axis was calibrated using peaks at 753
and 1587 cm−1 with respect to measurement conditions, such as temperature and linearly
interpolated between the fingerprint region 500–1799 cm−1 at 1 cm−1 intervals. Residual
auto-fluorescence was removed using a rolling-ball algorithm [31]. In this algorithm, a
circular or elliptic ball is placed below a Raman spectrum’s curve with the horizontal
axis of Raman shifts and the vertical axis of Raman intensities. By moving the ball to
keep touching the spectrum’s curve, a smooth baseline curve is calculated and removed.
This algorithm has the following two parameters: the ball’s major diameter along the
horizontal axis a and ellipticity ε = b/a, where b is the minor diameter along the vertical
axis. We considered six values for the major diameter from 500 to 1000 in 100 increments
and three values (ε = 0.05, 0.5 and 1.0) for ellipticity. By combining these parameter values,
18 cases were considered. The Raman signal was normalized by the sum intensity between
500 and 1799 cm−1. The intensity of each Raman shift was divided by the average intensity
from 548 to 1799 cm−1. Raman shifts below 548 cm−1, which contained glass signals, were
only excluded in calculations of the mean value.

2.3. PCA-LDA

Traditional PCA and LDA (PCA-LDA) were used to distinguish between the naïve and
activation states of T cells. In the present study, 1300 types of Raman shifts were reduced to
eight dimensions through PCA. A model was then constructed to classify the naïve state at
0 h and fully activated states at 48 h using LDA. The discriminant score was also calculated
from the degree of classification and used as a biomarker for T cell activation [22].

2.4. A DNB Analysis Suitable for Raman Spectra

We assumed that the naïve state corresponded to stable state 1 and the activation
state to stable state 2 in Figure 1. The transition state may exist from the naïve state to
the activation state according to the DNB theory. To apply the DNB theory to Raman
spectra, we assigned Raman shifts to variables X = xik and Raman spectral intensities to
the realization of variables in the complex network underlying the DNB theory. The DNB
analysis was performed according to the basic flow described in Section 2.1.

In the procedure of the F-test, the control group was data in the initial states: 0 h for
the activation processes. All other data at 2, 6, 12, 24 and 48 h were set as the experimental
groups. The value q ≤ 0.05 converted by the Benjamini–Hochberg method was used to
extract fluctuating Raman shifts. In hierarchical clustering, we cut the dendrogram at the
dissimilarity cut-off of 0.3 to define clusters. We then selected the largest cluster and other
relatively large clusters that were at least half the size of the largest one. Conversely, clusters
with too few elements were removed as candidates. When the Raman shifts obtained within
a cluster were continuous, we considered them to be a spurious correlation and removed
them from the DNB candidate group. This was because, for example, if Raman shifts are
continuous as {xi−2, xi−1, xi, xi+1, xi+2}, we cannot exclude the possibility that Raman
intensity at the center xi is convolved into the surrounding area xi±1, xi±2 due to the
characteristics of Raman spectroscopy.

In the preprocessing of Raman spectral data, peak filtering was additionally performed
only when representative peaks were being analyzed. In peak filtering, we selected peak
positions at which the center of three consecutive points in data at 6 h was the largest. The
number of peak positions was 81 points and the peaks obtained were as follows: 509, 520,
523, 529, 536, 549, 561, 566, 572, 579, 606, 608, 632, 648, 650, 661, 684, 687, 735, 751, 755, 771,
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790, 813, 832, 849, 854, 857, 869, 896, 902, 937, 955, 968, 984, 986, 1003, 1006, 1030, 1054, 1064,
1093, 1095, 1126, 1129, 1150, 1158, 1171 1173, 1254, 1307, 1310, 1322, 1334, 1337, 1368, 1370,
1373, 1446, 1474, 1482, 1485, 1523, 1576, 1609, 1616, 1619, 1654, 1656, 1728, 1730, 1737, 1739,
1747, 1751 1755, 1761 1766, 1774, 1780 and 1793 cm−1.

3. Results and Discussion
3.1. Conventional Analysis

Prior to performing the DNB analysis, we conducted a conventional analysis to obtain
an overview of data. We attempted here to visualize the temporal features of typical Raman
shifts and to introduce PCA-LDA.

