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Abstract: Disorder prediction methods that can discriminate between ordered and disordered regions
have contributed fundamentally to our understanding of the properties and prevalence of intrinsically
disordered proteins (IDPs) in proteomes as well as their functional roles. However, a recent large-
scale assessment of the performance of these methods indicated that there is still room for further
improvements, necessitating novel approaches to understand the strengths and weaknesses of
individual methods. In this study, we compared two methods, IUPred and disorder prediction, based
on the pLDDT scores derived from AlphaFold2 (AF2) models. We evaluated these methods using
a dataset from the DisProt database, consisting of experimentally characterized disordered regions
and subsets associated with diverse experimental methods and functions. IUPred and AF2 provided
consistent predictions in 79% of cases for long disordered regions; however, for 15% of these cases,
they both suggested order in disagreement with annotations. These discrepancies arose primarily due
to weak experimental support, the presence of intermediate states, or context-dependent behavior,
such as binding-induced transitions. Furthermore, AF2 tended to predict helical regions with high
pLDDT scores within disordered segments, while IUPred had limitations in identifying linker regions.
These results provide valuable insights into the inherent limitations and potential biases of disorder
prediction methods.

Keywords: intrinsically disordered proteins; intrinsically disordered regions; disorder prediction
methods; AlphaFold2; IUPred; DisProt; disorder to order transition; molten globule; flexible linker

1. Introduction

The functional form of proteins encompasses a variety of structural states that include
not only globular domains but also intrinsically disordered proteins (IDPs) [1]. IDPs possess
highly flexible regions (IDRs) or entire sequences that lack a stable fold [2]. These proteins
can be further classified into random coils, molten, and pre-molten globules depending
on the amount of transient secondary and tertiary structural elements and compaction [3].
Through their dynamic nature, IDPs can fulfill versatile roles in cellular processes [4,5].
They can serve as flexible linkers between domains or participate in molecular recogni-
tion [6]. By binding their specific partners, IDPs can undergo disorder-to-order transitions
and acquire specific conformations. In addition, their structural states are influenced by
factors such as pH, temperature, and post-translational modifications [7,8]. These transi-
tions enable IDPs to modulate protein-protein interactions, enzymatic activity, and gene
regulation [9]. Recently, IDPs have emerged to play important roles in driving or regu-
lating the formation of membraneless organelles through liquid-liquid phase separation
as well [10]. Altogether, IDPs are crucial for many signaling and regulatory processes in
complex biological systems [11].

In the last two decades, a growing number of IDPs have been identified by various
methods. One of the main sources of information about disordered proteins is the Protein
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Data Bank (PDB) [12]. Although the primary goal of PDB is to collect the structural
coordinates of proteins, indirectly it can also indicate the presence of disorder as unresolved
regions in structures determined by X-ray crystallography or cryo-electron microscopy
or as high mobility segments by NMR. In many cases, IDP regions are defined based on
sensitivity to proteases, increased molecular volumes, or a lack of secondary structure
elements [13]. However, many of these techniques have some caveats. The complete
characterization of IDPs requires a combination of different techniques centered around
NMR measurements. The main resource for disordered proteins is the DisProt database [14].
Entries are collected from the literature by a community effort in order to annotate the
specific regions and the applied methods. The DisProt database also gathers information
about the corresponding function using specific ontology terms [14]. Currently, the database
contains 2649 entries. Despite a steady increase, these cases represent only a tiny sample of
disordered proteins encoded by the genomes of various organisms, especially in higher
eukaryotes [15]. At this scale, computational prediction methods play a crucial role in the
characterization of IDPs.