Figure 2 shows changes in Raman spectra for the T cell activation process. Raman
spectral intensities averaged across cells at each time point produced by the raw and prepro-
cessed datasets are shown in Figure 2a,b, respectively. A comparison of both panels showed
that preprocessing including a rolling-ball algorithm worked well. Several characteristic
peaks were observed in the Raman spectrum (see five inverted triangles in Figure 2b). Typi-
cal peaks were attributed to specific molecular vibrations. For example, the peak located at
Raman shift 1004 cm−1 was attributed to a phenylalanine ring breath. The intensities of
typical peaks varied with time. In Figure 2c–g, the Raman intensities of (c, e) cytochrome C,
(d) the phenylalanine ring breath, (f) DNAs and (g) lipids/proteins did not monotonically
increase or decrease over time, suggesting that none had a one-to-one correspondence with
the state of T cell activation. On the other hand, the average cell area as shown in Figure 2h
monotonically increased over time, except for at 6 h and markedly increased between 12
and 24 h, which is consistent with our previous findings [22]. Therefore, the cell area is a
good indicator of T cell activation and a major phenotypic change occurred between 12
and 24 h. In addition, phenylalanine and the cell area took a minimum value at 6 h, while
DNAs and lipids/proteins peaked at the same time point. These results suggest that T cell
activation is not a monotonic process, it involves transitions between distinct stages.

Figure 3 shows the classification of naïve and activation states by PCA-LDA. The
classifier was a model that distinguishes between naïve (0 h) and activation states (48 h).
A significant difference was not initially observed between the naïve state (0 h) and the
state after a short time (2 h), as shown in Figure 3a. As time passed, naïve and other data
become separate around an LDA score of zero. It was difficult to identify transition states
through the changes observed in Figure 3a–e. Therefore, a different method was required
to detect the transition state during the T cell activation process. As shown in Figure 3f, the
discriminant score gradually increased over time, which is consistent with the cell area as a
biomarker (see Figure 2h).

3.2. The DNB Analysis Using Full-Range Raman Shifts

We performed two types of DNB analyses: one using full-range Raman shifts and
another using peak-filtering Raman shifts. The results of the first analysis are shown in this
section. The results of a DNB analysis generally depend on the details of data preprocessing.
In the present study, we investigated the two parameters of the rolling-ball algorithm and
18 parameter sets were produced. DNB candidate groups were obtained at 2, 6 and 12 h.
The cluster size of the DNB candidate group obtained at 2 h was too small to discuss
specified attributions to materials and compositions. The DNB candidate group obtained
at 12 h was regarded as invalid because the DNB score had not peaked at the time point.
At 6 h, a wide variety of DNB candidate groups were obtained in a manner that depended
on rolling-ball parameters and they were verified by the DNB score. We herein focused on
DNB Raman shifts obtained at 6 h with a major diameter of 1000 and ellipticity of 0.05 as
an example.
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Figure 2. Changes in Raman spectra for the T cell activation process. Raman spectral intensities
averaged across cells at each time point produced by (a) raw and (b) preprocessed datasets. Time
evolution of Raman intensities at (c,e) cytochrome C, (d) the phenylalanine ring breath, (f) DNAs
and (g) lipids/proteins and (h) the average cell area. Error bars show the standard deviation in
panels (c–h).
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Figure 3. Classification of naïve and activation states by PCA-LDA. Scatter plots of discriminant
scores at (a) 2, (b) 6, (c) 12, (d) 24 and (e) 48 h together with the naïve state at 0 h. Red circles show
cells at each time point together with blue circles at 0 h. (f) Time evolution of the average discriminant
score during T cell activation. Error bars show the standard deviation.