Until today, more than 100 different disordered prediction methods have been de-
veloped [16,17]. Ultimately, these all exploit the characteristic differences in the sequence
features of ordered and disordered proteins. In general, disordered proteins are depleted
in hydrophobic amino acids and enriched in polar residues [18]. Remarkably, a simple
charge-hydropathy plot can separate structured proteins from intrinsically disordered pro-
teins relatively well [3]. However, most practical applications demand a position-specific
prediction of protein disorders. A wide range of principles have been applied for this task,
including simple biophysical approaches as well as highly complex deep learning tech-
niques that require millions of parameters [19]. One of the methods commonly employed
by the scientific community is IUPred, which utilizes simple biophysical principles [20]. A
more recent approach is based on the AlphaFold2 (AF2) method, which achieved break-
through performance for structure prediction [21]. Although AlphaFold2 was not originally
intended for identifying disordered regions, previous studies have demonstrated a strong
correlation between its predicted local distance difference test (pLDDT) scores and disorder
propensity [22,23]. In order to assess the state of the art in the field of disorder prediction,
the CAID (Critical Assessment of Protein Intrinsic Disorder) challenge was established.
The evaluations were based on a newly annotated subset of the DisProt database and
showed that overall methods are sufficiently mature to be useful, but substantial room for
improvement remains [16].

In this work, we conducted a comparative analysis of disorder prediction methods on
the DisProt database. We focused on two approaches: IUPred and the pLDDT scores based
on AF2 models. The two methods are based on completely different principles (biophysical
vs. deep learning), and another crucial difference between them is that IUPred predictions
are based on a single sequence while AF2 relies on multiple sequence alignments. However,
in both cases, the training set contained only structured proteins, which enables us to test
their performance on the complete DisProt protein dataset. In order to gain insights into the
hidden biases and limitations of these methods, we test how well they agree and disagree
in predicting experimentally characterized disordered regions and their subsets associated
with diverse experimental methods and functional roles.

2. Materials and Methods
2.1. Disorder Dataset

The disordered dataset was obtained from the DisProt database (DisProt 2022/12) [14].
Disordered regions were defined based on the annotation of disordered structural states;
additional terms were used for functional analysis. The disordered subset was filtered
for redundancy using the CD-HIT tool [24] with identity set to 40% and word length to
2. The filtered database holds 4193 regions with disordered structural state annotations.
These annotations correspond to 1922 proteins in 311 organisms and span 336,771 residues.
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However, as entries in DisProt may overlap, after merging each overlapping entry, this
accounts for 1967 regions spanning 130,678 residues.

2.2. Proteomes

We selected 55 model organisms for which precalculated AlphaFold2 predictions were
available [21,25]. These included 16 bacteria, 31 eukaryotic, and 1 Archean proteome. In
order to get a more complete coverage of Archean species, seven additional Archean species
were added that were present in the QFO database (https://www.ebi.ac.uk/reference_
proteomes/ accessed on 17 July 2023) (version 2023_03) [26], resulting in eight Archean
organisms in total.

2.3. Prediction Methods

For the disorder prediction, we employed the most recent iteration of IUPred (v3)
with default (medium smoothing) parameters [20]. We downloaded the pre-calculated
AF2 models from the FTP server (https://ftp.ebi.ac.uk/pub/databases/alphafold accessed
on 7 August 2023) (version 4) and utilized the pLDDT scores for disorder prediction.
Secondary structure prediction was carried out using DSSP (version 4.0.4) [27] integrated
into Biopython (v 1.81).

2.4. Evolutionary Conservation

To calculate the sequence conservation-based evolutionary classification of DisProt
regions, multiple sequence alignments were downloaded from the HoTIDP database [28]
using the rest API function (parameters: aln_method: mafftD, aln_type: region, dp_identity:
0.6, fullseq_identity: 0.6, regionseq_identity: 0.6, nd_full_cutoff: 0.6, nd_region_cutoff: 0.6).
Only regions of mammalian organisms were included in the evolutionary classification. In
total, 1296 region alignments were downloaded. The ortholog sequences were classified
into three main evolutionary levels according to the UniProt taxonomic lineage: Vertebrata,
Metazoa, and Unicellular. A region was considered conserved at a given evolutionary level
if it was aligned with at least three orthologous sequences.

3. Results
3.1. Agreement and Disagreement between Disorder Predictions

In order to assess the level of agreement among different methods for predicting
disorder in Intrinsically Disordered Proteins (IDPs) and Intrinsically Disordered Regions
(IDRs), we conducted an analysis using the DisProt database and two widely used methods:
IUPred and AlphaFold (AF2). We evaluated their performance on the non-redundant set of
annotated disordered segments from the DisProt database, which contained 4193 regions
in 1922 proteins spanning 336,771 residues. Here, we focused on non-overlapping, long
regions that contained at least 30 residues. For the pLDDT scores, we used the 0.7 cutoff
(residues below 0.7 are predicted to be disordered), consistent with prior measurements [23].
This way, pLDDT scores predicted 73% of residues as disordered. For IUPred, we set the
cut-off value at 0.425 (residues above this cutoff are predicted to be disordered). At this
cutoff value, IUPred predicted the same amount of residue as disordered.

For the purpose of a more detailed analysis, we introduced here a representation
that plots the agreement and disagreement between the two methods and the DisProt
annotations. Accordingly, we established four categories: Q1: both methods predict order;
Q2: AF2 predicts order and IUPred predicts disorder; Q3: AF2 predicts disorder and
IUPred predicts order; Q4: both methods predict disorder in agreement with the DisProt
annotations and show the density heatmap of the scores within the different quadrants.
Figure 1A shows the results for residues of long disordered regions, while a projected
density distribution can be found in Supplementary Figure S2. The Q4 region covered 61%
of the positions. Due to the selected cutoff values, Q2 and Q3 contained similar amounts,
corresponding to 12% of the residues (Table 1). Notably, the Q1 category, when both
methods predicted order, contained 15% of the cases.

https://www.ebi.ac.uk/reference_proteomes/
https://www.ebi.ac.uk/reference_proteomes/
https://ftp.ebi.ac.uk/pub/databases/alphafold
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Q4 68,401 (61%) 603 (64%) 6557 (35%) 361 (35%) 

Sum 112,178 946 18,500 1021 

We also considered the average predicted values for each extended, non-overlapping 
disordered region in DisProt instead of individual residues (Figure 1B). The observed 
trends remained similar at the level of regions, with some minor deviations. In this case, 
the Q4 region was slightly larger (64%), and the number of regions where AF2 alone dis-
agreed with the disorder annotation was slightly lower (9% in Q2), as opposed to the 12% 
for IUPred detected in the Q3 quarter. These results indicate that in a significant portion 
of the cases (15%), both methods contradicted experiment annotations in DisProt at both 
the level of residues and regions (Table 1).  

We also generated a similar representation for short, disordered segments (less than 
30 residues). The results show that this category was more challenging for both methods, 
but especially for IUPred (Figure 1C). While AF2 could predict 59% of residues correctly, 
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35% of the annotated positions. However, in 28% of the cases, they both disagreed with 
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Figure 1. IUPred and AlphaFold2 pLDDT scores for each residue (left) and region (right) in DisProt
with disordered structural state annotation are represented as a density heatmap. (A,B) Predic-
tion scores for long disordered regions. (C,D) Scores for short disordered regions. Darker colors
correspond to more densely populated areas.

Table 1. Distribution of long and short region positions by prediction scores across the four quadrants.

Long Short

Residues Regions Residues Regions

Q1 17,444 (15%) 139 (15%) 5240 (28%) 290 (29%)
Q2 13,290 (12%) 85 (9%) 2259 (13%) 106 (10%)
Q3 13,043 (12%) 119 (12%) 4444 (24%) 264 (26%)
Q4 68,401 (61%) 603 (64%) 6557 (35%) 361 (35%)

Sum 112,178 946 18,500 1021

We also considered the average predicted values for each extended, non-overlapping
disordered region in DisProt instead of individual residues (Figure 1B). The observed trends
remained similar at the level of regions, with some minor deviations. In this case, the Q4
region was slightly larger (64%), and the number of regions where AF2 alone disagreed
with the disorder annotation was slightly lower (9% in Q2), as opposed to the 12% for
IUPred detected in the Q3 quarter. These results indicate that in a significant portion of the
cases (15%), both methods contradicted experiment annotations in DisProt at both the level
of residues and regions (Table 1).

We also generated a similar representation for short, disordered segments (less than
30 residues). The results show that this category was more challenging for both methods,
but especially for IUPred (Figure 1C). While AF2 could predict 59% of residues correctly,
IUPred recognized only 48% of disordered residues, and both methods agreed on only 35%
of the annotated positions. However, in 28% of the cases, they both disagreed with DisProt
annotations at the residue level, with largely similar values at the region level (Figure 1C,D).
Interestingly, many of the residues within the short DisProt regions are predicted as ordered
with high confidence.