Figure 4 shows the results of the DNB analysis using full-range Raman shifts from
500 to 1799 cm−1. We extracted 163 Raman shifts showing significantly large fluctuations
from 1300 types of Raman shifts at 6 h using the F-test and Benjamini–Hochberg method.
The hierarchical clustering method was then applied, producing the dendrogram shown
in Figure 4a. The largest cluster (with the largest number of elements shown in the light
blue part) was extracted as a DNB candidate group. The other clusters were excluded from
the analysis because they were smaller than half of the number of elements in the largest
cluster. We obtained a DNB candidate group consisting of 81 Raman shifts: 693, 701 707–708,
718–721, 724–733, 735–740, 742–759, 1226–1228, 1234–1237, 1239–1247, 1249–1261,
1267–1273 and 1276–1278 cm−1 (consecutive Raman shifts are hyphenated for simplicity).
Note that the 81 DNB candidates coincidentally matched the number of representative Ra-
man shifts in the preprocessing of the peak-filtering method, but were completely different.

As shown in Figure 4b, the average discriminant score gradually increased as a
biomarker of the T cell activation process. Naïve T cells varied and then became fully
activated until 48 h. On the other hand, the DNB score peaked at 6 h and then decreased,
reaching a minimum at 48 h. The average standard deviation had large values at 6 and
12 h and the average correlation strength peaked at 6 h (see Figure 4c,d). Therefore, we
concluded that 6 h was the transition state for the T cell activation process and the 81 related
Raman shifts were identified as DNB elements. Figure 4e shows the topological structures
of the weighted correlation network of DNB Raman shifts. Each Raman shift is represented
as a node and the correlation coefficient between Raman shifts as an edge. Positive and
negative correlation intensities are shown in red and blue, respectively. However, since the
information in this figure was difficult to interpret, we attempted to visualize it using a color
map. Figure 4f shows the time evolution of correlation coefficients between DNB Raman
shifts. We found two groups consisting of Raman shifts 693–759 and 1226–1278 cm−1.
The correlation strength between DNB Raman shifts, whether positive or negative, was
the highest at 6 h and the lowest at 48 h, which is consistent with the line plot of the
average correlation strength (see Figure 4d). Furthermore, Raman shifts within each
group positively correlated and these correlations had similar strengths. The two groups
also showed negative correlations with each other. These results indicate an underlying
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interaction network associated with DNB Raman shifts, the strength of which varied in
time and peaked at the transition state.
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Figure 4. Results of the DNB analysis using full-range Raman shifts. (a) A dendrogram produced
by the hierarchical clustering of 163 Raman shifts fluctuating at 6 h, the time evolution of (b) the
DNB score overplotted with the average discriminant score, (c) the average standard deviation and
(d) the average correlation strength among DNB candidates, (e) topological structures of the weighted
correlation network, and (f) correlation coefficients between 81 DNB Raman shifts. In (b), the average
discriminant score is shown again as the dashed line from Figure 3f.
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The time points available in the present study were 0, 2, 6, 12, 24 and 48 h, as described
in a previous study. We identified the transition state within several limited time points.
Nevertheless, the selection of an appropriate time interval will be pivotal in future experi-
ments. Our proposed strategy for the time interval is 2 h because each measurement by
Raman spectroscopy takes several tens of minutes and the preparation and clean-up of
equipment are required.

3.3. The DNB Analysis Using Peak-Filtering Raman Shifts

We performed a second DNB analysis using peak-filtering Raman shifts instead of full-
range Raman shifts. It is important to note that the DNB analysis using full-range Raman
shifts violated the assumption that variables are independent, which may lead to incorrect
results because the signals were convoluted to the surrounding Raman shifts due to the
instrument function of the spectrometer. Similarly, data smoothing in preprocessing is
another point of caution. Therefore, a second analysis was performed to address this issue.

Using the procedure described in the preprocessing of Raman spectral data and peak
filtering sections, we extracted 81 representative peaks from 1300 types of Raman shifts. By
applying the F-test and Benjamini–Hochberg method, 10 fluctuating Raman shifts were
obtained at 6 h.

Figure 5 shows the results of the DNB analysis using peak-filtering Raman shifts. This
figure is shown in a similar manner to Figure 4. In Figure 5a, the dendrogram was so simple
that the largest cluster consisted of 735, 751, 755 and 1254 cm−1, which were taken as DNB
candidates (see the orange part). In Figure 5b–d, the DNB score, average standard deviation
and average correlation strength peaked at 6 h. Therefore, we concluded that the transition
state of the T cell activation process occurred at 6 h and Raman shifts of 735, 751, 755 and
1254 cm−1 were identified as DNB elements. These four Raman shifts were also included
in the 81 DNB Raman shifts obtained when using full-range Raman shifts. Figure 5e shows
the topological structures of the weighted correlation network of four DNB Raman shifts.
Three out of the four nodes positively correlated with each other. Similarly, as shown in
Figure 5f, we found that two groups negatively correlated. In a comparison with Figure 5d,
these correlations were the strongest at 6 h, while no correlation was observed at 48 h.