There are a handful of examples where a protein can have different conformational
states induced by experimental conditions, including metamorphic and moonlight proteins.
We analyzed a list of previously published proteins that exhibit this behavior and found
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that they tend to show more order in terms of pLDDR and IUPred score as well as overall
compared to DisProt (Supplementary Figure S1) [29].

Overall, these results confirm earlier observations that there are characteristic differ-
ences between short and long disordered regions [30]. As long, disordered regions are more
often associated with additional features, especially functional annotations, we focused on
this subset in the rest of the manuscript.

3.2. Ontology Terms

Next, we analyzed the type of experimental method that underlies the annotation of a
given region based on the associated ECO (Evidence and Conclusion Ontology) terms [31].
Even for long disordered regions, the most common source of annotations is X-ray crys-
tallography (ECO:0006220), in agreement with earlier observations that long disordered
regions are now common in the PDB [32]. This method is followed by NMR spectroscopy
(ECO:0006165), CD spectroscopy (ECO:0006204), cryo-EM (ECO:0006224), and proteolytic
assays (ECO:0007691) (Figure 2A). Using the previously applied representation, we tested
which methods were overrepresented and underrepresented in the different scenarios of
agreement and disagreement between predictions and annotations. The results shown in
Figure 2B indicate that in the Q1 quadrant, X-ray crystallography-based annotations were
largely enriched. Based on the Q3 quadrant, disordered regions annotated with cryo-EM
terms also seem to be more challenging for IUPred. In contrast, AF2 more often mispredicts
regions annotated based on NMR, CD, or other techniques.
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DisProt has also introduced functional and structural ontology terms for intrinsically
disordered regions known as IDPOs [14]. One of the main categories is the disordered
structural state, which contains more specific child terms such as molten globule and pre-
molten globule states. There are 9 and 11 regions associated with these terms in the filtered
dataset, respectively. While all of the pre-molten globules occur in the Q4 quarter, nearly
half of the annotated molten globules occur within the Q1 and Q2 regions (Figure 3A,B).
This indicates that, to some extent, IUPred, but especially AF2, predicts a significant portion
of these cases as ordered.
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Another major IDPO category is structural transition, in which the most common term
is disorder-to-order transition. Additional child terms were not analyzed separately due to
the limited number of examples. Predictions for regions with structural transitions generally
agree well with each other. However, many of these examples are predicted as ordered
by both methods (Figure 4A). AF2 predicted more additional orders compared to IUPred
(Q2 vs. Q3). As many disordered regions with this annotation are short, we also looked
at these examples separately. These shorter regions were mostly predicted as ordered by
both methods (Figure 4C). Entries could also be annotated to undergo an order-to-disorder
transition, although this term is used less frequently. Long disordered regions with this
annotation do not show a preference for any of the quadrants, but shorter segments favor
the Q1 region (Figure 4B,D). It is worth noting that annotations for structural transitions
are likely to be incomplete, as around half of all DisProt regions contain corresponding
PDB structures.

The functional role of disordered regions is characterized by a combination of IDPO
and GO terms [14]. Plots are shown here for the most frequently used ontology terms, cor-
responding to protein binding (GO:0005515), molecular adaptor activity (GO:0060090), flex-
ible linker/spacer (IDPO:00502), and molecular function regulator (GO:0098772) (Figure 5).
The profile for the protein binding category is similar to the one corresponding to disorder-
to-order transition, as expected, with the majority of cases occupying the Q4 area. Examples
of molecular adaptor function mostly occur within the Q4 and Q1 regions, with very few
cases within the Q3 quadrant. Complementing categories related to molecular recognition,
the flexible linker/spacer category is part of the entropic chain function. For this type of
functional term, most examples are located within the Q4 quadrant, and there are very
few examples within Q1 regions. The slightly increased number of examples within Q3
compared to Q2 indicates that linkers in general are better recognized by AF2. In contrast,
AF2 and IUPred largely agree for cases with molecular function regulator activity, but many
of these examples are predicted as ordered by both methods.
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3.3. Secondary Structure Preferences