Possible assignments for Raman shifts identified as DNBs in biological tissues were
given as follows: A Raman shift of 735 cm−1 was assigned to a protein-derived C-S bond.
Raman shifts of 751 and 755 cm−1 were relatively close to and included in the symmetric
breathing of tryptophan in the 752–755 cm−1 range, respectively. The remaining Raman
shift, 1254 cm−1, was assigned to C-N plane stretching. Other possibilities include lipids
(1255 cm−1) or a slightly shifted Amide III (1257–1260 cm−1), which also exhibits C-N
stretching or N-H bending vibrations [32].

We investigated the two types of DNB analyses using full-range and peak-filtering
Raman shifts and reached a consistent conclusion that the transition state was at 6 h. In
addition, Figures 4b–d and 5b–d showed a very similar time evolution in all quantities,
except for the average standard deviation at 48 h. These results suggest that although
nearby Raman shifts correlated, full-range Raman shifts may be used to detect the transition
state of the T cell activation process. A DNB analysis using full-range Raman shifts is simple
and suitable, while a targeted analysis using peak-filtering Raman shifts is also beneficial.
The advantage of using peak-filtering Raman shifts is the need for fewer computer resources
because the number of data points, such as Raman shifts, is markedly lower than that using
full-range Raman shifts. However, the use of peak-filtering Raman shifts requires an extra
step to prepare representative peaks from Raman spectra in advance. Therefore, a DNB
analysis using full-range Raman shifts without the need for peak filtering was better for
detecting the transition state.
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Figure 5. Results of the DNB analysis using peak-filtering Raman shifts. (a) A dendrogram produced
by the hierarchical clustering of 10 Raman shifts fluctuating at 6 h, the time evolution of (b) the
DNB score overplotted with the average discriminant score, (c) the average standard deviation and
(d) the average correlation strength among DNB candidates, (e) topological structures of the weighted
correlation network, and (f) correlation coefficients between the four DNB Raman shifts.
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4. Conclusions

In the present study, we applied the DNB theory to the Raman spectra of the T cell
activation process and successfully detected the early warning signals of a transition state
at 6 h with or without peak filtering. Raman intensity is convoluted into the surrounding
shifts due to the instrument function of the spectrometer, making it difficult to apply the
DNB theory using independent variables. However, an important point for detecting the
early warning signals of transition states is the simplicity of using full-range Raman shift
data. Furthermore, the transition state of the T cell activation process is 6 h and the average
discriminant score in conjunction with the average cell area markedly increased between 12
and 24 h. This indicates that a hidden or non-phenotypic transition occurred immediately
after 6 h and triggered later cell expansion. The view of 6 h as a turning point is also
supported by the time evolution of the average intensities of phenylalanine, DNAs and
lipids/proteins. Future studies are warranted to clarify why DNB Raman shifts change
depending on the parameters of the rolling-ball algorithm and also to improve our data
analysis pipeline for more robust detection.

In conclusion, the present results suggest novel applications of the DNB theory to
Raman spectra, obtained with Raman spectroscopy, based on the label-free and non-
invasive detection of early warning signals at the transition state in living cells or tissues. In
fundamental research on cellular mechanisms, a number of applications will be possible for
detecting the transition state in the process of not only cell activation, but also differentiation
and apoptosis. Furthermore, based on the identification of the transition state on blood
cells (T cells), we will detect the transition state (pre-disease state) between healthy and
disease states using Raman spectroscopy and related DNB Raman shifts in future clinical
studies. Our approach will also be useful for obtaining a more detailed understanding
of the biological mechanisms of the transition state (pre-disease state) when molecular
compositions, molecular structures and chemical bonding attributed to the identified DNB
Raman shift groups are clarified.
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