We also examined secondary structure elements in the AlphaFold-predicted structures
of proteins in DisProt using DSSP [27] (Figure 6). In general, only a small or no amount
of regular secondary structure elements are expected within disordered regions. In agree-
ment, the fourth quadrant showed only limited tendencies towards α-helical and β-sheet
structures. The Q3 region showed a slightly higher amount of predicted regular secondary
structure elements, but coil structures still dominated with over 60 percent. AF2 predictions
with high pLDDT scores were correlated with an increased amount of regular secondary
structure elements, especially α-helices. This was true not only for Q1 but also for the
Q2 quadrant, in which α-helices were the most commonly predicted structural elements.
This indicates a strong bias for AlphaFold2 to predict α-helical elements within disordered
regions. Another key observation is that AF2 predicts significantly lower amounts of
β-sheets for regions with low pLDDT scores, while α-helices are more prevalent in regions
with high confidence.
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3.4. Sequence Conservation

We also assessed the level of agreement between AF2 and IUPred based on different
levels of evolutionary sequence conservation calculated from multiple sequence alignments
(MSAs) of orthologs. For this, we focused on sequences from mammalian species containing
long, disordered regions. The MSAs were collected from the HoTIDP database, which
stores precalculated reference alignments of DisProt entries [28]. Based on the MSAs, the
level of conservation was classified as Vertebrata, Metazoa, or Unicellular (methods) for
each DisProt region. 1225 examples could be traced back to the Vertebrata level only,
while 51 examples showed a more ancient evolutionary origin at the Eumetazoa level,
and 20 examples could be traced back to the level of unicellular organisms. Most of the
cases of Vertebrate origin were predicted to be disordered by both methods (Figure 7A).
Examples that could be traced back to Eumetazoa clustered into two regions, one with a
high IUPred/low pLDDT score and one with a high pLDDT score, some of which had high
IUPred scores (Figure 7B). Interestingly, our results showed that in the case of the Unicellular
subset, 60% of the positions annotated as disordered in DisProt were predicted as ordered
by AF2 (Unicellular Q1 plus Q2) (Figure 7C) (Table 2). This result showed that cases with
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more conserved orthologs tend to be predicted as ordered regions by AF2. This tendency
can be explained by the fact that the key input to AF2 is multiple sequence alignment,
and the larger number of evolutionarily related sequences promotes the prediction of a
structured state. On the other hand, predictions based on IUPred are expected to be less
affected by this conservation-based bias. Accordingly, the percentage of residues in the Q3
region slightly decreases for proteins for larger evolutionary conservation, with only 9% of
residues classified as disordered by IUPred alone (Unicellular Q3) (Table 2).
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Table 2. Distribution of DisProt region positions in the four quadrants at the three evolutionary levels.

Vertebrata Eumetazoa Unicellular

Q1 1150 (13%) 578 (22%) 83 (40%)
Q2 9925 (12%) 480 (19%) 41 (20%)
Q3 10,705 (13%) 144 (6%) 18 (9%)
Q4 52,222 (62%) 1378 (53%) 63 (31%)

Sum 74,002 2580 205
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3.5. Model Proteomes

While the DisProt database serves as a great starting point, the number of known
examples is still limited. In order to gain a better understanding of the discrepancies
in disorder prediction methods, we analyzed the publicly available reference proteomes
in the AlphaFold database, completed with Archean organisms from the QFO database
(see Section 2). We collected IUPred predictions and the pLDDT score and calculated
the percentage of disordered residues for bacteria, Archaea, and eukaryotic species using
the same cutoff values as previously. There was no significant difference observed for
bacteria and Archaea, with both methods predicting around 10% of residues as disordered.
However, we observed a more significant difference in the case of eukaryotic proteomes.
While AF2 predicted 38% of the residues as disordered in this set, IUPred only predicted
28% (Figure 8).
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3.6. Examples

One of the unexpected outcomes of our analyses is the relatively high proportion
of residues when the IUPred and AF2 methods both predicted order for an annotated
disordered region. In order to gain further insights, we took a closer look at some exam-
ples. The observed discrepancy can highlight cases with weak or erroneous experimental
support. One such potential case is the DisProt entry DP02515 for the human CD166
antigen (Q13740), with region 246–583 annotated as disordered based on the PDB struc-
ture 5A2F. The authors stated that the regions “had been proteolytically cleaved prior to
crystal growth”, therefore this region should not have been indicated as having missing
residue coordinates from the PDB structure. The longest ambiguous case corresponds to
DP02513 (Q05022) annotated according to the cryo-EM-based structural model with the
PDB code 5WYJ [33]. Over 1400 residues are annotated as disordered at the N-terminal
that are missing from multiple structures. However, this region contains repeating units
of S1 domains, which are common in RNA-binding proteins and are assumed to fold into
five-stranded antiparallel β barrel structures [34]. Therefore, it needs further experimental
confirmation whether this region is indeed disordered, or if only its relative orientation
varies but disorder is limited to a much shorter linker region.

Another common scenario is when both AF2 and IUPred predict order for disordered
regions, which corresponds to disordered-to-order transitions. One example of this is
the peptide fragment from 248 to 286 of prostatic acid phosphatase (PAP) (DP00628).
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This peptide is a naturally occurring 39 amino acid fragment from PAP that significantly
enhances the rate of HIV infection [35]. The monomeric peptide PAP248-286 was shown to
be predominantly disordered in solution. However, NMR spectroscopy in SDS micelles,
which serve as a model membrane system, has shown that the core of the peptide (262–270)
adopts a short helical region during a disordered-to-ordered transition when bound to
the surface of the micelle, while the N- and C-termini remain highly flexible [35]. Both
AF2 and IUPred predict PAP248-286 as an ordered region. This is in agreement with the
behavior of the peptide in the context of the complete protein, which adopts a well-defined
structure [36].

One notable feature of AF models for disordered regions is that they predict α-helical
regions with high pLLDT scores even within experimentally verified disordered segments.
One example of this is the human Stathmin protein, which is involved in the regulation of
the microtubule and has been shown to be disordered between residues 116 and 168 [37].
However, the AlphaFold2 structure of the protein shows strong helical preference with
high confidence in this region (Figure 9A).
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Our results also showed that AF2 tends to predict intrinsically disordered regions
as ordered in the case of strong evolutionary sequence conservation. However, IUPred
is able to predict these cases as disordered. An example is the region (DP00393) from
nuclear cap-binding protein subunit 2 (CBP20) of the Cap Binding Complex (CBC), which
is extremely conserved not only in vertebrates and eumetazoans but also in unicellular
organisms. This results in a large number of homologous sequences in the AF2 MSA
input, which can promote order prediction. In contrast, IUPred predicts the region as
disordered, which is consistent with PDB structures where the region has missing residue
coordinates in an unbound state (1H2V, 1N54). There are additional PDB structures where
CBP20 is in complex with a ligand or a partner (1H2T, 1H2U, 5OO6) and the region adopts
a structure very similar to the AF2 model, suggesting that AF2 prediction is influenced
by these structures. This suggests that not only the disordered region itself but also its
transition to an ordered state is evolutionarily conserved. However, AF2 is biased towards
recognizing the ordered state, while IUPred predicts this region as disordered.

One of the surprising results of our analysis was that although IUPred and AF2 predict
the same amount of disorder for DisProt and for Archeal and bacterial species, there are
significantly more residues disordered in eukaryotic proteomes according to AF2 (Figure 8).
An interesting case when AF2 predicts disorder but IUPred predicts order is the case of
the putative uncharacterized protein UNQ6493/PRO21345 (Q6UXR8) (Figure 9B). The
predicted structure of AlphaFold2 shows a generally well-structured protein, which is in
agreement with the IUPred prediction of order; however, the pLDDT score is very weak
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for all residues, which would indicate the presence of disorder. There are further studies
needed to understand the origin of this proteome-level bias.

4. Discussion

The DisProt database is the largest collection of experimentally verified disordered
protein regions [14]. Entries are supported by experimental evidence and, if available,
complemented with specific annotation terms related to structural states, transitions, and
functional aspects. As a result, the DisProt database provides a comprehensive represen-
tation of various IDP subclasses—or flavors—of disorder [38]. These flavors can depend
on the length of the disordered region or the experimental method used for their identifi-
cation [1,30]. A subset of IDRs were suggested to exist in a molten globule or premolten
globule structural state or undergo a disorder-to-order or order-to-disorder transition de-
pending on environmental conditions or binding to specific partners [2]. The detailed
structural properties of IDPs have been associated with various functions and their reg-
ulation. Given the heterogeneous nature of protein disorder, one central question is how
disorder prediction methods are able or limited in their ability to capture the different
flavors of disorder. Recent large-scale assessments of disorder prediction methods indicated
that there is still a need for further improvements [16,39]. However, these evaluations
give little clue about the main biases and limitations of individual methods. In order to
shed light on this, we utilized the DisProt database and compared two disorder prediction
methods that were trained on different principles, IUPred and AF2, and explored the
agreements and disagreements in their prediction results.

Our results revealed that, considering residues located within long regions from the
DisProt database, IUPred and AF2 provided consistent predictions in 79% of the cases.
However, for 15% of these cases, both methods predicted order. Various factors could con-
tribute to the disagreement between disorder annotations and computational predictions.
One source could be weak experimental support, especially based on methods that do not
have a residue-level resolution, such as proteolytic assays or CD spectroscopy. Disordered
regions defined by these methods could contain ordered domains in addition to disordered
regions. In addition, the class of molten globules, which can be viewed as an intermediate
state between full order and disorder, is also mostly predicted as ordered. A large group of
additional cases that are consistently predicted as ordered, especially in the case of shorter
segments, correspond to regions undergoing disorder-to-order transitions. Many of these
examples can exist in both an ordered and a disordered state, and they can often be found
by contrasting regions with and without known coordinates from PDB structures. This
is supported by the fact that for this category, X-ray crystallography techniques and, to
a lesser extent, cryo-EM structures are overrepresented. From a functional point of view,
molecular function regulators were strongly associated with disordered regions predicted
as ordered by both methods.

Our analysis also indicates that there are major differences in how the two methods
capture the flavors of disorder represented in DisProt. For example, IUPred can recognize
short, disordered regions much less effectively compared to AF2; however, these differences
largely diminish for longer disordered regions. While IUPred encounters more difficulties
with disordered regions defined based on X-ray crystallography, the challenging cases
for AF2 are more likely to come from experimental evidence based on NMR or CD. For
regions annotated as linkers in the DisProt database, IUPred predicts more order. In
contrast, AF2 predicts order for a larger portion of regions involved in protein binding
and for molecular adaptors. These results demonstrate that discrepancies between the
two predictions can be linked to functional information, which could be exploited for
the development of specialized approaches for the recognition of functional regions, for
example, binding regions or linker segments [40–42]. One of the observed features of AF2
is that α-helical segments are significantly overrepresented in the predicted structures for
the disordered regions. In general, regions that show stronger evolutionary conservation
tend to be predicted as more ordered, especially by AF2. We also showed that these biases
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manifest strongly at the level of proteomes, with AF2 predicting a larger proportion of
eukaryotic genomes to encode disordered proteins.

In conclusion, in this work, we compared two disorder prediction methods, IUPred
and AF2, in order to shed light on their ability to capture the diversity of disorders using
the DisProt annotations. Our analysis revealed major differences between IUPred and AF2
in capturing the various flavors of disorder, with each method exhibiting unique strengths
and limitations based on region length, experimental evidence, and functional annotations.
We also show that these biases can also be linked to evolutionary conservation, taxonomical
origin, and structural preferences. Overall, these types of analyses can be extended to other
methods and might provide valuable insights into the strengths and limitations of disorder
prediction methods, paving the way for approaches with improved performance.
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as a density heatmap; Figure S2: Projected density distribution or IUPred and AlphaFold2 pLDDT
scores for each residue (left) and region (right) in DisProt with disordered structural state annotation.
Table S1: IDPO and GO Functional annotations in the DisProt database.
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